
Dual Contouring with Topology-Preserving Simplification
Using Enhanced Cell Representation

Nan Zhang Wei Hong Arie Kaufman

Center for Visual Computing (CVC) and Department of Computer Science
Stony Brook University, Stony Brook, NY 11794-4400, USA ∗

(a) (b) (c)
Figure 1: Simplifying the zero-isosurface of a directed distance volume of 2563 using our topology-preserving isosurface simplification algorithm.
Although the cylinders and the box are very close to each other, they don’t touch, and thus there are several disconnected surface components
in this volume. Note that disconnected surface components are assigned different materials and are clustered independently. (a) δ 2 = 0 and
t = 97K. (b) δ 2 = 10−6 and t = 23K. (c) δ 2 = 10−4 and t = 2494. (δ 2: quadric error threshold, t: triangle count.)

ABSTRACT

We present a fast, topology-preserving approach for isosurface sim-
plification. The underlying concept behind our approach is to pre-
serve the disconnected surface components in cells during isosur-
face simplification. We represent isosurface components in a novel
representation, called enhanced cell, where each surface component
in a cell is represented by a vertex and its connectivity informa-
tion. A topology-preserving vertex clustering algorithm is applied
to build a vertex octree. An enhanced dual contouring algorithm is
applied to extract error-bounded multiresolution isosurfaces from
the vertex octree while preserving the finest resolution isosurface
topology. Cells containing multiple vertices are properly handled
during contouring. Our approach demonstrates better results than
existing octree-based simplification techniques.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics Data Structure and Data Types

Keywords: isosurface simplification, isosurface extraction, topol-
ogy preservation, vertex clustering

1 INTRODUCTION

Isosurface extraction is a very useful tool for visualizing volume
datasets. Due to the improvements in resolution and accuracy of
acquisition devices, the resolution of volume datasets has been in-
creasing dramatically. For large volumes, the extracted triangles

∗Email: {nanzhang|weihong|ari}@cs.sunysb.edu

which make up an isosurface can easily overwhelm the interactive
rendering capability of modern computers. Multiresolution isosur-
face extraction methods have been developed to address this issue.
Usually, we want to preserve the topology of the finest resolution
isosurface for the simplified one. Most of the topology-preserving
isosurface simplification algorithms extract and maintain all criti-
cal points of the volume for topology preservation. They follow
the concept used in a top-down based isosurfacing approach [20]:
if the adaptive volume contains all critical points (points where an
isosurface would change genus or number of components), then the
extracted isosurface has the same topology as the corresponding
isosurface on the finest resolution. However, the expense is a lower
simplification capability at the cells containing critical points since
these cells cannot be merged.

Our solution to the topology-preserving isosurfacing problem on
large, uniformly-sampled volumes is a bottom-up approach and
therefore is based on a different idea: preserving the disconnected
surface components in each cell during isosurface simplification. It
is inspired by the observation that the volume grid cuts a surface
into patches and these patches can be actually merged into a whole
surface if the cell merging sequence can be altered. During iso-
surfacing, we extract the isosurface from the finest resolution vol-
ume. The isosurface components are then hierarchically simplified
using a connectivity-guided method, where connected components
are merged and disconnected components are preserved. The sim-
plification capability of our approach is determined by the capabil-
ity of representing the disconnected surface components inside a
cell. There is no need to extract and maintain critical points, as in
many other solutions.

To represent the surface components in a cell, we introduce a new
data structure—the enhanced cell, where each isosurface compo-
nent is represented inside a cell by a vertex with encoded connec-
tivity information. These vertices can be simplified using a vertex
clustering algorithm [16], where vertices that fall into the same cell
are clustered into one representative vertex. Since vertices are clus-

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

505

tered regardless of the topology, directly applying this algorithm
for isosurface simplification will introduce more serious problems
than for a mesh. The tiny triangles which make up an isosurface
are more sensitive to position changes. Besides, human eyes are
especially sensitive to topology errors and the resulting gradient ab-
normality (cf. [18]). To solve the topology problem in vertex clus-
tering, a connectivity-guided clustering algorithm is applied, where
the vertices from different surface components are clustered inde-
pendently. Surface components are detected by a graph algorithm
that uses the connectivity information of the vertices.

Our simplification algorithm contains three steps: (1) extracting and
representing the finest resolution isosurface components, (2) build-
ing a vertex octree, and (3) extracting simplified isosurfaces from
the vertex octree. The simplified isosurfaces preserve the topology
of the isosurface in the finest resolution. Due to the space limita-
tion, we omit the discussion here 1.

The primary contributions of this paper are:

• An encoding scheme, called enhanced cell, to represent the
surface components in a cell. Our scheme handles multiple
disconnected surface components, singular connections and
up to two intersections per cell edge (including loops).

• A bottom-up cell merging algorithm, where topology-
preserving vertex clustering is used to cluster the vertices in
a cell. Thanks to the enhanced cell definition, we are able to
encode complex surface components created in a cell during
hierarchical merging.

• An enhanced dual contouring algorithm for the vertex oc-
tree built from bottom-up cell merging. We extend the Sur-
faceNets algorithm [5, 14] to handle multiple representative
vertices. Several vertex selection strategies have been sup-
ported to specify the active vertices used for contouring.

