
Anisotropic Volume Rendering for Extremely Dense, Thin Line Data

Greg Schussman∗

Stanford Linear Accelerator Center

Kwan-Liu Ma†

University of California at Davis

Abstract

Many large scale physics-based simulations which take place
on PC clusters or supercomputers produce huge amounts
of data including vector fields. While these vector data
such as electromagnetic fields, fluid flow fields, or particle
paths can be represented by lines, the sheer number of the
lines overwhelms the memory and computation capability of
a high-end PC used for visualization. Further, very dense
or intertwined lines, rendered with traditional visualization
techniques, can produce unintelligible results with unclear
depth relationships between the lines and no sense of global
structure. Our approach is to apply a lighting model to the
lines and sample them into an anisotropic voxel representa-
tion based on spherical harmonics as a preprocessing step.
Then we evaluate and render these voxels for a given view
using traditional volume rendering. For extremely large line
based datasets, conversion to anisotropic voxels reduces the
overall storage and rendering for O(n) lines to O(1) with a
large constant that is still small enough to allow meaningful
visualization of the entire dataset at nearly interactive rates
on a single commodity PC.

CR Categories: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.4.10 [Image Process-
ing]: Image Representation—Volumetric.

Keywords: anisotropic lighting, line data, scientific visu-
alization, vector field, volume rendering

1 Introduction

Many scientific investigations require the study of complex
3D or 4D vector fields such as fluid flow field, electric field,
and magnetic field. Displaying the field lines directly is pop-
ular. However, when the field consists of a large number of
dense, intertwined lines, it becomes very difficult to depict
the spatial relationships between the lines and their intrin-
sic global and local structures. For example, one problem,
known as the dark current problem, under study by the sci-
entists at the Stanford Linear Accelerator Center (SLAC)
for the design of National Linear Collider (NLC) requires

∗schussman@slac.stanford.edu
†ma@cs.ucdavis.edu, http://www.cs.ucdavis.edu/˜ma

visualization of very dense particle paths from the simula-
tion of particle accelerator structures. Even in the 2D case,
the paths become a tangled mess long before global patterns
emerge. Another source of line data results from integrating
a very large number of streamlines through CFD data to
capture intricate structural details in velocity and vorticity
fields.

The visualization challenge is to convey, clearly and inter-
actively, the global structure of the dark current particle
paths, or to show their relationship with electric and mag-
netic fields. This is a more difficult problem than simple
vector field visualization because each point in a vector field
maps to exactly one vector, but for path data, a point may
map to any number of paths. For vector field visualization
using streamlines, the line density can be adjusted by chang-
ing the number and placement of seed points. However, for
measured or simulated path data, all paths are potentially
significant so no path can be automatically discarded to re-
duce path density.

This paper presents Anisotropic Volume Rendering (AVR),
a new technique making possible the depiction of extremely
dense, fine field lines. Our basic approach is to subdivide the
region of interest into cubes, which have their line data sam-
pled and converted into voxels with anisotropic radiance and
opacity. Voxels are represented efficiently by non-linear ap-
proximation where only significant spherical harmonics co-
efficients from a truncated Laplace series are stored. Direct
volume rendering is then performed on traditional voxels
computed from the anisotropic voxels, each evaluated ac-
cording to a given viewing direction. Interactive scaling of
line thickness is possible. The resulting voxel data size has
a fixed upper bound, thereby enabling an overview of ex-
tremely large data on a commodity PC.

2 Previous Work

Spherical harmonics were first introduced into computer
graphics in 1987 for representing bidirectional reflection
functions from surface bump maps [Cabral et al. 1987]. In
general, they are useful for sampling and reconstructing a
scalar function on a sphere [Glassner 1995]. In particu-
lar, they have been used for representing BRDFs for ma-
terial surfaces and directional intensity distributions for sur-
faces [Sillion et al. 1991] and, more recently, for real-time ren-
dering using complex environment maps converted into the
frequency domain [Ramamoorthi and Hanrahan 2001]. One
approach to anisotropic function representation uses a non-
linear (discarding insignificant coefficients) wavelet lighting
approximation [Ng et al. 2003] to be faster than linear spher-
ical harmonics. However, one can obtain speed increases by
discarding insignificant spherical harmonic coefficients in a
similar way, which is what we do. So in the same sense, our
approach would be classified as using a non-linear Laplace
Series approximation. The use of spherical harmonics for
capturing anisotropy has so far been limited to one-sided sur-
faces [Ramamoorthi and Hanrahan 2001; Sloan et al. 2002;
Ng et al. 2003].

