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ABSTRACT

Hardware-accelerated image composition for sort-last parallel ren-
dering has received increasing attention as an effective solution to
increased performance demands brought about by the recent ad-
vances in commodity graphics accelerators. So far, several dif-
ferent hardware solutions for alpha and depth compositing have
been proposed and a few of them have become commercially avail-
able. They share impressive compositing speed and high scalability.
However, the cost makes it prohibitively expensive to build a large
visualization system. In this paper, we used a hardware image com-
positor marketed by Mitsubishi Precision Co., Ltd. (MPC) which
is now available as an independent device enabling the building of
our own visualization cluster. This device is based on binary com-
positing tree architecture, and the scalable cascade interconnection
makes it possible to build a large visualization system. However,
we focused on a minimal configuration PC Cluster using only one
compositing device while taking cost into consideration. In order
to emulate this cascade interconnection of MPC compositors, we
propose and evaluate the hybrid hardware-assisted image compo-
sition method which uses the OpenGL alpha blending capability
of the graphics boards for assisting the hardware image composi-
tion process. Preliminary experiments show that the use of graphics
boards diminished the performance degradation when using an em-
ulation based on image feedback through available interconnection
network. We found that this proposed method becomes an impor-
tant alternative for providing high performance image composition
at a reasonable cost.

CR Categories: I.3.1 [Computer Graphics]: Hardware-
Architecture—Parallel Processing; I.3.2 [Computer Graphics]:
Graphics Systems—Distributed/network graphics;

Keywords: Image Compositing, Sort-Last, Parallel Rendering,
Hardware-Assisted, Cluster Computing

1 INTRODUCTION

Commodity off-the-Shelf (COTS) PC clusters have proven to be a
cost-effective alternative to high-end High Performance Comput-
ing (HPC) systems. Recent low-cost, high performance commodity
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graphics accelerators have become an attractive solution to enhanc-
ing these PC clusters for building scalable visualization systems.
These enhanced PC clusters are also known as “visualization clus-
ters” or “graphics clusters”, and have received increasing atten-
tion as a cost-effective solution to render large data sets at inter-
active frame rates which was traditionally feasible only by using
high-end visualization systems. This popularity is due particularly
to the impressive evolution of consumer graphics hardware, which
has been providing excellent rendering performance at a reason-
able cost. The ability to combine with low-cost software generation
locking (genlock) for image synchronization is making these sys-
tems more and more attractive not only for large-scale data visual-
ization but also for building cost-effective immersive virtual envi-
ronments.

Nowadays, state-of-the-art numerical simulations of real-world
phenomena can generate a huge amount of data in single or multi-
ple time steps with each step containing many gigabytes of data. As
the volume data size and complexity increases at a comparable rate
of computational power and resolution of data acquisition devices,
the necessity for visualizing these data sets in high-resolution also
increases. For this purpose, there already exists commercially avail-
able super high definition LCD displays with multi-million pixels
such as the 22.2 inch LCD display developed by IBM. In addition,
both monitor and projector-based high-resolution displays, such as
PC Cluster based scalable display walls, are becoming popular be-
cause they are easy to build using readily available commodity com-
ponents and open source software. Despite requiring more process-
ing power it is sometimes advisable to see the rendering results in
stereoscopic fashion in order to enhance the visualization capabil-
ity. For this purpose, low-cost passive stereo projection and stereo
viewing systems built with commodity off-the-shelf components
and open source application software making them more affordable
than previous commercial solutions, have become available.

