
Visualization of the New Orleans Windfield Dataset

Randall E. Hand∗

U.S. Army Corps of Engineers, Engineering Research & Development Center

ABSTRACT

The theme of the IEEE Visualization 2005 Contest is
“Rendering Revolution”, and as such a revolutionary approach is
required. Development of an application to effectively visualize
the New Orleans Windfield dataset using all open-source tools
that is capable of enabling interactive manipulation of the data on
a typical medium-grade personal computer requires
implementation of both new data management algorithms and and
new data visualization and computation techniques.

Developing a system that was capable of competing with the
supercomputers and visualization clusters available today was
both challenging and rewarding, resulting in the application
submitted.

1 INTRODUCTION

The theme of the IEEE Visualization 2005 Contest is “Rendering
Revolution”. As today’s datasets grow larger and larger,
visualizations requiring supercomputers or large clusters are
becoming more commonplace. This takes visualization out of the
hands of the common user and places it in the realm of high-dollar
corporations or wealthy researchers.

By implementing better techniques for data management and
smarter algorithms for rendering, visualization of large-data can
be put back in the hands of the common man or scientist.

2 ALGORITHMS

2.1 Data Management
The data for the contest was initially provided as a pair of ASCII
FieldFlow files of approximately 682Megabytes in size. The first
step of the project was to convert this into something more
manageable and more feature-filled.

The obvious first step was to convert the data into a binary
format. This would reduce the 8 or 10 byte numbers into 4 byte
floats, resulting in approximately a 50% size savings, and and
several orders of magnitude of time savings during loading. This,
however did not fully address the problems of the organization of
the data.

Initially, the grid was specified separate from the actual data.
Also, the grid was specified both as a collection of triangulated
surfaces and volume tetrahedra. The simplest portion of the data
to extract and visualize was the surfaces, so a routine was written
to extract each of the 4 surfaces (floor, city, walls, & ceiling) into
4 separate files of a custom format. This custom format would
contain only the vertices necessary for the surface, along with
their data, and the triangles necessary to construct the surface.

The volume tetrahedra presented a further problem. With just
over 12 million tetrahedra specified in the data, a smarter
algorithm was needed to better facilitate sorting and searching in

the data. A simply binary space partition could sort the data into
significantly smaller and more manageable portions, while a
bounding box surrounding each portion could be used to speed up
searches.

An algorithm was developed that first computed a bounding
box of the data. This bounding box was then split along it’s
longest axis into 2 equal-sized boxes. The number of tetrahedra
included in each box was then computed, and if the number
exceeded a specified threshold the box would be split again along
it’s longest axis. This recursive algorithm could easily subdivide
the dataset into “blocks” of a user-specified size. The one
drawback would be the duplication of tetrahedra along the block
boundaries, but the effects of this were negligible compared to the
gains.

2.2 Data Visualization

2.2.1 Surface Visualization
The first and simplest part of the visualization was rendering of
the context bounding surfaces of the simulation. By rendering
these colormapped to a user specified variable, both context and
data could be shown simultaneously.

One problem most visualizations suffer from is improper
interpolation in colors. By improperly interpolating colors
between adjacent grid points, visualizations can be misleading to
the researcher and lead to incorrect conclusions. An example is
shown below [Figure 1].

Figure 1: An example of Correct vs Incorrect color
interpolation

The box on the left shows the interpolation only between the
colors Green and Red, as shown in the center box. A proper
interpolation would recognize that there must exist somewhere
between the low and high values, the center values that comprise
the blue area of the colorbar, and insert them accordingly. In
OpenGL this can be accomplished by not using per-vertex color
information, but per-vertex texture information and a 1D texture
containing the colormap. OpenGL will correctly interpolate
between two points in a 1D texture, containing all the values in

* Email: randall.e.hand@erdc.usace.army.mil

http://www.pdfdesk.com


between, thereby containing the blue area between the green and
red.

2.2.2 Vector Visualization
The most effective form of vector visualization is pathlines. As
our data is time-invariant and steady-state, pathlines would show
the propagation of an agent through the data from any user-
specified point. A 2nd order Runge Kutta algorithm was
implemented for an accurate interpolation, but localizing a point
within a tetrahedra was an intensive task given the 20million
tetrahedra.

The binary space partition implemented in the data converter
proved useful here, as the problem was suddenly reduced from a
brute-force search of all 20million tetrahedra to a search of a user-
defined number of tetrahedra after finding which block contained
the desired point. Localizing the point within a block was trivial,
as the blocks were all axis aligned. This change reduced the time
required to compute a streamline from hours to minutes.

Furthermore, the spatial coherence of the algorithm could also
be exploited. Once the block containing the point was found, the
same block would probably also be used for future points, so
future searches would start with the previous search’s result. The
same could also be done for the tetrahedra, as the Runge Kutta
operation required multiple query’s of the data at nearby points,
often within the same tetrahedra. This enabled computation of
streamlines in seconds.

2.2.3 Volume Visualization
The only remaining information to be displayed is the scalar data
within the tetrahedra. This can easily be displayed as an
isosurface computed using a marching tetrahedra algorithm. The
user is allowed to select both the variable and value of the
isosurface, then it is rendered amongst the contextual and pathline
data.

An isosurface of a low value of Momentum Magnitude could
be used to see what portions of the city are shielded from high
winds by buildings or natural phenomenon.

3 RESULTS

The resulting applications were run on a personal computer with
Windows XP running on Athlon 3Ghz processor, 1 Gig of RAM,
and an Nvidia 5900 graphics card.

3.1 Data Conversion
The data conversion was run first. Initial trials attempted to break
the volume tetrahedra into blocks of 5,000 tetrahedra, but were
terminated after several hours of runtime. After several trials,
100,000 tetrahedra per block was found to be an acceptable
number, completing in approximately 30 minutes. This created
the following 5 files:

Surface-1.reh 100KB
Surface-2.reh 1,202KB
Surface-3.reh 21,080KB
Surface-4.reh 19,496KB
Volume.reh 368,721KB
The four surface files contain the 4 bounding surfaces of the

simulation, the ceiling, walls, city, and floor. The volume file
contains the entire tetrahedral volume, broken up into 268 blocks
of no more than 100,000 tetrahedra each.

3.2 Data Visualization
The results from the Data Conversion step were then copied into
the visualization directory. The visualization program loaded them

into memory in approximately 10 seconds, and started with the
four bounding surfaces rendered at 23 frames per second.

The first process attempted was to generate 10 pathlines in the
data. The 10 pathlines were computed in approximately 15
seconds, and had no visible impact on the framerate or
interactivity of the system.

Finally, an isosurface was generated at a low value of
momentum magnitude to find the areas of the city shielded from
the high winds. An isosurface at 0.060324 took approximately 5
seconds to generate, and lowered the framerate to 7 frames per
second when rendered, but was still interactive.

4 CONCLUSION

The resulting visualization is both interactive and smooth,
allowing for interactive exploration of the data through multiple
effective means on virtually any modern computer.

http://www.pdfdesk.com