The illuminated line work most closely related to ours is that
by [Stalling et al. 1997]. Their work uses 2D textures of pre-
computed illumination based on the work of [Banks 1994],
which treats lines as 1-manifolds in 3-space. A consequence

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

107

of this is that, for any point on the curve, there is no clear
surface and therefore no clear surface normal vector (rather,
there are an infinite number of surface normals which are
constrained to a plane). The diffuse term for the shading
equation suffers from “excess brightness” which can be alle-
viated by exponentiating that term. Although values for this
exponent are presented, we have found that some manual ad-
justment is needed in practice. Line primitives have some
additional drawbacks. They do not provide the perspective
depth cue. For extremely dense sets of lines, transparency
is needed to prevent the rendering of an opaque mass. But
transparency introduces its own set of difficulties. Limited
precision in graphics hardware can cause severe quantiza-
tion error for very transparent lines. Transparency also calls
for back-to-front compositing of the line fragments, but this
sorting can be prohibitively expensive for extremely large
datasets. It is pointed out by [Stalling et al. 1997] that
back-to-front compositing of approximately sorted segments
(by an individual axis) yields only about 1% pixels with
somewhat incorrect color, and that display lists of pre-sorted
lines (along the major axes) speeds rendering. However line
datasets too large to fit in memory preclude storing multiple
sorted copies and the use of display lists. Furthermore, for
very dense lines, approximate sorting can result in signifi-
cant visual artifacts. Our approach is more closely related
to what Banks refers to as promoting the manifold dimen-
sion; that is, we treat curves as tubes, so that normal vectors
are cleanly defined, and there is a real surface with a visi-
ble side over which to integrate a shading equation. How-
ever our goal is to handle tubes projecting to have sub-pixel
widths (consistent with averaging down a supersampling of
shaded geometric tubes), so these integrated values are accu-
mulated into floating point spherical harmonics coefficients
for anisotropic voxels. This provides sub-pixel illumination
consistent with multi-pixel illumination, correct depth order-
ing (except within an individual voxel), a fixed upper bound
on memory requirements regardless of the line data size, and
provides the perspective depth cue if the volume renderer
renders in perspective. This also accumulates all line con-
tributions to a voxel prior to entering graphics hardware, so
that an individual voxel is not subject to accumulated quan-
tization error in hardware. Volume haloing [Interrante and
Grosch 1998], which requires more than one pixel of pro-
jected tube thickness, is not appropriate for what we intend
to accomplish.

The work most closely related to the volumetric aspect of
ours uses three dimensional textures to render fur [Kajiya
and Kay July 1989], and mentions the desirability of the
Painter’s Illusion in which far more detail is suggested than
is actually present on very close examination of a region of
an image. Toward this end, they model teddy bear fur as a
dense block, and tile this over the surface of the bear. The
diffuse component of their lighting model is essentially the
same as ours, but their specular model assumes uniformly
dense fur and diffraction, which is not appropriate for the
highly non-uniform density datasets which motivated AVR.
They mention that the specular contribution can be derived
using an approach similar to the diffuse contribution, but
they admit that doing so is difficult and results in a model
which is “quite complex”. A contribution of this paper is
an efficiently computable, nearly analytical solution to this
specular problem. Their representation is based on stor-
ing a density, a frame, and a reflectance function, where the
reflectance function is common to the whole dataset. In con-
trast, the AVR representation uses Laplace Series coefficients
to store anisotropic density and radiance, with the frame as-
sumed to be common to the whole dataset. Their approach
makes numerous assumptions about the teddy bear fur, but
these do not hold for scientific datasets. The AVR approach
only assumes that the fiber thickness is smaller than the
voxel dimensions. Finally, they use ray tracing to producing
nice shadowing effects during rendering. If global illumina-
tion were to be used with AVR, it would occur during pre-

processing, but could then be rendered as quickly as other
lighting models.