2 RELATED WORK

Isosurface Extraction and Simplification: The problem of isosur-
face extraction from volume datasets has been studied extensively.
Limited by the space here, we only discuss the most relevant docu-
ments. The Marching Cubes (MC) algorithm [10] has been widely
used to extract triangular isosurfaces from the scalar values sam-
pled in rectilinear lattices. It can be naturally integrated into the
hierarchical octree data structure for multiresolution isosurface ex-
traction. The MC algorithm has been further extended by Nielson
[13]. The major issue in multiresolution MC algorithms is that a
crack patching stage is explicitly required when cells of different
size meet, since the piecewise linear approximation surface is no
longer continuous. Various patching schemes have been proposed,
such as point deletion [19] and point insertion [23]. However, these
strategies usually don’t allow level differences of more than one.
Furthermore, the original MC algorithm is unable to recover sharp
features in a volume.

Recently, feature-preserving isosurface extraction techniques have
been reported. Kobbelt et al. [8] have presented a directed distance
field representation and an extended MC algorithm for feature-
sensitive isosurface extraction. Ju et al. [7] have described a dual
contouring algorithm for Hermite data. This algorithm avoids the
explicit feature testing stage in the extended MC algorithm by com-
puting a minimized representative vertex for each cell and con-
necting the vertices using the SurfaceNets algorithm [5, 14]. Both

1A report of proof can be downloaded from our website: http://www.cs.
sunysb.edu/∼vislab/papers/tpvc.pdf.

surface extraction algorithms assume up to one feature per cell.
Varadhan et al. [22] have further extended Ju et al.’s work by han-
dling more than one feature in a cell. We are interested in the Sur-
faceNets family algorithms because of its feature-preserving ability
and crack-free nature in multiresolution contouring. However, we
have a different assumption than Varadhan et al. [22]. We are more
inclined to believe that most of the finest level cells are simple and
multiple surface components are formed in the hierarchical simpli-
fication process.

Tetrahedral-based isosurface extraction has been presented [4, 6].
Gerstner and Pajarola [4] have further studied the rules for ex-
tracting a simplified isosurface while maintaining its topology in
adaptive tetrahedral refinement. A lookup-table method has been
used to extract critical points. Isosurface topology is preserved by
preserving all the critical points in the adaptive tetrahedral mesh.
Ju et al. [7] have applied a similar idea to simplify a volume grid
tagged with material information. There are existing techniques for
isosurface and volume topology simplification. In order to simplify
the topology, these algorithm usually alter the voxel values. Wood
et al. [24] have analyzed the topology of the input isosurface based
on its Reeb Graph. Small handles are located. Then, the corre-
sponding area in the original volume is changed to remove these
handles. Szymczak and Vanderhyde [21] have described a volume
topology simplification algorithm where a topology-sensitive carv-
ing technique is applied to progressively remove the boundary cells.
A variant of the MC algorithm is used to extract an isosurface with
simplified topology. However, it is not clear how to combine topol-
ogy simplification with multiresolution isosurface extraction. Also,
the topology-simple isosurface is not guaranteed to have fewer tri-
angles than the complex one.

Vertex Clustering for Meshes: Although it lacks topology-
preservation capability, vertex clustering remains a very powerful
simplification technique for large mesh data. Rossignac and Borrel
[16] have reported one of the earliest vertex clustering algorithms
on a uniform grid. Many enhancements have been presented for this
prototype algorithm. Lindstrom [9] has used quadric error metrics
[3] to improve the positioning of the representative vertices. His
algorithm is further designed for out-of-core simplification using
polygon soups. Luebke and Erikson [11] have employed a hier-
archical octree data structure to partition the space. Shaffer and
Garland [18] have presented BSP-tree partitioning. Although these
algorithms reduce the clustering errors, the topology preservation
problem has not been tackled. Our algorithm avoids the topology
problem by allowing multiple representative vertices in a cell and
clusters vertices using connectivity.

3 DEFINITION OF ENHANCED CELLS

Although it appears straightforward to add more representative ver-
tices into a cell, the representation of their connectivity is not that
trivial. Both the MC algorithm and the discretized MC algorithm
[12] use a cube-based approach, where the binary values of the eight
corner points are used to determine the surface components and the
connectivity of each component. However, each representative ver-
tex is unable to find its own connectivity using a shared encoding
vector of the 8 corner points. Storing the intersection points on
edges, such as the directed distance method, may be another choice.
However, the intersection points themselves are useless in our sim-
plification process. Also, the intersection points are not associated
with the representative vertices explicitly. Consequently, we decide
to extend the cube-based encoding by assigning each vertex an en-
coding vector. Furthermore, we want to incorporate the ability of
encoding 2 intersection points per edge, as presented by Varadhan
et al. [22]. Therefore, we define an enhanced cell as follows:

506

An enhanced cell is a cell with a list of representative vertices.
Each representative vertex has its own inside/outside classifi-
cation information for the eight cell corner points.