Volume rendering is considered an efficient method for extract-
ing useful information from volumetric data sets by generating an
image on a two-dimensional view plane. Despite the simplicity of
the rendering process, it is computationally intensive and, as a re-
sult, several acceleration techniques including parallelization have
been proposed. Parallel volume rendering is considered an effec-
tive solution for interactive rendering of large volume data sets and
for displaying them on aforementioned high resolution display sys-
tems. Parallel rendering algorithms for parallel architecture sys-
tems such as cluster-based fall into three categories first proposed
by Molnar [13]: sort-first, sort-middle, and sort-last. This classi-
fication is based on how the geometric primitives are sorted from
object space to screen space. Sort-last approach has been widely
utilized due to the simplicity of the data distribution strategy. Af-
ter the initial data repartition and distribution there is no need for
data transferring between processors until finishing the rendering
process. However, it requires the final image composition in or-
der to generate the final result. As a result, the performance be-
comes highly dependent on the required resolution for displaying
the rendered image affecting the amount of data to be transmitted.
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Several efficient software parallel compositing solutions have been
proposed, however they are not sufficient to handle the increasing
frame rate that hardware graphics accelerators are capable of. In
addition, the efficiency of most acceleration techniques proposed
for software composition is highly dependent on the quantity of
the background pixels. As a result, the performance degradation
is most pronounced during immersive visualization such as virtual
voyages inside the volumetric data.

Several hardware solutions have been proposed in order to over-
come this final image composition bottleneck. Most of them still
remain in their prototyping stage and others are usually offered as a
non-separable part of the whole visualization system solution such
as HP sv7, MPC VGCluster, SGI Onyx4 and Orad DVG. Among
these, the HP and MPC hardware are geared towards COTS PC
Clusters and, in addition, although MPC markets the whole vi-
sualization system they also sell the image compositing hardware
separately. We therefore acquired this MPC hardware compositor,
which is based on framebuffer readback and binary composition
tree architecture, to increase the potential of our COTS visualiza-
tion cluster. Although this compositor possesses high scalability
for building large visualization systems, it becomes prohibitively
expensive to build such a large system. A simple solution is to use
a complete graphics cluster in its minimum hardware configuration
with only one hardware compositor. However, it is not possible to
handle very large data sets in which the number of sub-volumes
exceeds the number of available rendering nodes. To overcome
this problem we propose and evaluate the hybrid hardware-assisted
image composition technique in order to emulate the hierarchical
cascade interconnection of this compositing device for supporting
multiple rendering nodes. In this case, the composition task is done
on both hardware compositor and graphics board. Some studies for
supporting more precise emulation of the cascade interconnection
and for utilizing high-resolution or stereoscopic displaying systems
will also be discussed.

In Section 2, we briefly review some related works. In Sec-
tion 3, we briefly describe our utilized graphics cluster with the
image compositor. In Section 4, we describe the proposed hybrid
hardware-accelerated image compositing method and we present
some results. Finally, we conclude and present future directions in
Sections 5 and 6.

2 RELATED WORK

Many software-based parallel image compositing algorithms have
been proposed for sort-last parallel volume rendering on both
shared-memory [18] and distributed memory parallel architecture
systems [11, 1, 26, 23, 19]. Yang [26] divided these algorithms into
two main groups: buffered and sequenced. In the case of buffered
algorithms each processor is responsible for handling a fixed por-
tion of the image and allocates a buffer and receives pixels in the
same fixed portion of the image from other processors in order to
generate the final image of the portion it handles. In the case of
sequenced algorithms, such as parallel pipeline and binary-swap
approach, each processor receives a sub-image from another pro-
cessor and composites received pixels immediately in each com-
positing stage. Stompel [22] selected the direct send, binary swap
and parallel pipeline methods as the representatives for parallel im-
age compositing algorithms. Among these methods, binary-swap is
perhaps the most utilized and researched and, as a result, several op-
timizations such as bounding box, load balancing and compression
have been proposed for achieving further acceleration [26, 23, 19].
They exploit the sparsity of the image, eliminating the background
pixels as much as possible, diminishing the required data to be com-
municated during the compositing process. As a result, the per-
formance is highly dependent on the quantity of background pix-
els. Stompel [22] proposed Scheduled Linear Image Compositing

(SLIC); a fully optimized direct send method which is reported that
outperforms the direct send and binary swap method even when
optimized. Compared to the binary-swap method, the performance
increase becomes accentuated during high-resolution image com-
position. However, it remains dependent on the amount of pixels
required to be communicated and especially on the performance of
the utilized interconnection network.

