Real-time Illustration of Vascular Structures

Felix Ritter¹, C. Hansen¹, V. Dicken¹ O. Konrad¹, B. Preim², H.-O. Peitgen¹ ¹ MeVis Research GmbH, Bremen ² University of Magdeburg Using NPR techniques to provide functional realism

Outline

- Motivation
- Reconstruction of Vascular Structures
- Enhancing Spatial Perception
- Study in Depth-Encoding
- Illustration Examples
- Summary

Motivation

Motivation Reconstruction Enhancing Spatial Perception Study Examples Summary

MotivationReconstructionEnhancing Spatial PerceptionStudyExamplesSummary

Reconstruction of Vascular Structures

- 1. Segmentation of vascular structures in images
- 2. Skeletonization and calculation of diameter
- 3. Graph analysis
- 4. Graph simplification (pruning, smoothing)
- 5. Visualization

Motivation

Visualization of Vascular Structures

- Representation of graph edges by means of truncated cones
- Branching edges connected by truncated cones too
- Using hemispheres to close edges at root and leaves

Enhancing Spatial Perception

OR-Visualization of Vascular Structures

- Application of color and shading limited due to varying absorption and reflection characteristics on organ surfaces
- Black and white images provide best contrast and brightness when projected

Study

Summary

Texture-Based Visualization

- Shape and spatial orientation
- Relative distances of depicted vascular segments to observer
- Distances between vascular structures
- Distances to other relevant anatomic structures

Distance of Vascular Structures to the Observer

Summary

Study

Distance of Vascular Structures to the Observer

Distance-Encoded Surfaces

Communication of Shape

Motivation

Communication of Shape

Motivation Reconstruction ► Enhancing Spatial Perception

iples Summary

Study

Examples

• Enhancing Spatial Perception

Motivation

Reconstruction

Study

Examples

► Enhancing Spatial Perception

Motivation

Reconstruction

Motivation Reconstruction Enhancing Spatial Perception Study

Motivation Reconstruction Enhancing Spatial Perception Study

Combining z-buffer difference image with color-buffer image of same object textured by a fixed *procedural stripe-texture* yields a more "natural" look

Distance between Vascular Structures

Distance between Vascular Structures

Motivation

Reconstruction **•** Enhancing

Enhancing Spatial Perception

Study Examples

Distance between Vascular Structures

Explicit coding of spatial depth with *Distance-Encoded Shadows*

Motivation

Study in Depth-Encoding

- 160 subjects
 - 83 male, 77 female (17 56 years old)
 - 38 physicians or medical students
- Web-based questionnaire
 - PHP + MySQL

Motivation Reconstruction Enhancing Spatial Perception Study Examples Summary

Motivation Reconstruction Enhancing Spatial Perception Study Exa

Motivation Reconstruction Enhancing Spatial Perception Study

Study: Distance-Encoded Surface

Relative distance to observer more accurately judged with explicit coding than with traditional shading
(Wilcoxon signed rank test; 1: p-value < 0.001; 2: p < 0.001)

Study: Shape Communication by Hatching Strokes

Shape equally good perceived with hatching as with traditional shading

(Wilcoxon signed rank test; 1: p = 0.99; 2: p = 0.57; slightly worse but not significantly!)

Study: Distance-Encoded Shadow

- Depth distance between vessels more accurately rated with displayed shadows than without (Wilcoxon signed rank test; 1: p < 0.001; 2: p < 0.001)
- Explanation beforehand had no significant impact

Projection on a Pig-Liver

Motivation

Reconstruction

Enhancing Spatial Perception

Study • Examples

Summary

Illustration of Vascular Structures

Illustration of Vascular Structures

Illustration of Vascular Structures

- Color-reduced coding of spatial information with texture well suited to operation room visualization
- Explicit coding of depth within the displayed vascular structures increases the reliability of depth judgments
- Hatching can communicate shape and topology equally well as Gouraud or Phong Shading

Acknowledgements

- Wolfram Lamadé, Robert-Bosch-Hospital Stuttgart, Germany
- Jörg Raczkowsky and Lüder Kahrs, Institute for Process Control and Robotics, University of Karlsruhe, Germany