For each representative vertex vi, the classification information Ci
encodes the connectivity of vi with vertices in its neighborhood.
Ci is an encoded vector of (c0, ...,c7). Each ci is a tri-value scalar
in the range [0,X ,1], where 0 stands for outside the isosurface ob-
ject, 1 stands for inside the object, and X means unknown. When
the classification code of the two end points of an edge are (0,1)
or (1,0), we refer to it as a sign change, since the isosurface must
pass through this edge. The sign changes are directed, which means
(0,1) is different from (1,0) 2. The directed sign changes are used
to distinguish two vertices that share the same edge for connec-
tivity encoding. The X value is introduced for encoding singular
connectivity. In detecting sign changes on edges, no sign changes
are indicated if one end-point on an edge has a value X . Within a
cell, the connectivity encoding vector of each vertex is unique. The
connectivity set of all vertices must satisfy the following rule:

• There are no two same directed sign changes constructed from
the coding vectors.

This rule enforces that every directed sign change on the edge cor-
responds to only one vertex. Therefore, the encoding power of the
new representation is limited to at most two different directed sign
changes per cell edge. Our scheme has higher connectivity encod-
ing capability than the cube-based encoding schemes. It can rep-
resent more complex surface components in a cell. We show some
examples in 2D. In Figure 2a, the coding vectors for the two rep-
resentative vertices v0 and v1 are (1,0,0,0) and (0,0,0,1), respec-
tively. In Figure 2b, the coding vectors for the two vertices v0 and
v1, which lie on the two parallel lines, are (0,0,1,1) and (1,1,0,0),
respectively. The enhanced cell representation cannot represent the
shape shown in Figure 3, where the coding rule is violated.

v
1

v
0

v
2

/ v
3

v
1

v
0

v
0

/ v
1

c
0

c
1

c
2

c
3

(a) (b) (c)
Figure 2: The enhanced cell representation for several cases, where
the blue dashed line in (a) shows the corner indexing sequence. (a)
Two disconnected surface components. (b) Two intersection points
per edge, including a loop case. (c) Non-manifold topology.

Our new representation can further encode loops and singular con-
nections inside a cell. Bloomenthal and Ferguson [1] have ad-
dressed the non-manifold polygonization problem. Their method
can’t handle loops in cells. In our method, we introduce a vertex
duping technique, where a vertex can be split into two or more, each
with the same position but different coding. For example, for vertex
v2 on the loop of Figure 2b, we split it into v2 and v3, which have
the same position but different classification codes: (1,0,X ,X) and
(0,1,X ,X). Each coding vector has only one sign change for all the
four edges. Therefore, the surface components in Figure 2b can be
represented by the four vertices and their classification codes:

v0 : (0,0,1,1), v1 : (1,1,0,0), v2 : (1,0,X ,X), v3 : (0,1,X ,X).

2We consider the direction of the sign changes along the axis-aligned
grid lines only. The directions can be +x, −x, +y, −y, +z or −z.

Figure 2c shows a non-manifold topology example. Similarly, we
split the vertex v0 into two to guarantee manifold topology. The dif-
ference is that in the loop case, we mark the two vertices as the same
vertex, while in Figure 2c, they are treated as different vertices.

Figure 3: Our encoding scheme can’t rep-
resent two surface patches which generate
the same directed sign change on an edge
(shown as a dashed line).

4 DATA CONVERSION

Using the enhanced cells, the isosurfaces of various volume rep-
resentations can be encoded. For a user-defined isovalue, the
data conversion process extracts the isosurface and represents it
by the enhanced cell representation. Although we only use regu-
lar volumes, adaptively-sampled volumes can be represented in the
same way. Volume datasets usually include: scanned data, such
as the data from CT, MRI and UltraSound, and synthesized data,
such as the data generated by scan-conversion algorithms. Volume
datasets can also be classified into density/distance volumes and di-
rected distance volumes. The scanned datasets are all density vol-
umes. The synthesized volumes can be density/distance volumes
or directed distance volumes, depending on the scan-conversion
algorithms used. After conversion, a vertex octree is initialized,
where all the homogeneous regions are maximally collapsed and
the boundary leaf cells are represented in the enhanced cell form.

4.1 Density/Distance Volume

In density/distance volume datasets, for a given isovalue, we use
the lookup table of the MC algorithm to determine the disconnected
surface components. For each component Si, we generate a repre-
sentative vertex vi by averaging the intersection points between this
surface component and the cell edges. The coding vector Ci for
each vertex vi is determined by considering only the existence of
the cluster Si in the cell. One coding vector is used for each repre-
sentative vertex.

4.2 Directed Distance Volume

Meshes and implicit surfaces are usually scan-converted (or vox-
elized) into regular distance fields. Alternatively, they can be sam-
pled into directed distance volumes for feature-sensitive isosurface
reconstruction. In the directed distance volumes, explicit intersec-
tion points with optional normal information are stored for each
edge of the cell. The difference between voxelizing meshes and
voxelizing implicit surfaces is mainly the intersection computation.
The data conversion process inputs a directed distance volume of
uniform resolution. Each cell edge may contain up to two intersec-
tion points with associated normals [22]. The intersection points are
grouped to find the surface components they belong to. A represen-
tative vertex is computed by minimizing a quadric error function
(see Section 5.3 for detail).