Although pure software image compositing solutions have
proven adequately efficient for building low-cost graphics clusters
without the need for expensive interconnection network, the recent
advances in commodity graphics accelerators for supporting real-
time volume rendering have influenced the performance demands
of the image compositing step [10]. Even higher demands is ex-
pected when using some software acceleration techniques proposed
for texture-based volume rendering such as early-ray termination,
empty-space skipping and occlusion culling [8, 7]. To fulfill these
requirements several hardware devices for image compositing have
been proposed [15, 27, 9, 21, 6, 20]. These proposed hardware
solutions vary considerably and there is still no standard hardware
architecture nor common software API for these devices.

The Scalable Graphics Engine (SGE) [6] works as a network-
attached hardware frame buffer which supports high-resolution dis-
play systems in single or multiple display units. Although it
has the ability to perform image tiling and masking for arbitrary-
shaped regions, it does not allow depth or alpha composition. The
Metabuffer [27] , Lightning-2 [21], Sepia-2 [9]and SGI Compos-
itor [20] are capable of receiving images directly from the DVI
digital output of graphics accelerators and require neither frame
buffer read backs nor specialized interface cards for the image I/O
process. The latter two have become commercially available as
a non-separable part of visualization systems such as SGI Onyx4
(with an SGI Compositor) and HP sv7 (with a Sepia-2 system).
The SGI Compositor allows image tiling and the hardware genlock
enables active stereoscopic visualization on projection-based high-
resolution display systems. However, it does not allow cascade in-
terconnection and will therefore support a maximum of only four
rendering pipes. The HP Sepia-2, which first appeared as Sepia
(ServerNet Enhanced Parallel Image Accelerator) [12], uses depth
information for the image composition process. It has been using
high-speed interconnection networks such as ServerNet (similar to
Myrinet) and Infiniband, for transmitting the images to be com-
posed. The MPC Compositor [15, 16] requires frame buffer read
back and utilizes binary compositing tree architecture, simplify-
ing the compositing order change and reducing the latency to the
O(log(n)) compared with O(n), or O(n.log(n)) when the number
of layers is taken into account, in the recursive Clos structure used
in the Sepia-2 system.

3 COMMODITY GRAPHICS CLUSTER WITH MPC COMPOS-
ITOR

The MPC compositor has eight inputs and one output channel
which communicate to the PCs through the PCI32 interface cards
on the PC side. This data transmission is done through the LVDS
cables which form a customized interconnection network. To use
this hardware compositor, only one PCI slot is required at each
PC. Our current device driver will not support a second PCI in-
terface card thus the complete PC cluster configuration for a MPC
Compositor will be composed of nine nodes. A complete graph-
ics cluster with MPC Compositor is shown in Figure 1. We built a
graphics cluster consisting of nine PCs (Fujitsu W600) intercon-
nected by two different interconnection networks (Fast Ethernet
and Gigabit Ethernet). Eight of the nodes are designed to act as
hardware-assisted rendering nodes and one node for display and
user interaction. The main hardware components of each node
are shown in Table 1. Each rendering node is equipped with the
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NVIDIA GeForce FX 5950 ULTRA GPU based graphics board and
a specialized PCI interface card for sending the rendering results
for the compositor. Each node runs the RedHat Linux 7.3, ker-
nel 2.4.18-3 with SCore patch, which makes it possible to utilize
the lightweight PM/Ethernet communication protocol. The SCore
5.6.1 was used as the cluster management software, and we utilized
C++ and MPI library for building parallel graphics applications and
used MPICH/PM for running these applications.