Light transport and illumination of micro geometry has also
been an area of graphics research. In the work of [Daubert
et al. 2003] visibility and illumination are precomputed for
tiled repetitive micro-geometry by raycasting a tile. This
allows efficient rendering with global illumination, but the
preprocessing method is prohibitively expensive because our
datasets are much larger and do not contain tiled repeti-
tive patterns. By restricting our micro-geometry to tubes
and using a nearly analytical function for precomputation
of local illumination and occlusion for tubes, we are able
to preprocess very large datasets in a fraction of the time
that they take to generate. The work of [Sillion et al. 1991]
also considers micro-geometry, but assumes the overall re-
flection properties do not vary over a surface. Recent re-
search has also been done on light scattering from human
hair [Marschner et al. 2003] where the hair is not opaque
and light undergoes multiple scattering within a fiber. Their
goal is match the visual qualities of real hair. In contrast,
our goal is to match opaque supersampled tube geometry
illuminated with a given shading model. We want a visual
match for tubes so thin that supersampling is intractable
(e.g., for sets of fibers which are orders of magnitude thin-
ner and denser than human hair).

3 Anisotropic Volume Rendering

The AVR process, illustrated in Figure 1, consists of two
phases, one for preprocessing, and the other for rendering.
A traditional voxel has only an opacity and color, which are
isotropic (independent of viewing direction). An AVR voxel
has opacity and color intensity, but these are anisotropic.

Figure 1: Flowchart of AVR preprocessing (left) and render-
ing (right).

The input for AVR consists of line data, where these lines or
curves are represented as line segments. Each segment has
a beginning and an ending point in 3D, and an associated
radius and material properties. The first step in prepro-
cessing is to partition the (presumably gigantic) line dataset
into blocks which are of manageable size. Because the input
data is too large to fit in memory, and the number of blocks
to be saved can exceed the maximum allowable number of
open files, we buffer the line segments in memory, and only

108

open and append to a file when more than a certain number
of segments have accumulated for the corresponding block.
This allows all line data to be partitioned in a single stream-
ing pass without incurring significant penalty for opening
and closing files.

Once the data has been partitioned into blocks, the blocks
can be voxelized in an embarrassingly parallel fashion. Vox-
elization consists of clipping line segments to voxel bound-
aries and accumulating spherical harmonic coefficients. Clip-
ping is straightforward; each block corresponds to an n3 vol-
ume of voxels, so every line segment is clipped to the cubical
boundaries of any voxel region through which it passes. The
Laplace Series coefficients are then computed for the lighting
contribution of the clipped subsegment, and accumulated in
the corresponding AVR voxel. Lighting can be from multiple
light sources, which can be any mixture of ambient and di-
rectional light sources, and the directional light sources can
be either fixed in world space (e.g., the sun) or fixed in eye
space (e.g., a headlight). Once all segments have been pro-
cessed, insignificant coefficients are discarded. The details
of these calculations are presented in Section 4.

The final output of the preprocessed data is blocks of AVR
voxels. In our implementation, each block is a 3D array
of pointers which are null for empty (completely transpar-
ent) voxels, or point to an instance of an AVR voxel class.
Each block stores the indices for its location within the en-
tire volume, and thereby can “know” where it is located in
3D. An AVR voxel consists of a list of quantum numbers
and an associated list of coefficients. Because these coeffi-
cients are accumulated in software, no quantization error is
introduced prior to hardware rendering. If the addition were
done in limited precision graphics hardware, a dense bundle
of fine lines could have each individual line quantized to 0,
even though collectively the bundle should be visible.

The rendering phase takes as input blocks of AVR voxels,
the eye position and viewing direction of an observer, and
other viewing parameters such as transfer functions. These
are used to evaluate a block of AVR voxels. When an AVR
voxel is evaluated, the input is a viewing direction, and the
output is an rgb color intensity and an opacity value. In
effect, evaluating a block of AVR voxels produces a block of
traditional voxels corresponding to the current view. Tra-
ditional volume rendering can then be performed in parallel
to produce sub images which are composited to produce a
final image.

The opacity of AVR voxels is directly proportional to the
corresponding segment radii, so the equivalent of interac-
tively scaling the radii can be accomplished by scaling the
opacity of an evaluated AVR voxel. If there are more than
one input line type (for example electric field lines and mag-
netic field lines), these can be preprocessed independently,
and can have their evaluated results scaled and combined
interactively, also without further preprocessing. Opacity
transfer functions can also be manipulated once the AVR
voxel opacity has been evaluated.