Similar to the ambiguity problem in the MC algorithm, there is am-
biguity in constructing surface components from the edges with up
to two intersection points per edge. To find the surface compo-
nents in a cell, we develop a robust algorithm, where repeated edge
collapsing tests [4] are performed. Starting from a corner point,
the algorithm performs a depth-first traversal on the cell edges and
stops at the first intersection point it meets. The edges with no inter-
section points are skipped. The intersection points which are first

507

met are grouped into one surface component. At the same time,
these intersection points are deleted from the cell. A new starting
point is selected and the traversal is continued until all the intersec-
tion points are deleted from the cell. To robustly find the surface
components, the choice of the starting point is crucial. We build
a score board for all the corner points. The corner point with the
highest score is chosen as the starting point. The scoring formula is
determined by the number of intersection points associated with its
three corner edges, the maximum normal deviation of the intersec-
tion points, and the in/out classification value of this corner point.
In addition, we always prefer a starting point that groups all the
vertices into one surface component.

Because of the existence of edges with two intersection points in a
surface component, the computation of the coding vectors is more
complicated than that of the density/distance volume data. The
number of split vertices depends on the number of coding vectors
generated for each surface component. The following greedy al-
gorithm computes the coding vectors of a cluster of intersection
points:

1. Initialize the coding vector buffer with X . Classify the cell
edges into two sets: 1-edge (only one intersection point per
edge) and 2-edge (two intersection points per edge).

2. Construct a coding vector C0 using only the 1-edge edges. The
inside/out classification values of the corner points are ob-
tained using the normal directions of these intersection points.

3. Update C0 using the intersection points from the 2-edge set,
until unable to proceed. In such cases, there will be a wrong
coding vector created (introducing conflicting corner classifi-
cation or non-existing sign changes) if we add one more.

4. Construct a new coding vector Ci (i > 0) using the intersection
points from the 2-edge set, until unable to proceed.

5. Repeat step 4 until all intersection points have been exhausted.

Usually 1-2 coding vectors are sufficient to encode the connectiv-
ity, even for complicated cases. Figure 4a shows the topologically
equivalent graph of a cube. In Figure 4b, even a complete edge
graph where each edge has two intersection points can be encoded
using two complement coding vectors. However, this is not always
true. In Figure 4c, the graph with three 2-edge edges can’t be en-
coded with only two vectors since there should be no sign changes
for the top edge. Four coding vectors are required, instead. In our
experiments, four is the maximum number for all examples. After
computing the coding vectors, the representative vertex will be split
if two or more coding vectors are used. These vertices are given one
common id to indicate that they are the same split vertices.

0

10

0

0

1

1

1 1

01

1

1

0

0

0

(a) (b)

(c)

Figure 4: Some cases for cell encoding.
(a) The topologically equivalent 2D graph
of a cube. (b) The complete graph where
each edge has two intersection points can
be encoded by two vectors. (c) An edge
graph with three 2-edge edges can’t be en-
coded with two vectors.

5 BUILDING VERTEX HIERARCHY

The vertex hierarchy is built by hierarchically merging the octree
cells in a bottom-up manner. During cell merging, the vertices in
the child cells are clustered and a new representative vertex is cre-
ated for each surface component. A new cell can’t be created if
the surface components in the cell cannot be represented by the en-
hanced cell structure. For each cell merging, there are three steps:

1. Identify the connected surface components for the representa-
tive vertices in the child cells.

2. Test whether the coding vectors of the child vertices in each
surface component can be merged or not. If yes, go to step 3,
otherwise quit.

3. Construct a new representative vertex and new coding vectors
for each distinct surface component.

5.1 Identifying Surface Components

During bottom-up cell merging, it is very common that the rep-
resentative vertices in the child cells are from independent surface
components. Clustering them into one single vertex will change the
topology. Although in level-of-detail rendering, topology change is
sometimes advocated, such as the edge contraction operator [3], the
topology change will lead to much more error in isosurface simpli-
fication. To preserve topology, we separate the surface components
and cluster them independently. In our approach, we first compute
a connectivity graph of the vertices. Then, we compute the distinct
surface components from this graph. To construct the connectivity
graph, we use the coding vector associated with each vertex to re-
cover the connection between vertices. Our algorithm is described
as follows:

1. Initialize the vertex sets with the representative vertices from
the eight child cells. Each vertex is an independent set.

2. Find connected surface components. For each cell edge with a
directed sign change, the 4 vertices sharing that directed sign
change are considered to be in the same component.

3. Merge the connected vertex sets to minimize the set count.

4. For the vertices with identical vertex id in a child cell, merge
the sets they belong to into one set.

v
0
’

v
1
’

v
0

v
1
/ v

2

v
3

v
4

v
5 v

6

vertex

clustering

(a) (b)
Figure 5: Identifying surface components in cells. (a) The child cells.
(b) The merged cell.

In Figure 5, we show an example of identifying surface compo-
nents in 2D. Simplifying surfaces such as this is straightforward for
existing mesh simplification algorithms. However, for isosurface
simplification algorithms which rely on one representative vertex
per cell, the simplification is impossible. According to the com-
ponents identifying steps, we generate the results and list them in
Table 1. Note that in the third step of Table 1, since v1 and v2 are

508

the same vertex, the two sets associated with them: {v0,v1} and
{v2,v3,v4} are merged into one set. Finally, two distinct surface
components are found by the identifying algorithm.

Table 1: Steps for identifying the surface components in Figure 5.