Figure 1: Graphics Cluster with MPC Compositor

Component Type
CPU Intel Pentium 4 - 2.4 GHz
Memory 1024MB DDR SDRAM PC2100
Chipset Intel 845E
AGP AGP 4x
GPU (Rendering) NVIDIA GeForce FX5950 Ultra

(256MB Video RAM)
Network card Intel EtherExpressPro 100 (on-board)

Intel Pro 1000/XT
Switching Hub Fujitsu 1516

NetGear GS104 and GS108

Table 1: Graphics Cluster’s components

3.1 MPC Compositor

The MPC compositing hardware is composed of the compositor it-
self and the PCI interface boards (IFB In and IFB Out) . As we
can see in Figure 2, it works by receiving the 32 bit RGBA im-
ages and their priority numbers from the IFB Out cards. These pri-
ority numbers determine the compositing order. The image com-
position is performed using alpha blending, and the composited
image is sent to the IFB In card on the display node for subse-
quent visualization on a display. The compositing operation based
on over operation [17] implemented on the programmable FPGA
is compatible with the OpenGL glBlendFunc( GL SRC ALPHA,
GL ONE MINUS SRC ALPHA) function. The MPC Compositor

supports three different channel selections for input and output: one
of eight inputs and one output (8:1), two of four inputs and one out-
put (4:1) and four of two inputs and one output (2:1). The latter
two enable it to be used in a multi-display system composed of two
or four displays, or in a stereoscopic display system composed of
one or two displays. Low Voltage Differential Signaling (LVDS) is
used for transmitting the compositing information and RGBA pixel
values through the PCI interface cards. Thus, the network require-
ment is drastically reduced. Because we use the sort-last parallel
rendering approach, the interprocessor communication is required
only for the initial volume data distribution and for the software
synchronization signal distribution when using MPI Barrier. As a
result, there is no need for specialized and expensive high-speed
networks such as Myrinet or Infiniband as used in HP Sepia-2.

Graphics
Card IFB Out

AGP4x  PCI32

Rendering node

MPC Compositor

Graphics
Card IFB In

AGP4x  PCI32
Display node

Display

DVI

 LVDS

 LVDS
Barrier
Synchronization

- RGBA raw image data

- composition priority

Figure 2: Image Composition Data Flow

The detailed characteristics of this compositor can be verified
in [15, 16]. However, some important points should be understood
in order to appreciate the possibilities and limitations. This im-
age compositor works as a brute-force RGBA image compositor
which can composite a maximum size of 2048x2048 RGBA image
at each step. For each input image the compositor requires the pri-
ority information for correct alpha blending order (Figure 3). This
priority information is just a value which corresponds to the virtual
distance from the viewpoint. The sub-images generated at the ren-
dering nodes need to be synchronized before being sent to the com-
positor, when using MPI Barrier (software synchronization), and
the compositing performance will directly depend on the perfor-
mance of the interconnection network. The expected synchroniza-
tion overhead for each compositing step is shown in Table 2. The
maximum buffer size which we can allocate on the PCI interface
cards make it viable to send a RGBA image data with a maximum
size of 2048x2048 which is sufficient for most commercially avail-
able LCD displays, but is insufficient for compositing the full image
in the 9.2 million-pixel IBM 22.2 inch LCD display. Because of
the utilization of PCI32 interface, the I/O performance will depend
directly on the hardware characteristics of the PC’s motherboard
especially the chipset.

Table 2: Synchronization overhead for each MPI Barrier

Network Latency
Fast Ethernet 1.29 - 5.5 ms.

Gigabit Ethernet 0.49 - 0.61 ms.
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Priority: 1
2

