
OpenGL Visualization of Hurricane Isabel

Greg P. Johnson * Christopher A. Burns †

Texas Advanced Computing Center

ABSTRACT

Our visualization solution is an OpenGL application we designed
and developed specifically to visualize this data set. The code is
written in C/C++ and uses the GLUT toolkit for user input and
frame buffering. We have also made use of the FLTK library for
GUI controls, and an implementation of the Pthreads API for
multithreading. We chose this strategy so that we would best be
able to customize the visualization features to suit this particular
data set, and to maximize the interactivity of the visualization.
Multithreading is used to effectively perform I/O and sorting
operations in parallel, while GUI controls give the user an easy
way to set various parameters related to visual quality,
performance, and the transfer functions used to represent data.

CR Categories and Subject Descriptors: I.3.3 [Computer
graphics]: Picture/Image Generation; I.3.6 [Computer Graphics]:
Methodology and Techniques

Additional Keywords: scientific visualization, weather model,
cloud rendering, volume data, volume rendering

1 INTERACTIVITY

Real-time performance of our solution was a design goal from the
beginning. Our program by default will downsample the
precipitation data by a factor of four in each dimension, the wind
data by a factor of ten in the X and Y dimensions, and the cloud
data is downsampled by a factor of three. However, the user can
dynamically downsample the data further to improve performance
if necessary (the cloud data can be sampled at full resolution). Our
hardware consists of a Dell system with two Intel Xeon processors
running at 2.8 GHz, 2.0 GB of memory, and an NVIDIA GeForce
6800 GT graphics card. There are three different sets of variables
which can be enabled or disabled by the user: clouds, wind, and
precipitation. At a resolution of 800x600 and with all three sets
enabled, we can achieve a frame rate of approximately 13 fps.
When the clouds are disabled, frame rate improves to 30 fps.
While the simulation is running and new data is constantly being
streamed from disk and interpolated, these values drop to 5 fps
and 13 fps respectively.

2 EXPLORATORY SUPPORT

The user is able to manipulate the camera view easily during any
mode or phase of the simulation (while paused, or while the
simulation plays through the timesteps). The movement of the

Figure 1. The vector field colors indicate wind magnitude while the
clouds clearly show the structure of the hurricane.

Figure 2. At higher altitudes the swirling pattern is more intense and
easily visible than at sea level. The color of the vector field is a function of
wind direction, with red mapped to north.

camera is intuitive and therefore easy to use. The mouse controls
the look direction and arrow keys on the keyboard control
movement through space. The camera can be trucked along the
view direction, from side to side, or along the camera’s “up” axis.
These features are sufficient to allow the user to examine any part
of the visualization at any time during the simulation.

While the simulation automatically advances the visualization
along the timeline by default, the user may pause at any time, or
instruct the program to jump to any particular timestep. The data
is interpolated between the given timesteps to ensure smooth
transitions between them for intermediate frames. Thus the user

* gregj@tacc.utexas.edu
† cslugg@tacc.utexas.edu

has full flexibility to scan through the time-varying data
automatically, or can inspect any particular timestep statically.

In addition to movement through time and space, we provided
the user with a significant amount of flexibility in adjusting the
various transfer functions for each of the data variables. The min-
imum and maximum data values to which the color gradients are
mapped are all user configurable, as are the subsampling rates and
the position of the wind vector slicing plane as shown in Figure 5.

3 MULTIPLE CHARACTERISTICS

Our system is capable of rendering multiple variables
simultaneously in real-time and in a meaningful way. Figures 1
and 4 show the rendering of cloud data along with precipitation
and wind velocities, giving the user a means to understand and
analyze the relationship between the variables.

3.1 Clouds and Structure
To display the clouds we used a particle system where each cloud
particle is rendered with a single billboarded quad. The saturation
and transparency of the particles are linear functions of the cloud
data and are set by default such that heavy clouds result in darker
and more opaque particles, resulting in a cloud that appears to
have thickness. As the camera travels through the rendered
particles, the clouds appear to thin out, just as real clouds do.
Sorting of the partially transparent quads is achieved by
subdividing the volume into a series of 3D tiles which are sorted
by their centroids' distance from the camera. The particles in each
tile are then sorted in parallel. The tiling reduces the compu-
tational complexity of sorting the cloud particles, and since the
arrangement of the data in memory reflects the tiling, our program
achieves a more coherent memory access pattern which makes
better use of the processors' cache memories.

3.2 Wind Velocity
The wind data can optionally be visualized simultaneously with
the cloud and precipitation data. Using a horizontal slicing plane,
the wind values are illustrated with a grid of colored vectors and a
partially transparent surface. The colors are a mapping of the

Figure 4. The particles show how the snow is concentrated at the higher
altitudes, the groupel in the middle ranges, and the rain further towards sea
level. This technique allows the user to clearly see the relationship
between the clouds and the precipitation.

color wheel onto the compass directions, with red indicating
north, shown in Figure 2. Alternatively, the colormap can show
wind magnitude, with warmer colors indicating stronger winds.
The vectors' length is a function of the wind magnitude at that
voxel. The altitude of this plane can be freely adjusted by the user.

3.3 Precipitation
The precipitation variables are rendered using a simple particle
technique that makes it easy to visualize the precipitation along
with the cloud structure in the same frame. For a given voxel, the
precipitation is represented by a colored sphere. Cyan spheres
indicate graupel, magenta corresponds to rain, blue indicates
snow, and grey represents the total precipitation. The saturation of
a particle is determined by a linear transfer function of the
variable's ratio data value. The discrete particles show up well
against the background of the cloud structures, which are rendered
in a way that looks more volumetric. It is important that the users
be able to effectively visualize the cloud structure and the pre-
cipitation simultaneously as in Figure 4.

Figure 5. The user interface. The “Step” values refer to the down-
sampling factor for those variables.

4 CONCLUSION

The sheer size of the data set presented the biggest obstacle to our
goal of producing an interactive visualization that is both
aesthetically pleasing and scientifically informative. We expended
considerable effort optimizing the memory layout, reducing the
frequency of I/O operations, and eliminating unnecessary geo-
metric processing on the GPU. While our solution is not complete
(due to subsampling), we compensate by allowing the user to
adjust the degree of sub-sampling. Finally, we have not
implemented any visualization of the temperature, pressure, or ice
mixing ratio variables due to time constraints. However, the
methods used to visualize other similar variables could easily be
extended to illustrate these. Other improvements might include
more user control over the transfer functions, slicing planes along
other axes, and more precise control over the camera.