4 Averaged Lighting Derivations

This section provides the mathematical details for imple-
mentation. There are two steps in execution. The first is to
compute the averaged lighting for a single line segment from
a single view with a single light source. This is repeated for
any additional segments lying within the current voxel. This
would also be repeated for additional light sources. For this
specific view, the color and opacity are accumulated via a
weighted average.

The organization for this section is as follows. First we state

r
l

~T

~L

~V

~T

(a) (b)

Figure 2: Each segment has a radius r, length l, and unit

tangent vector ~T (a). Input unit vectors consist of ~T , the

light source ~L, and view ~V (b).

our assumptions and conventions, and describe our notation.
Then we provide a starting point for deriving expressions
for averaged lighting contribution of a generic light source
which can be any shading function. This starting point is
an integral for which an efficiently computable analytical
or numerical solution is needed to make preprocessing of
large datasets tractable. Next, special limits of integration
for the specific case of a directional light source are given,
followed by the weighted averaging equations for color and
opacity. This section concludes with the solution of the av-
eraged lighting integrals for the specific case of OpenGL’s
Phong style lighting model.

4.1 Conventions and Notation

First, we make some simplifying assumptions. The math-
ematical formulation of intensity (as a function of view di-
rection, curve tangent, and light direction) assumes ortho-
graphic projection during sampling. However, during visu-
alization, the overall view uses perspective projection, and
permits up-close viewing. The derivations in this section as-
sume that the radius of any cylinder is less than the width
of the surrounding voxel. The relative depth relationship of
two line segments is not preserved within the same voxel but
is preserved between separate voxels.

Lighting parameters consist of a light vector, ~L, a view vec-

tor, ~V , and light properties. Lines (curves) are composed of
line segments which are modeled as cylinders. Each cylinder
has radius r, and length l. A cylinder has material prop-
erties: ambient, diffuse, and specular coefficients for red,
green, and blue color channels, and a shininess exponent. A

unit vector ~T , which lies along the axis of the cylinder, can
be thought of as a normalized version of the average tangent
vector for this cylinder’s portion of the curve. Figure 2a
shows these cylinder parameters in relation to one another.

The unit vectors ~V and ~L points toward the eye and a dis-
tant light source, respectively, and are depicted in Figure 2b

in relation to ~T .

We construct a 3D orthogonal basis from ~T and ~V . Dis-
regarding the special case where a cylinder is viewed “end

on” (because there would be no visual contribution), ~T and
~V are linearly independent, and the orthogonal projection

of ~V into the plane perpendicular to ~T is the unique vec-

tor ~Vp where 0 <
˛

˛

˛

~Vp

˛

˛

˛
≤ 1. The three basis vectors are ~T ,

~N , and ~B where the latter two are computed according to
~N = N

“

~Vp

”

, ~B = ~T× ~N , ~Vp = ~V −
“

~V · ~T
”

~T , where N de-

notes vector normalization. The ~N ~B plane is perpendicular

to the ~T axis, effectively forming a cross-sectional slice of the

cylinder from Figure 2b. Note that ~N is the cylinder surface

109

normal which most closely points toward the eye. We define
any other unit surface normal in terms of the angle θ, which

is the rotation in the ~N ~B plane, going clockwise about the
~T axis, so

~n(θ) = ~N cos θ + ~B sin θ. (1)

The projected visible side of the cylinder corresponds to
−π

2
≤ θ ≤ π

2
.

4.2 Generic Initial Derivation

The initial portion of derivations for averaged lighting over a
cylinder surface have a common starting point independent
of the expression for the light source. Using F as a generic
placeholder for a light contribution from any shading model,
the generic averaged intensity, ĪF , is the shading intensity
integrated over the projected visible cylinder surface divided
by the projected area of the cylinder surface:

ĪF =

Z

SV L

F cos φ dSV L

.