1 {v0}, {v1}, {v2}, {v3}, {v4}, {v5}, {v6}
2 {v0,v1}, {v2,v3}, {v3,v4}, {v5,v6}
3 {v0,v1}, {v2,v3,v4}, {v5,v6}
4 {v0,v1,v2,v3,v4}, {v5,v6}

5.2 Merging Coding Vectors

For each surface component, a set of coding vectors needs to be
generated from the existing coding vectors of the child vertices
{vi}. To ensure that the enhanced cell definition is not violated,
we need to count the directed sign changes on edges of the coarse
cell. This definition enforces that for each edge, at most two dif-
ferent directed sign changes exist, one in each direction. The child
cells can’t be merged if this rule is violated.

The edges of the child cells can be classified into three types: inner-
edges (edges that are not mapped to the boundary of the merged
cell), edge-edges (edges that are mapped to the boundary edges
of the merged cell), and face-edges (edges that are mapped to the
boundary faces of the merged cell). During the coding vector merg-
ing process, the edge-edges of the child cells are mapped to the cor-
responding edges of the coarse cell. Their coding information is
used to generate the new coding vectors. The merging process uses
an algorithm similar to the one used for computing the coding vec-
tors of intersection points in Section 4.2. The inner-edges and the
face-edges are discarded since they can’t be mapped to the edges of
a coarse cell and have no contribution to the coding vectors. It is
possible that the merged coding vectors show no connection with
other cells. In such cases, we reject merging the child cells to pre-
vent losing surface components.

5.3 Positioning Representative Vertices

We use the quadric error function (QEF) [2] as the vertex position-
ing metric. QEF has been widely use as an error metric for mesh
simplification [3, 9, 18]. Different from the previous vertex cluster-
ing algorithms [7, 9, 18], where one cell is associated with a QEF,
we associate each surface component Si in the cell with a quadric
error function Q, which is defined as:

Q(x) = ∑Qi(x) (1)

where Qi(x) is the QEF of a vertex vi, vi ∈ Si and vi is in a child cell.
For boundary leaf cells, Qi(x) can be evaluated using the planes
passing through the cells. The representative vertex of Si can be
evaluated by minimizing Q.

The advantage of using a quadric error function is that each Qi can
be represented by the following quadric form:

Qi(x) = x�Aix−2b�i x+ ci (2)

where x is the representative vertex, Ai is a 3×3 matrix, bi is a
column vector, and ci is a constant. Similarly, their summarization
Q is:

Q(x) = x�Ax−2b�x+ c (3)

Q(x) represents the sum of square distance of x to a set of planes
passing the cell. Normally, the position of x can be solved by solv-
ing a linear equation Ax = b to minimize the square distance. To

robustly produce the best vertex, we use the following equation to
solve the least square optimization problem [9].

x = x̄+A−1(b−Ax̄) (4)

where the seed point x̄ is the center of the cell. If the matrix A is
singular or near singular, the minimization can’t be solved by the
Gaussian elimination method. In these cases, we adopt the singular
value decomposition method (SVD) [15]. As pointed out by Schae-
fer et al. [17], using the center as the seed point sometimes causes
the minimized point to be outside the cell. In the SVD method, al-
though part of the solution space is inside the cell, the computed
solution is not guaranteed to be in the cell. Actually, Equation 4
only gives a solution that has the minimized distance to the set of
planes and is close to the seed point. In our system, we simply use
the average of all the representative vertices, v̄ = (∑vi)/n, as the
seed point.

6 ENHANCED DUAL CONTOURING

After the hierarchical clustering stage, a vertex octree has been cre-
ated, but no isosurface generated. In the contouring stage, the sur-
face that satisfies a specified condition is reconstructed. Instead
of storing several levels of simplified isosurfaces, we favor on-
the-fly polygon extraction from such a hierarchy. There are sev-
eral reasons: (1) For any user-defined error threshold, a topology-
preserving isosurface can be extracted from the vertex hierarchy.
(2) The vertex hierarchy allows a vertex to be dynamically re-
fined or collapsed in a topology-preserving style, thus makes view-
dependent rendering possible. (3) Other methods of isosurface vi-
sualization can be supported, such as the Region of Interest (ROI)
isosurfacing. The ROI isosurfacing specifies a low error threshold
on the regions of interest, while making the outside regions coarse.

We name our polygonization algorithm enhanced dual contouring
since it extracts meshes from a vertex octree where multiple vertices
may be stored in a cell and uses a vertex selection procedure to de-
cide the active vertex set. To shorten our narration, we only discuss
the polygonization strategy that employs single error-based strat-
egy. The ROI isosurfacing can be easily derived by using region-
based vertex selection strategies. In the single error-based strategy,
the vertices used in polygonization are chosen according to a given
quadric error threshold δ 2. A vertex v can be marked as active and
selected for polygonization only if its quadric error Errv ≤ δ 2. We
discuss two types of polygonization:

• Static polygonization, where only the vertices in the boundary
leaf cells of the octree are used to construct the isosurface.
This polygonization algorithm is similar to the extended dual
contouring algorithm [22].

• Dynamic polygonization, where the vertices in the intermedi-
ate level cells, which are created by hierarchical merging, are
also used to connect the surface.

6.1 Static Polygonization

The static polygonization corresponds to the case where δ 2 = 0. By
default, all the representative vertices in the boundary leaf cells are
initialized as active. In such a case, the polygonization algorithm is
a straightforward extension of the SurfaceNets algorithm for mul-
tiple representative vertices. In a uniform resolution volume, for
each edge with a directed sign change, the vertices from the four
cells sharing that edge are connected to form a quad. Since there
are multiple vertices in a cell, for each edge with a directed sign

509

change, finding the corresponding vertex is performed by a sequen-
tial search of the vertex list stored in the cell. In the multiresolution
cases, there might be only three cells involved and only one trian-
gle is constructed. Note that the static polygonization algorithm
also supports the crack-free multi-resolution isosurface extraction
since it is still a dual method to the MC algorithm.