3
4

5
6

7
8

1  3 5 7

1 5

1

1 < 5

  1 < 2   3 < 4   5 < 6  7 < 8

  1 < 3   5 < 7

MPC Compositor Binary Compositing Tree

Figure 3: Image Composition using alpha blending and priority infor-
mation

3.2 Hardware-Assisted Barrier Synchronization

This graphics cluster does not require a high-end interconnection
network for the image compositing process because it uses LVDS
cables to communicate the necessary data for compositing. How-
ever, the MPI software synchronization (MPI Barrier) used in this
experiment is highly affected by on the data traffic and performance
of the interconnection network. As we can see in Table 2, this ef-
fect is not so prominent when using Gigabit Ethernet but it was
easy to verify on Fast Ethernet even when isolated from the external
network. As a result, inconsistent compositing performance is ex-
pected when using this kind of interconnection network. In order to
eliminate this undesirable effect when using a low power network
we have implemented a low-cost parallel port based barrier syn-
chronization (Figure 4). This device is based on TTL PAPERS [4],
and as SoftGenLock [2] we have used a reprogrammable logic de-
vice. We used a simple, low-cost 32 macro-cell ALTERA PM7032
FPGA. We have implemented a hardware synchronization library
which uses LPT poling instead of catching LPT hardware interrup-
tion (such as IRQ 7). By using this synchronization hardware and
this library, it is possible to obtain the software synchronization per-
formance of Gigabit Ethernet even using Fast Ethernet. In addition,
it may be modified to support software genlock in order to use ac-
tive stereo projection when using the MPC Compositor in the dual
four inputs and one output mode.

Figure 4: Hardware-assisted barrier synchronization devices

3.3 Performance Evaluation

In order to simplify the performance evaluation of the image com-
position process we will split the volume rendering process from
the image compositing process from now on. Considering the uti-
lization of the hardware-assisted volume rendering, the image com-
positing process will start by obtaining the image data generated
from the graphics boards (GB), of the rendering nodes, through the
OpenGL glReadPixel command. These sub-images are then sent

through the IFB Out PCI interface cards to the compositor for al-
pha blending and will be received by the display node through the
IFB input PCI interface card, then sent to the frame buffer through
the glDrawPixel command for subsequent visualization (Figure 5).

Volume Rendering

glReadPixels( )

Image Sending

Image Compositing

Image Receiving

glDrawPixels( )

Figure 5: Evaluated Image Compositing Stages

The achieved average framebuffer readback performance for dif-
ferent sizes of synthetic 32 bit RGBA images (Figure 6) is shown
in Table 3. We can observe that it is only one fifth of the theoreti-
cally available AGP4x bus bandwidth of 1GB/s. This image data is
sent to the IFB Out card through the PCI32 bus with theoretically
available bandwidth of 133 MB/s. In addition, the shared nature
of the PCI bus has the potential to decrease even further this data
transmission performance.

Figure 6: Composited synthetic images

Table 3: Framebuffer readback performance

Size Time Rate
256 x 256 1.5 ms 168 MB/s
512 x 512 5.9 ms 169 MB/s

1024 x 1024 22.5 ms 178 MB/s
1600 x 1200 40.9 ms 183 MB/s

We measured the performance of MPC Compositor with image
sizes usually used for performance evaluation of volume rendering
algorithms: 256x256, 512x512 and 1024x1024. In addition, we
used some of the more common video resolutions of current mon-
itors and LCD projectors: XGA(1024x768), SXGA(1280x1024)
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and UXGA(1600x1200). For each measurement, these images
were loaded into the IFB Out interface cards of the rendering nodes
and sent to the compositing unit one after the other without delay.
The achieved sustained maximum frame rate for image composit-
ing without considering the image load and display (glReadPixels
and glDrawPixels stages), for the two different interconnection net-
works present in the graphics cluster is shown in Table 4. The per-
formance variation between the Gigabit and Fast Ethernet is due
to the synchronization overhead while using software based bar-
rier synchronization (MPI Barrier). From this result, we can verify
that real-time image compositing (over 30 FPS) is only possible for
image sizes smaller than 512 x 512. It is important to remember
that this achieved framerate does not include the time required for
rendering. Considering that the volume rendering and the frame-
buffer readback cannot overlap, the total time T for processing one
frame will be T = Trender + Tcompositing . Ogata et al. [16] reported
performance of up to 25 FPS when using VolumePro 500, a special-
ized volume rendering board, to render 5123 volume data to 512 x
512. We obtained almost constant frame rate while using Giga-
bit Ethernet. However, the variation in the achieved compositing
speed became high when using Fast Ethernet even when isolated
from external network. This variation was especially pronounced
during the composition of images with sizes smaller than 512x512.
However, we can easily eliminate this undesirable effect by using
a low-cost hardware synchronization device, such as that presented
in section 3.2.