Areavis, (2)

Here, SV L denotes the projected area that is both visible and
illuminated. Note that SV L depends on F , and that SV L ⊆
S, because S denotes all projected visible area, regardless of
whether that area is illuminated. The limits of integration
for θ (corresponding to SV L) are not necessarily −π

2
and π

2
,

and depend on what F is. The projected visible area of a
cylinder surface is

Areavis = 2 rl
“

~V · ~N
”

. (3)

Equation 2 can be partially evaluated, taking Equation 3
into account and using dS = r dθ dz from cylindrical coor-
dinates. The simplified resulting expression concludes the
initial derivation, and is now ready to accept F :

ĪF = 1

2

Z θ1

θ0

F cos θ dθ. (4)

The limits of integration for θ for the cylinder surface which
is both visible to the eye and illuminated by a directional

light source are illustrated in Figure 3, in which ~Vp denotes

the projection of ~V into the ~N ~B plane, ~Lp denotes the pro-

jection of ~L into the ~N ~B plane, and α is the angle between
the projected view and projected light vectors. From this
figure, the limits of integration for a directional light source
are

θ0 = max
`

−π

2
, α − π

2

´

, θ1 = min
`

π

2
, α + π

2

´

. (5)

~B

~N~Vp

π

2

0

− π

2

~B

~N
α

~Lp

α+ π

2

α− π

2

~B

~N

θ1

θ0

Figure 3: The portion of the cylinder surface visible to the
eye (left) may not be the same as the portion of the surface
illuminated (middle). Integrating only over the intersection
of these two regions (right) simplifies the sampling equations
for directional light sources.

4.3 Weighted Average within a Voxel

Averaged lighting expressions from Section 4.2 provide the
lighting contribution of a single cylinder for a given view.
This paper targets extremely dense line datasets where many
line segments can lie within a single AVR voxel. We use
a weighted average to combine the contributions of mul-
tiple segments for this view. For n cylinders numbered
i ∈ {0, 1, . . . , n − 1}, we denote the rgb color triplet by
Ci, the projected visible area (as computed in Equation 3)
by Ai, and the final color and opacity for a voxel by C and
O, respectively. The weighted averages are

C =

n−1
X

i=0

(Ci)(Ai)

,

n−1
X

i=0

Ai, (6)

O = 1 −
n−1
Y

i=0

„

1 − Ai

.Sc

4

«

. (7)

where Sc is the surface area of the cube, and Sc/4 is the
average visible surface area of a cube [Arvo and Kirk 1989].

4.4 Application to OpenGL Lighting

The mathematics of OpenGL’s lighting are given in Chap-
ter 5 of the OpenGL Programming Guide (the “Red
Book”) [Woo et al. 1999]. To summarize briefly, OpenGL
uses the following (in slightly different notation) to produce
the color I = Ia + Id + Is where I is the total intensity rgbα
vector, and the a, d, and s subscripts correspond to ambient,
diffuse, and specular, respectively. Denoting component-
wise vector multiplication by ∗,

Ia = (Am ∗ Al), (8)

Id = (Dm ∗ Dl) max
“

~L · ~n, 0
”

, (9)

Is = (Sm ∗ Sl) max
“

~H · ~n, 0
”k

, (10)

where ~n is the surface normal vector, A, D, and S corre-
spond to ambient, diffuse, and specular, respectively. The
subscripts m and l correspond to material and light, respec-

tively. The “halfway” unit vector is ~H = N
“

~L + ~V
”

.

In this case, the average intensity Ī = Īa + Īd + Īs. The indi-
vidual sub-expressions come from substituting Equations 8,
9, and 10 in place of F in Equation 4. The ambient term is
simply Īa = AmAl, and the easily obtained simplified diffuse
term is

Īd = DmDl

8

»

“

~L · ~N
”“

sin 2θ1 − sin 2θ0 + 2(θ1 − θ0)
”

−
“

~L · ~B
”“

cos 2θ1 − cos 2θ0

”

–

.

(11)

Space constraints preclude showing the complete derivations
here, but they are available in [Schussman 2003]. The spec-
ular expression is more challenging, so we provide a summa-
rized derivation here. The main difficulty surrounding inte-
gration of the specular expression is the k exponent, which
causes analytical solutions (for known k) to expand out to
so many trigonometric terms as to be computationally im-
practical (even for preprocessing large datasets).