6.2 Dynamic Polygonization

The dynamic polygonization corresponds to the case where δ 2 > 0.
Every vertex v in the isosurface is required to satisfy Errv <= δ 2.
Before polygonization, an explicit active vertex selection stage is
applied, where the whole octree is recursively visited and all the
representative vertices are checked for activeness. The potential
problem in the selection is that there might be cases where some of
the vertices in a cell have errors higher than the threshold and the
remainder lower than the threshold. Figure 6 gives such an exam-
ple, where vertex a0 is merged from a1, a2 and a3 and vertex b0 is
merged from b1, b2 and b3. Assume Erra0 ,Errb1 ,Errb2 ,Errb3 ≤ δ 2

and Errb0 > δ 2. Therefore, although a0 and b0 are in the same
cell, only a0 can be used for polygonization. To extract the surface
component represented by b0, the child vertices of b0 have to be
used. However, the static polygonization algorithm is performed in
a cell-by-cell order. An indication is required to extract the surface
components in the child cells.

Vertices selected
for contouring

Coarse cell

a
0 b

0

a
1

a
2

a
3 b

1
b
2

b
3

Child cells

Figure 6: During dynamic polygonization, vertices which have error
Err > δ 2 are not selected, such as the vertex b0. Instead, the child
vertices (b1, b2, and b3) are selected for contouring.

To handle the above problem in our dynamic polygonization algo-
rithm, for each vertex v, a parent-vertex field is introduced. The
parent-vertex field stores a pointer to the vertex that v is merged
to. This field is initialized during the hierarchical merging stage.
The vertex selection stage is modified. The parent-vertex field is
checked for each vertex. If the parent vertex or ancestor has been
activated, all the decedents must be deactivated. Otherwise, the
representative vertices are classified according to δ 2. The vertices
within the error threshold are marked as active. In the modified
polygonization algorithm, the parent-vertex is also checked to pre-
vent missing surface components. Now, in Figure 6, since a0 is
used, a1, a2, and a3 are disabled. On the contrary, since b0 is not
used, b1, b2, and b3 are enabled. Note that vertices a3 and b1 are in
the same cell whereas only b1 is enabled.

7 IMPLEMENTATION AND RESULTS

7.1 Implementation

We have implemented our simplification algorithm in C/C++ and
run all the experiments on a uni-processor 3.0GHz Intel Pentium IV
PC running Windows XP, with 512M RAM and NVIDIA GeForce4

graphics board. In all the examples, the physical size of the octree
is set to 1.0. The vertex octree has been implemented as a Hash tree
to ease the neighborhood searching operations frequently used in
our polygonization algorithms. In the hierarchical clustering algo-
rithm, the quadric error metrics are used locally. Therefore, a buffer
of 30 entries is sufficient for simplification. In the final vertex tree,
for each vertex we store the quantized vertex position (6 bytes), a
quadric error (4 bytes), a parent pointer (4 bytes), the vertex id (1
byte), a coding vector (2 bytes), and some tagging information (1
byte). Totally 18 bytes are used for each vertex. The simplification
algorithm generates about 0.3n extra vertices in the vertex hierar-
chy, where n is the count of vertices in the finest resolution. There-
fore, the space requirement for this algorithm is about O(1.3n), plus
the octree cost. The simplification time complexity is also O(1.3n),
since each vertex is visited only once.

7.2 Performance

We have applied our algorithm on different volume datasets: den-
sity/distance volumes, scan-converted polygon meshes, and scan-
converted implicit surfaces. The voxelization time for polygonal
meshes and implicit surfaces varies from several seconds to about
one minute. However, it is purely preprocessing cost. The time for
data conversion is usually within seconds. There are two stages in
the performance measurement: the simplification stage, where the
vertex octree is built hierarchically, and the polygonization stage,
where a user-specified error threshold is given and the isosurface
satisfying that tolerance is extracted. The timing results for some
test data are shown in Table 2. The advantage of separating the two
stages is reflected in the timing for polygonization. As indicated in
Table 2, since the representative vertices are computed in advance
and stored in the cells, the surface extraction is much faster, com-
pared to the result reported by Varadhan et al. [22], despite the fact
that a deeper octree is used.

Table 2: Simplification and polygonization timing (in sec.) for vox-
elized objects.