Table 4: Maximum Image Compositing Performance

Network 2562 5122 10242

Gigabit Ethernet 155.0 FPS 50.0 FPS 13.8 FPS
Fast Ethernet 107.0 FPS 32.0 FPS 11.5 FPS

Fast Ethernet +
Hardware Barrier 157.3 FPS 51.2 FPS 13.8 FPS

Network XGA SXGA UXGA
Gigabit Ethernet 18.2 FPS 11.1 FPS 7.6 FPS

Fast Ethernet 15.5 FPS 9.5 FPS 6.9 FPS
Fast Ethernet +

Hardware Barrier 18.2 FPS 11.1 FPS 7.6 FPS

4 HYBRID HARDWARE-ACCELERATED IMAGE COMPOSIT-
ING

Although the MPC Compositor has high scalability, allowing us to
build a massively parallel visualization cluster just by connecting
these devices hierarchically in cascade as seen in Figure 7, the cost
becomes prohibitively expensive for building such large visualiza-
tion systems. On the other hand, a minimal system consisting of one
image compositor will limit the volume subdivision to a maximum
of eight because this hardware does not support bi-directional com-
munication between the IFB PCI cards. As a result, it can be insuf-
ficient for handling large volumetric data sets where the quantity of
sub-volumes surpasses the available rendering nodes. Perhaps the
simplest way for emulating this cascade interconnection is to feed
back the partially composited image to the rendering nodes. How-
ever, the partially composited images should be transmitted through
the available interconnection network because the MPC Composi-
tor does not allow bi-directional communication. In the next sub-
section we will discuss the use of image feedback for emulating this
cascade interconnection by using only one MPC Compositor.

  Compositor   Compositor   Compositor

  Compositor   Compositor

  Compositor

8 inputs

Final Image

Number of inputs (Ni)

S
tage1

S
tage 2

S
tage (log8(N

i))

8 inputs 8 inputs

Figure 7: Cascade interconnection of the MPC Compositors

4.1 Feedback Image Compositing

A simple approach for emulating the cascade interconnection of
MPC Compositors (Figure 7) by using only one MPC Composi-
tor is shown in Figure 8. From the second stage, the composited
image obtained from the MPC Compositor is sent back to a render-
ing node, chosen specifically for feedback, through the available
interconnection network on the PC cluster. By using this render-
ing node for “image feedback” purposes, we will lose one node
for rendering. By separating the rendering nodes from this feed-
back node, it is possible to overlap the image receiving process
with the rendering process on the remaining seven rendering nodes.
However, the overhead for sending back the partially composited
image data through the available interconnection network makes
this method less attractive. The image compositing performance
when using image feedback, by using MPI Send and MPI Recv
functions, is shown in Table 5. We can observe that the perfor-
mance gain from the hardware compositor will be canceled out by
the communication overhead. Instead of sending back the compos-
ited images we focused on the use of standard OpenGL functions
available on graphics boards to assist the remaining blending pro-
cess (Figure 9). An increase in performance can be expected when
using more lightweight network protocol such as QUANTA [5] or
using direct connection through the IFB PCI cards. We achieved a
transfer time of 358 milliseconds by using MPI Send and MPI Recv
for sending a 1024 x 1024 RGBA image through a gigabit eth-
ernet network. We could reduce this time to 30 milliseconds by
using QUANTA library for sending the same 1024x1024 RGBA
image through this gigabit ethernet network. We also achieved the
transfer time of 63 milliseconds for sending a 1280x1024 RGB im-
age between two IFB PCI cards. In addition, acceleration meth-
ods for binary-swap image composition such as bounding rectangle
and compression can also be used for diminishing the data size for
transmission.

