Real-time Illustration of Vascular Structures

Felix Ritter1, C. Hansen1, V. Dicken1
O. Konrad1, B. Preim2, H.-O. Peitgen1

1MeVis Research GmbH, Bremen
2University of Magdeburg

Using NPR techniques to provide functional realism
Outline

- Motivation
- Reconstruction of Vascular Structures
- Enhancing Spatial Perception
- Study in Depth-Encoding
- Illustration Examples
- Summary
Motivation
Motivation
Motivation
Motivation
Reconstruction of Vascular Structures

1. Segmentation of vascular structures in images
2. Skeletonization and calculation of diameter
3. Graph analysis
4. Graph simplification (pruning, smoothing)
5. Visualization

[Hahn et al. 2001]
Visualization of Vascular Structures

- Representation of graph edges by means of truncated cones
- Branching edges connected by truncated cones too
- Using hemispheres to close edges at root and leaves
OR-Visualization of Vascular Structures

- Application of color and shading limited due to varying absorption and reflection characteristics on organ surfaces
- Black and white images provide best contrast and brightness when projected
Texture-Based Visualization

- Shape and spatial orientation
- Relative distances of depicted vascular segments to observer
- Distances between vascular structures
- Distances to other relevant anatomic structures
Distance of Vascular Structures to the Observer
Distance of Vascular Structures to the Observer

[Freudenberg 2004]
Distance-Encoded Surfaces
Communication of Shape
Communication of Shape
Generation of Hatching Strokes

[Diagram of a cylinder with hatching strokes]
Generation of Hatching Strokes
Generation of Hatching Strokes

Motivation
Reconstruction
Enhancing Spatial Perception
Study
Examples
Summary
Generation of Hatching Strokes

Motivation Reconstruction Enhancing Spatial Perception Study Examples Summary
Generation of Hatching Strokes
Generation of Hatching Strokes

Combining z-buffer difference image with color-buffer image of same object textured by a fixed *procedural stripe-texture* yields a more „natural“ look.

- low frequency
- medium frequency
- high frequency
Generation of Hatching Strokes

[Freudenberg 2004]

low frequency medium frequency high frequency

Motivation Reconstruction Enhancing Spatial Perception Study Examples Summary
Distance between Vascular Structures
Distance between Vascular Structures

- Motivation
- Reconstruction
- Enhancing Spatial Perception
- Study
- Examples
- Summary
Distance between Vascular Structures

Explicit coding of spatial depth with *Distance-Encoded Shadows*
Study in Depth-Encoding

- 160 subjects
 - 83 male, 77 female (17 – 56 years old)
 - 38 physicians or medical students
- Web-based questionnaire
 - PHP + MySQL
Study in Depth-Encoding

Motivation Reconstruction Enhancing Spatial Perception Study Examples Summary

1 2 4 5 6
7 9 10 8
11
12a
12b
13 15
14
16 17
18 20
19

training
distance-encoded shadow
distance-encoded surface
stroke hatching
no hint
hint
3
??
?? ?? ?? ??
21
Questionnaire
Questionnaire
Questionnaire

Aufgabe 3 (von 21)

Bitte sortieren Sie die durch die roten Ziffern gekennzeichneten Teile des Gefäßbaumes nach ihrer Entfernung. Beginnen Sie mit der Stelle die am weitesten vorne liegt.

Tip: Je breiter die schwarzen Linien an einer Stelle, desto weiter liegt diese vorne.

Reihenfolge: 2 - 3 - 1
Relative distance to observer more accurately judged with explicit coding than with traditional shading
(Wilcoxon signed rank test; 1: p-value < 0.001; 2: p < 0.001)
Study: Shape Communication by Hatching Strokes

- Shape equally good perceived with hatching as with traditional shading
 (Wilcoxon signed rank test; 1: p = 0.99; 2: p = 0.57; slightly worse but not significantly!)
Study: Distance-Encoded Shadow

- Depth distance between vessels more accurately rated with displayed shadows than without (Wilcoxon signed rank test; 1: p < 0.001; 2: p < 0.001)
- Explanation beforehand had no significant impact
Projection on a Pig-Liver
Illustration of Vascular Structures
Illustration of Vascular Structures
Illustration of Vascular Structures
Summary

- Color-reduced coding of spatial information with texture well suited to operation room visualization
- Explicit coding of depth within the displayed vascular structures increases the reliability of depth judgments
- Hatching can communicate shape and topology equally well as Gouraud or Phong Shading
Acknowledgements

- Wolfram Lamadé, Robert-Bosch-Hospital Stuttgart, Germany
- Jörg Raczkowsky and Lüder Kahrs, Institute for Process Control and Robotics, University of Karlsruhe, Germany