Octree Polygonization time
Model level Simp. δ 2 = 10−6 δ 2 = 10−4 δ 2 = 10−2

Fig. 1 8 1.03 0.023 0.01 0.00
Fig. 7 8 0.82 0.02 0.00 0.00
Fig. 8 9 5.56 0.28 0.04 0.01

Figure 1 demonstrates that disconnected, voxelized models are
clustered independently. These objects are assigned different mate-
rial properties. After simplification, the isosurfaces remain discon-
nected. In Figure 7, we further show the effectiveness of caching the
surface components in the intermediate levels. The zero-isosurface
of a voxelized mechanical part dataset is simplified to a symmetric
object of 152 triangles (Figure 7c), where each octree cell contains
only one representative vertex. However, the intermediate simpli-
fication result (Figure 7b) does contain some cells with multiple
representative vertices (drawn as yellow spheres) in each cell. With
the help of the enhanced cell representation as a temporary storage,
these cells can be merged with other cells. Another interesting ob-
servation we gain from this dataset is that the adaptive sampling
process with maximum octree level of 4 creates an inferior model
(Figure 7d) than our simplification result, although more cells are
used. This effect can be explained by the fact that during the adap-
tive sampling, the representative vertices are positioned according
to the QEFs constructed from the intersection points on the cell
edges. Since the sampling grid is coarse, these vertices are not as
good as a simplification result where the vertices are actually the
average of many vertices.

510

(a) t = 128K (b) t = 1442 (c) t = 152 (d) t = 224

(e)

Figure 7: Simplifying the zero-isosurface
of a voxelized mechanical part dataset.
(a) The original model. (b) Simplified,
where δ 2 = 2.5× 10−3. The octree sub-
division is shown in green lines. (c) The
final simplification result, where δ 2 = 1.
(d) An adaptively sampled example. (e)
Zoom-in view of the rectangular region
in (b). The representative vertices are
shown as red (one point per cell) or yel-
low (multiple points per cell) spheres.

Figure 8 shows quadric error based simplification for the isosurface
of a distance volume, where about 91% triangles are decimated.
Figure 9 shows ROI isosurfacing on two density volumes, where
two different ROI methods are used: a rectangular and a spheri-
cal. The spherical ROI has gradual error increasing from its cen-
ter. The versatility of our polygonization algorithm is attributed to
a flexible vertex selection procedure on the vertex hierarchy. For
a given error threshold, a vertex is selected based on its own er-
ror and is independent of the errors of other vertices. At the same
time, the polygonization speed is only slightly slower than the dual
contouring algorithm. The added cost is mainly the time for match-
ing vertices and traversing the vertex hierarchy in finding the active
vertices.

7.3 Comparison with Previous Methods

Compared with our algorithm, the simplification algorithm de-
scribed by Ju et al. [7] is a more conservative algorithm. The core of
their algorithm is a manifold test based on Gerstner and Pajarola’s
algorithm [4]. Their algorithm requires that in each coarse cell, the
shape should be a pseudo-manifold (each material is a manifold).
For contouring, their method has the limitation of only one vertex
per cell. However, we have shown that two disconnected surface
components in a fine level cell can be merged into one surface com-
ponent in the coarse level, such as the example in Figure 5 where
the two surface components represented by vertices v0 and v3 can

(a) δ 2 = 0, t = 900K. (b) δ 2 = 2×10−5, t = 80K.

Figure 8: Simplifying the isosurface from a distance volume, where
the distance value 0.001 is used.

(a) Rectangular ROI. (b) Spherical ROI.

Figure 9: Isosurface visualization using ROI.

be clustered together in the cell merging process. Therefore, the
simplification capability of their algorithm is restricted.

In Figure 10, we show the results of simplifying a 2D Chinese char-
acter based on a quadtree data structure. This character is sampled
in 2562 resolution. Several variations of the vertex clustering algo-
rithm have been applied: the octree based algorithm where topology
is ignored [11], the topology-preserving algorithm of Ju et al. [7],
and ours. Some differences are highlighted with circles. In the
non-topology-preserving result of Figure 10b, several regions have
become disjointed. In the conservative result of Figure 10c, many
tiny cells are kept since they violate the simplification rules defined
by Ju et al. [7]. In contrast, we are able to handle these cases. Ta-
ble 3 gives the comparison of cell and vertex counts generated in
Figure 10. Under the same error threshold, we generate fewer cells
and vertices than the other topology-preserving algorithm. Tiny
cells are merged so that a more balanced simplification result is
achieved. Our method also generates fewer cells and vertices than
the non-topology-preserving algorithm. It shows that fewer errors
are accumulated on the vertices. Furthermore, the contouring cost
is reduced by the facts: (1) fewer cells and vertices are visited, and
(2) fewer lines are generated. The effectiveness of our algorithm is
more significant in 3D cases.

Table 3: Comparison of the simplification results of a Chinese char-
acter, where δ 2 = 0.003 (EC: our enhanced cell method; VC: non-
topology-preserving vertex clustering; JA: Ju et al.’s algorithm).

Algorithm # cells # vertices # lines
EC 279(100%) 300(100%) 300(100%)
VC 327(117%) 327(109%) 327(109%)
JA 470(168%) 470(157%) 470(157%)

It is not easy to give a direct comparison between our algorithm
and the octree-based MC decimation algorithm reported by Shekhar
et al. [19], since ours is basically a dual method to the MC algo-
rithm. However, because of the encoding power, we could expect
that ours will generate better results. Furthermore, ours has the ad-
vantage of no crack-patching between different octree levels.

8 CONCLUSIONS AND FUTURE WORK

We have presented a topology-preserving isosurface simplification
algorithm using a novel concept of preserving disconnected surface
components during simplification. The problem is transformed into
representing isosurface components and topology-preserving iso-
surface clustering. The enhanced cell representation is used to en-
code isosurface components in cells. A connectivity-guided vertex
clustering algorithm is used to simplify the isosurface components.
After building a hierarchically clustered vertex octree, topology-
preserved isosurfaces can be extracted under various error bounds
by the enhanced dual contouring algorithm.