4.2 Hybrid Image Compositing

Taking into consideration that the OpenGL alpha blending function,
glBlendFunc( GL SRC ALPHA , GL ONE MINUS SRC ALPHA
), is implemented on the MPC Compositor’s FPGA, we focused
on executing the same function, by software or hardware, on
the display node side in order to avoid image feedback. The
OpenGL alpha blending function glBlendFunc( GLenum sfactor ,
GLenum dfactor ) controls how color values in the fragment be-
ing processed (the source) are combined with those already stored
in the framebuffer (the destination). The argument sfactor in-
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t1 t2 tn

  Compositor

  Compositor

  Compositor

Figure 8: Feedback image compositing scheme

Table 5: Feedback Image Compositing Performance

Network 2562 5122 10242

Gigabit Ethernet 96.6 FPS 28.2 FPS 7.3 FPS
Fast Ethernet 31.0 FPS 8.3 FPS 2.1 FPS

Fast Ethernet +
Hardware Barrier 32.9 FPS 8.8 FPS 2.1 FPS

Network XGA SXGA UXGA
Gigabit Ethernet 9.7 FPS 5.9 FPS 4.1 FPS

Fast Ethernet 2.7 FPS 1.7 FPS 1.1 FPS
Fast Ethernet +

Hardware Barrier 2.8 FPS 1.7 FPS 1.1 FPS

dicates how to compute a source blending factor; dfactor indi-
cates how to compute a destination blending factor [25]. The al-
pha blending function implemented on the MPC Compositor is,
like other OpenGL blending operators, an associative function
and can be computed sequentially. However, it is not commuta-
tive and, as a result, the compositing order cannot be changed.
Considering that the blending factors of source and destination
RGBA images are (Sr,Sg,Sb,Sa) and (Dr,Dg,Db,Da), respec-
tively, the resulting RGBA image obtained from source RGBA im-
age (Rs,Gs,Bs,As) and destination RGBA image (Rd,Gd,Bd,Ad)
will be (RsSr +RdDr,GsSg+GdDg,BsSb+BdDb,AsSa+AdDa).
Taking this into consideration, the blending factor GL SRC ALPHA
on the implemented alpha blending function will be (As,As,As,As)
and the blending factor GL ONE MINUS SRC ALPHA will be
[(1,1,1,1)−(As,As,As,As)]. The diagram of this hybrid hardware-
assisted image compositing is shown alongside Figure 9.

The total delay time TN when using traditional cascade intercon-
nection is represented as :

TN = Tddlog8Nie

Where Td corresponds to the delay time generated from the com-

  Compositor

t1 t2 tn

 Gfx Card

  Compositor

  Compositor

 Gfx Card

Figure 9: Hybrid Image compositing scheme

positing hardware and Ni is the number of inputs to the composi-
tor [16]. Substituting the compositing costs of stages two onwards,
the total delay time TN for the hybrid compositing approach can be
represented as :

TN = Tddlog8Nie+TO(dlog8Nie−1)

Where TO corresponds to the cost of the OpenGL alpha blending
function executed on the graphics board.

The obtained compositing performance using NVIDIA GeForce
FX5950 ULTRA GPU based graphics board is shown in Table 6.
From this result, we can verify that real-time image compositing
is only possible for image sizes smaller than 512x512. However,
it is still possible to composite an image size of 1024x1024 at an
interactive frame rate.

Table 6: Hybrid Image Compositing Performance

Network 2562 5122 10242

Gigabit Ethernet 142.1 FPS 45.2 FPS 12.2 FPS
Fast Ethernet 115.4 FPS 35.0 FPS 11.3 FPS

Fast Ethernet +
Hardware Barrier 144.6 FPS 45.6 FPS 12.2 FPS

Network XGA SXGA UXGA
Gigabit Ethernet 16.1 FPS 10.0 FPS 7.1 FPS

Fast Ethernet 14.2 FPS 9.1 FPS 6.7 FPS
Fast Ethernet +

Hardware Barrier 16.1 FPS 10.0 FPS 7.1 FPS

In order to verify the OpenGL alpha blending performance dif-
ference between graphics boards, we also used an ATI Radeon 9800
PRO GPU based graphics board. The obtained results are shown in
Table 7 and we verified almost no difference in performance be-
tween them.
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Table 7: Performance Comparison.

