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Figure 1: (left) fiber tracking posterior to anterior, (middle) rate of strain tensor visualization, (right) fiber tracking superior to inferior

ABSTRACT

We describe several visualization techniques that where applied to
the diffusion tensor data sets provided by the IEEE Visualization
challenge 2005. Especially we looked into methods to analyse non-
rigid registrations ofT2 weighted image sequences and various dis-
play methods for single tensor displays and fiber tracking.

Additional informations to this work can be found on the web
at http://192.148.197.83/IEEEViz05/. Especially the pages
contain captured live demonstrations of the tools that where devel-
oped during this work.
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1 INTRODUCTION

The medical interest in diffusion tensor imaging is based on the in-
terest to visualize anatomical structures which are not visible with
conventional techniques. Global properties such as the connectiv-
ity of brain regions by neuronal fibers in particular local properties
of brain tissues under pathological incluences, such as strokes and
tumors,. Here we investigated visualization approaches aiming at
both targets: fiber tracking and tensor patterns.

2 DATA

We restricted our visualization attempts to one of the two data sets
that where provided for the contest of the IEEE Visualization 2005.
Our choice was the diffusion tensor data set. This data set was pro-
vided as image stacks coded in the DICOM format. They contain
two different diffusion tensor data sets from a single patient. One
was done with 31, the other with 15 measured gradient direction.
Additionally they also contain an image stack without applied gra-
dient. This data set can be recognised by its higher contrast com-
pared to the gradient measurements and we will assume that an MR
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imaging sequence was used that results in a largeT2 weighted com-
ponent in this stack. This allows us to correct forT2 image artefacts
in the gradient measurements.

3 METHODS

A first step to accurately visualize MR data is adjustment for move-
ments between the data sets, i.e., registration of the data. In par-
ticular for diffusion MRI data, where the final tensor image is built
from multiple single measurements, image registration is crucial.
In this application we analyse two data set which where obtained
from the same patient.

We performed rigid and non-rigid registrations on theT2
weighted images. The rigid registration is performed in order to
correct for movements of the patients head position between the
two measurements. Non-rigid deformations could be caused by ei-
ther imaging artefacts or changes in anatomy. Whereas corrections
to imaging artefacts would allow to fuse the two data sets later,
changes in anatomy are interested in themselfs. They can show for
example changes in tumor growths.

In order to analyse the results of the non-rigid registration we
used methods borrowed from fluid kinematics. The rate of strain
tensor is a symmetric second order tensor which is related to the
stress in the material. It can be computed from a displacement vec-
tor field that we obtained from the non-rigid registration of the two
T2 weighted image volumes. The metric we used for the automatic
registration was a normalized mutual information.

MR imaging does not directly provide diffusion tensor data, but
the raw data are given as MR signal loss dependant on certain mag-
netic field directions. At least six such measurement are required to
yield a model of diffusion via a tensor field of order two. Additional
measurements are useful to smooth out measurement errors and to
increase the signal to noise ratio. A Stejskal-Tanner sequence al-
lows us to obtain the tensor from all gradients at the same time.
Westin et al. [2] showed how to compute the diffusion tensor from
the gradient measurements. Moreover, these additional measure-
ments are suitable to determine the reliability of the tensor field. In
[1] we presented a method on how to assess the properties of an
averaged tensor field by statistical means.

Fiber tracking aims to follow neuronal fibers in the human brain
and to provide connectivity information. Since the resolution of
DTI-MRI is rather low and in the range of about 2mm, it is much
too coarse to resolve single physical fibers. Thus, the direction of
maximal diffusion is only an averaged information over many ax-



onal fibers. To get an indication of streams of neuronal fibers rang-
ing over many voxels, we may follow the principal direction of dif-
fusion. This approach is facing various difficulties: the process of
finding the principal direction is very vulnerable to numerical and
data acquisition noise, and it regions with two similar eigenvectors
it may change rapidly, leading to unpredictable results. Interpola-
tion of tensor data beyond voxel resolution is an open issue: inter-
polation methods that work well for scalar data might even lead to
interpolated tensor values with negative eigenvalues, an unphysi-
cal description of diffusion. When integrating fiber tracks, all these
errors accumulate. Nevertheless the resulting images appear to dis-
play anatomically known structures, although they need to be in-
terpreted with care. Our visualization is based on the technique
of illuminated streamlines and more elaborated methods of fiber
tracking that use the full tensor information as in methods of tensor
deflection.

Pathological changes in brain tissue influence the diffusion prop-
erties as well. Eigenvector streamlines (such as employed for fiber
tracking) are influenced as well, but only display a portion of the
tensor field, in particular regions of one dominant eigenvector. An
alternative is the local inspection of data values by iconic methods
incorporating the full tensor quantity, but without connecting them.
Choosing ellipsoids as representations of the tensor field is a bad
choice since they suffer severly under problems of view occlusion
(visual clutter), visual ambiguity and are insufficient to clearly de-
pict small variations of the tensor field. Many alternatives have been
developed. Our favorite model are so-called tensor patterns, which
is a method to employ Gabor patches to represent the tensor field.
This approach is supported by considerations borrowed from vision
research and perception theory (see figure 2).

Figure 2: Tensor pattern display

4 RESULTS

All visualizations where performed on a laptop and a workstation
both equipped with a NVidia graphics cards for OpenGL hardware
acceleration.

The non-rigid registration resulted in a displacement vector field
of a mean displacemnt of 1.03 voxel (±1.07). This indicates that
the two data sets sets have very similarT2 components (see fig-
ure 3). Nevertheless we analysed the the spatial distribution of the
observed changes which could not be correlated with anatomical
features in the data (see figure 4).

The images showing the results of fiber tracking in Figure 1, left
and right where obtained by a tensor deflection algorithm with a
threshold value of 0.17 for the fractional anisotropy in the data. The
user interface provides the means to interactively select sub-sets of
lines by either regions of interest or sets of bounding boxes.

Figure 3: Analysis of non-rigid registration of 201 and 301

Figure 4: Spatial variations of non-rigid registration of 201 and 301
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