Extensions of the Zwart-Powell Box Spline for Volumetric Data Reconstruction on the Cartesian Lattice

Alireza Entezari and Torsten Möller

```
aentezar@cs.sfu.ca
```

GrUVi Lab, School of Computing Science, Simon Fraser University

Reconstruction on the Cartesian Lattice

A ubiquitous problem in many computing areas:

- Scientific computing
- Visualization
- Computer Graphics
- ...

Interpolation/Reconstruction

- Studied in Numerical Analysis and Signal Processing
- 1-D interpolation/reconstruction, rich literature.

Interpolation/Reconstruction

- Studied in Numerical Analysis and Signal Processing
- 1-D interpolation/reconstruction, rich literature.
- Volume Data / Image Processing $\Rightarrow 3-\mathrm{D} / 2-\mathrm{D}$

Interpolation/Reconstruction

- Studied in Numerical Analysis and Signal Processing
- 1-D interpolation/reconstruction, rich literature.
- Volume Data / Image Processing $\Rightarrow 3-\mathrm{D} / 2-\mathrm{D}$
- Radial Basis Functions: apply 1-D methods on the norm of vectors

Interpolation/Reconstruction

- Studied in Numerical Analysis and Signal Processing
- 1-D interpolation/reconstruction, rich literature.
- Volume Data / Image Processing $\Rightarrow 3$-D/2-D
- Radial Basis Functions: apply 1-D methods on the norm of vectors
- Tensor Product Solution: apply 1-D methods along rows, columns, ...

Interpolation/Reconstruction

- Studied in Numerical Analysis and Signal Processing
- 1-D interpolation/reconstruction, rich literature.
- Volume Data / Image Processing $\Rightarrow 3$-D/2-D
- Radial Basis Functions: apply 1-D methods on the norm of vectors
- Tensor Product Solution: apply 1-D methods along rows, columns, ...
essentially 1-D solutions, not true multi-D solutions. Our approach: true 3-D

Our Recontruction Algorithm

tri-linear B-spline

tri-cubic B-spline

box spline Ξ

Box Splines

- True multi-dimensional basis functions

Box Splines

- True multi-dimensional basis functions
- Convenient piecewise polynomial approximation

Box Splines

- True multi-dimensional basis functions
- Convenient piecewise polynomial approximation
- Not restricted to axis-aligned tensor product B-splines

Box Splines

- True multi-dimensional basis functions
- Convenient piecewise polynomial approximation
- Not restricted to axis-aligned tensor product B-splines
- Obtained by directional convolutions

box,discontinuous

linear, C^{0}

quadratic, C^{1}

Box Splines

- True multi-dimensional basis functions
- Convenient piecewise polynomial approximation
- Not restricted to axis-aligned tensor product B-splines
- Obtained by directional convolutions

box,discontinuous

linear, C^{0}

quadratic, C^{1}

Zwart-Powell element

Tri-variate Box Splines

- Despite attractive 2D examples, not many 3D box splines

Tri-variate Box Splines

- Despite attractive 2D examples, not many 3D box splines
- Reconstruction on Body Centered Cubic with 4-dir box splines.

Tri-variate Box Splines

- Despite attractive 2D examples, not many 3D box splines
- Reconstruction on Body Centered Cubic with 4-dir box splines.
- Extend the Zwart-Powell element to tri-variate setting

Tri-variate Box Splines

- Despite attractive 2D examples, not many 3D box splines
- Reconstruction on Body Centered Cubic with 4-dir box splines.
- Extend the Zwart-Powell element to tri-variate setting
- 7-directional box spline

Seven Directional Box Spline

- 3-axis aligned directions
- 4-diagonal directions

Seven Directional Box Spline

- Matrix of directions:

$$
\boldsymbol{\Xi}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 1 & -1 & -1 & 1 \tag{1}\\
0 & 1 & 0 & -1 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 & -1 & 1 & 1
\end{array}\right]
$$

- $\rho=\min \left\{Z \in \boldsymbol{\Xi}, \boldsymbol{\Xi} \backslash Z\right.$ does not span $\left.\mathbb{R}^{3}\right\} \therefore \rho=4$.
- $M_{\Xi} \in C^{\rho-2}=C^{2}$

Approximation Power

- Fourier Transform:

$$
\begin{equation*}
\hat{M}_{\Xi}(\boldsymbol{\omega})=\prod_{\boldsymbol{\xi} \in \boldsymbol{\Xi}} \operatorname{sinc}(\boldsymbol{\xi} \cdot \boldsymbol{\omega}) \tag{2}
\end{equation*}
$$

- Essentially product of directional sinc's
- One can verify zero-crossing of \hat{M}_{Ξ}

Approximation Power

- Number of Vanishing moments

tri-cubic B-spline

box spline M_{Ξ}
- A minimum of four vanishing moments.
- Approximation Power $=4$

B-splines?