Screen size GeForce FX5950 Radeon 9800
256 x 256 142.1 FPS 141.9 FPS
512 x 512 45.2 FPS 45.9 FPS

1024 x 1024 12.2 FPS 12.3 FPS

4.3 High-Resolution Display Systems

The ever increasing size of volume data has increased its neces-
sity to be visualized in high-resolution and sometimes in immer-
sive manner. Recently, some high-resolution LCD displays with
WUXGA (1920x1200) resolution have become available, and cost-
effective DLP projectors have become available for building low-
cost stereoscopic projection systems and scalable projection-based
display systems. Some hardware and software solutions for han-
dling such mega-pixel displays have been proposed. Klosowski et
al. [6] proposed the SGE which works as a large virtual frame-
buffer for supporting the resolution of 3840 x 2400 on the IBM
T221 LCD display. Moreland et al. [14] proposed an efficient
software solution for handling mega-pixel displays such as scal-
able projection-based display systems. We have focused on a more
simple solution taking into consideration the MPC Compositor’s
characteristics. Although the MPC Compositor supports a maxi-
mum image composition of 2048x2048 RGBA images in one single
step, it is still insufficient for compositing the full image in the 9.2
million-pixel IBM 22.2 inch LCD display (Figure 10), and therefore
requires more than one step for compositing by using a simple ap-
proach such as shown in Figure 11. Although it is possible to com-
posite such a high resolution image the performance degradation
is considerable. The quantity of steps will be directly proportional
to the available buffer memory for compositing. This compositor
allows multiple outputs which can support tiled displays or stereo-
scopic projection based displays. In the first case, it is theoretically
possible for the four outputs to display UXGA (1600x1200) image
size each which makes it possible to generate a 3200x2400 image.
However, the rendering performance will be drastically affected be-
cause there will remain only two rendering nodes for each output.
Using four rendering nodes for each of two outputs, it is possi-
ble to generate each of the dual UXGA image separately. These
images also correspond to a single stereoscopic UXGA image. In
this case, even when compositing two images simultaneously the
performance penalty will not be so high because the compositing
process is done in one single step.

Figure 10: High resolution / Stereoscopic display systems

5 FUTURE WORKS

In the future we are planning to integrate this method with the data
streaming based volume rendering system proposed in [24]. This
remote visualization system works in a client-server manner, by
breaking large volume data into sub-volumes with consideration
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Figure 11: High resolution / Stereoscopic Image Composition

to the available resource (texture memory) on the client side. We
think that this hybrid image compositing scheme can be an inter-
esting solution for assisting this parallel volume rendering for han-
dling large data sets where the quantity of sub-volumes can easily
surpass the available rendering nodes (eight). By using this visual-
ization framework, we expect to obtain more realistic results such
as those in real world situations including both high-resolution and
stereoscopic visualization. Some preliminary tests have been done
using a shared-memory multiprocessor machine (Fujitsu PRIME-
POWER HPC 2500) as a server, however at the time of writing this
paper we only tested datasets smaller than 5123.

6 CONCLUSION

In this paper, we have presented the hybrid hardware-accelerated
image compositing method for sort-last parallel rendering on a vi-
sualization cluster with a MPC compositor. Our approach was fo-
cused on using a minimal hardware configuration taking cost into
consideration while retaining the ability to handle large data sets
which surpass the number of available rendering nodes. The uti-
lized visualization cluster was built using commercially available
image compositor and commodity graphics cards for texture-based
volume rendering. In addition, the simple yet efficient multi-step
image compositing method was also proposed for supporting high-
resolution and immersive visualization where the degradation of
software image compositing solutions is accentuated. This im-
age composition method has the potential to meet the ever increas-
ing image compositing performance demands brought about by the
advances in both hardware and software solutions for hardware-
assisted parallel volume rendering. Better results are expected
when the next-generation of this compositing device using faster
PCI technology such as PCI-X and PCI-Express becomes commer-
cially available.
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