511

(a) (b)

(c) (d)

(e) (f) (g)

Figure 10: Simplifying a Chinese character in 2D. (a) The original
model. (b) Simplification result using the non-topology-preserving
vertex clustering. (c) Simplification result using Ju et al.’s algorithm.
(d) Simplification result using our algorithm. (e), (f), and (g) show
zoom-in view of the circled regions of (b), (c), and (d), respectively.

Our algorithm is efficient in simplifying isosurfaces of a fixed iso-
value. Although it is not a general isosurface extraction algorithm
with topology preservation, such as Gerstner and Pajarola’s algo-
rithm [4], the efficiency is attractive to those who are interested in
fixed isovalues and concerned more about real-time visualization.
In these cases, offline simplification algorithms, such as QSlim, are
not suitable. Furthermore, the efficiency of our algorithm makes it
possible to be combined with fast isosurface extraction algorithms
to extract multiresolution isosurfaces with topology-preservation
for different isovalues.

We have some on-going research work. We are studying powerful
encoding schemes for isosurfaces. We are also interested in ap-
plying our approach in view-dependent isosurface rendering. Our
pre-simplified vertex octree allows vertex refinement and collaps-
ing in a topology-preserving manner. The screen-space errors can
be considered in vertex selection. Finally, we plan to apply our
new representation in point cloud reconstruction by better handling
surface topology in cells.

ACKNOWLEDGMENTS

This work is supported by NSF grant CCR0306438 and ONR grant
N000140110034. We would like to thank the anonymous reviewers

for their help in improving this paper.

REFERENCES

[1] J. Bloomenthal and K. Ferguson. Polygonization of non-manifold im-
plicit surfaces. In SIGGRAPH Proceedings, pages 55–62, July 1995.

[2] M. Garland. Quadric-Based Polygonal Surface Simplification. PhD
thesis, Carnegie Mellon University, May 1999.

[3] M. Garland and P. S. Heckbert. Surface simplification using quadric
error metrics. In SIGGRAPH Proceedings, pages 209–216, August
1997.

[4] T. Gerstner and R. Pajarola. Topology preserving and controlled topol-
ogy simplifying multiresolution isosurface extraction. In IEEE Visu-
alization, pages 259–266, October 2000.

[5] S. Gibson. Using distance maps for smooth surface representation in
sampled volumes. In IEEE Visualization, pages 23–30, October 1998.

[6] B. Gregorski, M. Duchaineau, P. Lindstrom, and V. Pascucci. Inter-
active view-dependent rendering of large isosurfaces. In IEEE Visual-
ization, pages 475–482, October 2002.

[7] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of
Hermite data. In SIGGRAPH Proceedings, pages 339–346, July 2002.

[8] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel. Feature-
sensitive surface extraction from volume data. In SIGGRAPH Pro-
ceedings, pages 57–66, August 2001.

[9] P. Lindstrom. Out-of-core simplification of large polygonal models.
In SIGGRAPH Proceedings, pages 259–262, July 2000.

[10] W. E. Lorensen and H. E. Cline. Marching Cubes: A high resolution
3D surface construction algorithm. In SIGGRAPH Proceedings, pages
163–169, July 1987.

[11] D. Luebke and C. Erikson. View-dependent simplification of arbitrary
polygonal environments. In SIGGRAPH Proceedings, pages 199–208,
August 1997.

[12] C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes.
In IEEE Visualization, pages 281–287, October 1994.

[13] G. M. Nielson. On marching cubes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 9(3):283–297, 2003.

[14] R. N. Perry and S. F. Frisken. Kizamu: A system for sculpting digital
characters. In SIGGRAPH Proceedings, pages 47–56, August 2001.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C++. Cambridge University Press, Cambridge,
UK, 2001.

[16] J. Rossignac and P. Borrell. Multi-resolution 3D approximation for
rendering complex scenes. In Modeling in Computer Graphics, pages
455–465. Springer-Verlag, Berlin, 1993.

[17] S. Schaefer and J. Warren. Dual contouring: The secret sauce. Techni-
cal Report 02-408, Department of Computer Science, Rice University,
2002.

[18] E. Shaffer and M. Garland. Efficient adaptive simplification of mas-
sive meshes. In IEEE Visualization, pages 127–134, October 2001.

[19] R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-based dec-
imation of marching cubes surfaces. In IEEE Visualization, pages
335–342, October 1996.

[20] B. T. Stander and J. C. Hart. Guaranteeing the topology of an im-
plicit surface polygonization for interactive modeling. In SIGGRAPH
Proceedings, pages 279–286, August 1997.

[21] A. Szymczak and J. Vanderhyde. Extraction of topologically simple
isosurfaces from volume datasets. In IEEE Visualization, pages 67–
74, October 2003.

[22] G. Varadhan, S. Krishnan, Y. J. Kim, and D. Manocha. Feature-
sensitive subdivision and isosurface reconstruction. In IEEE Visual-
ization, pages 99–106, October 2003.

[23] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of
regular volume data by adaptive reconstruction of isosurfaces. The
Visual Computer, 15(2):100–111, 1999.

[24] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Isosurface topol-
ogy simplification. Technical Report MSR-TR-2002-28, Microsoft
Research, 2002.

512