The smoothness and approximation power matches that of the tri-cubic B-spline.

Support

- Convolution of a 4-directional box spline with a cube

Computational Efficiency

- The support of the tri-cubic B-spline is a $4 \times 4 \times 4$ neighborhood

Computational Efficiency

- The support of the tri-cubic B-spline is a $4 \times 4 \times 4$ neighborhood
- The support of this box spline is contained in $5 \times 5 \times 5$ neighborhood.

Computational Efficiency

- The support of the tri-cubic B-spline is a $4 \times 4 \times 4$ neighborhood
- The support of this box spline is contained in $5 \times 5 \times 5$ neighborhood.
- Originally we considered this box spline to be slower

Computational Efficiency

- The support of the tri-cubic B-spline is a $4 \times 4 \times 4$ neighborhood
- The support of this box spline is contained in $5 \times 5 \times 5$ neighborhood.
- Originally we considered this box spline to be slower
- It turns out that only 53 points fall inside the support.

Computational Efficiency

- The support of the tri-cubic B-spline is a $4 \times 4 \times 4$ neighborhood
- The support of this box spline is contained in $5 \times 5 \times 5$ neighborhood.
- Originally we considered this box spline to be slower
- It turns out that only 53 points fall inside the support.
- 20\% faster than tri-cubic B-spline

Numerical Implementation

- Table look up for box spline values
- The box spline M_{Ξ} can be decomposed into

$$
M_{\boldsymbol{\Xi}}(\boldsymbol{x})=\left(M_{\boldsymbol{\Xi}_{1}} * M_{\boldsymbol{\Xi}_{2}}\right)(\boldsymbol{x})
$$

where

$$
\boldsymbol{\Xi}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \boldsymbol{\Xi}_{2}=\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & 1 & 1
\end{array}\right]
$$

Numerical Implementation

- the 3-directional $M_{\Xi_{1}}$ is simply the box function over $[0 . .1)^{3}$

Numerical Implementation

- the 3-directional $M_{\Xi_{1}}$ is simply the box function over $[0 . .1)^{3}$
- the 4-directional $M_{\Xi_{2}}$ has been derived previously to be

$$
M_{\Xi_{2}}(x, y, z)=2 \max (0,1-\max (|x|+|y|,|x|+|z|,|y|+|z|))
$$

Numerical Implementation

- the 3-directional $M_{\Xi_{1}}$ is simply the box function over $[0 . .1)^{3}$
- the 4-directional $M_{\Xi_{2}}$ has been derived previously to be

$$
M_{\Xi_{2}}(x, y, z)=2 \max (0,1-\max (|x|+|y|,|x|+|z|,|y|+|z|))
$$

- Sample $M_{\Xi_{1}}$ and $M_{\Xi_{2}}$ on finite volume dataset

Numerical Implementation

- the 3-directional $M_{\Xi_{1}}$ is simply the box function over $[0 . .1)^{3}$
- the 4-directional $M_{\Xi_{2}}$ has been derived previously to be

$$
M_{\Xi_{2}}(x, y, z)=2 \max (0,1-\max (|x|+|y|,|x|+|z|,|y|+|z|))
$$

- Sample $M_{\Xi_{1}}$ and $M_{\Xi_{2}}$ on finite volume dataset
- Perform discrete convolution on these two volumes

Numerical Implementation

- the 3-directional $M_{\Xi_{1}}$ is simply the box function over $[0 . .1)^{3}$
- the 4-directional $M_{\Xi_{2}}$ has been derived previously to be

$$
M_{\Xi_{2}}(x, y, z)=2 \max (0,1-\max (|x|+|y|,|x|+|z|,|y|+|z|))
$$

- Sample $M_{\Xi_{1}}$ and $M_{\Xi_{2}}$ on finite volume dataset
- Perform discrete convolution on these two volumes
- Can be efficiently performed by multiplication in Fourier domain

Stair-casing in Recontruction

Voxelized surface

tri-cubic B-spline

box spline Ξ

Grid-Aligned Artifacts

tri-linear B-spline

tri-cubic B-spline

box spline M_{Ξ}

Our Recontruction Algorithm

tri-linear B-spline

tri-cubic B-spline

box spline $\boldsymbol{\Xi}$

Conclusion

The 7-directional box spline

- has the same smoothness and approximation power of the tri-cubic B-spline
- offers a more isotropic treatment of data and reduces axis-aligned artifacts
- is computationally more efficient than tri-cubic B-spline (20\%)