Starting with Equation 4, and using F = Is from Equa-

110

tion 10 gives

Īs = 1

2

Z θ1

θ0

SmSl

“

~H · ~n(θ)
”k

cos θ dθ. (12)

Substituting Equation 1 into Equation 12, and distributing
the dot product yields

Īs = SmSl

2

Z θ1

θ0

h“

~H · ~N
”

cos θ+
“

~H · ~B
”

sin θ
ik

cos θ dθ. (13)

We now rearrange and split up this expression so that the
part which does not have an analytical solution will at least
lend itself to a precomputed numerical solution. Toward this

end, we introduce ~Hp and β; similar to ~L and ~Lp in Figure 3,
~Hp is the projection of ~H into the ~N ~B plane, so

~Hp =
“

~H · ~N
”

~N +
“

~H · ~B
”

~B, (14)

and β is the angle between ~Hp and the ~N axis, which can be

computed as: β = atan2

“

N (~Hp) · ~B, N (~Hp) · ~N
”

, where

atan2 is ISO 9899 compliant. The orthogonal projection of
~Hp onto ~N is

˛

˛

˛

~Hp

˛

˛

˛
cos β. Because ~Hp and ~H both have the

same ~N and ~B components, the following equations result:

~H · ~N =
˛

˛

˛

~Hp

˛

˛

˛
cos β, ~H · ~B =

˛

˛

˛

~Hp

˛

˛

˛
sin β. (15)

Substituting these into Equation 13, then substituting in a
trigonometric angle addition identity, and using a change of
variables where u = θ−β, and using another angle addition
identity gives

Īs = SmSl

2

˛

˛

˛

~Hp

˛

˛

˛

k−1 “

(~H · ~N)

Z θ1+β

θ0+β

cosk+1 u du

−(~H · ~B)

Z θ1+β

θ0+β

cosk u sin u du
”

.

(16)

The second integral in Equation 16 has a clean, closed-form
solution, but the first integral does not. The integral of
cosk+1 u is an order k multivariate polynomial in cos u and
sin u with k + 2 terms for even k, or k + 1 terms for odd k.
If u is bounded below and above, (which we denote by umin

and umax, respectively), the integral can be precomputed
numerically and stored in a lookup table. From our change
of variable and we obtain bounds for β, and then substi-
tute back to get umin = −π ≤ u = (θ − β) ≤ π = umax. Be-
cause these bounds exist, a function F (u0, u1), implemented
in terms of the lookup table, can be used to replace the
problematic integral, providing our final expression for the
averaged specular contribution:

Īs = 1

2
SmSl

˛

˛

˛

~Hp

˛

˛

˛

k−1
»

“

~H · ~N
”

F (θ0 + β, θ1 + β)+

“

~H · ~B
”

„

cosk+1(θ1 − β) − cosk+1(θ0 − β)

k + 1

«–

, (17)

where θ0 and θ1 are given by Equations 5.

5 Voxelization

The previous section was about obtaining the averaged light-
ing color, C, and opacity, O, for a single view of multiple

line segments located within a voxel. These results are func-
tions of a viewing direction. This section is about sampling
(evaluating) those functions for many different views, and
converting those samples into a set of Laplace Series coeffi-
cients, which compactly represent an approximation of the
functions for all viewing directions. Compactness is neces-
sary for fitting a large amount of AVR voxel data in memory.
This representation also allows C and O to be reconstructed
for any specific viewing direction in a computationally ef-
ficient manor, to allow faster rendering. In the convention
of [Porter and Duff 1984], C and O are non-premultiplied
color and opacity.

The sampling function only takes a view, a cylinder and a
light source. It can be called multiple times, once for each
light source, and the results can be combined. Light sources
can have any direction, either held fixed in world space, or
held fixed in eye space, or defined as some other function of
viewing direction. Samples from different cylinders within
the same voxel are combined as well. Once the compact
representation is obtained, sampling need not be repeated
unless the combined lighting functions are changed (exam-
ples include light sources being added or removed, a world
space light being moved in world space, or a light direction
being redefined as a different function of viewing direction).

Spherical harmonic functions form the basis for the Laplace
series in a way that is directly analogous to sine and co-
sine harmonics forming the basis for Fourier series. We
adopt the spherical coordinates convention most commonly
used in physics, as follows. The azimuthal angle, φ, lies
in the XY plane, is measured from the X axis, is con-
fined to the interval [0, 2π], and corresponds to longi-
tude. The polar angle, θ, is measured from the Z axis,
is confined to the interval [0, π], and corresponds to colati-
tude (where colatitude is 90◦−latitude). Cartesian coordi-
nates are obtained from spherical coordinates as (x, y, z) =
(sin θ cos φ, sin θ sin φ, cos θ). The normalized spherical har-
monics are typically denoted by Yl,m and defined in real
form by

Yl,m(θ, φ)=

8

<

:

Nl,m Pl,m cos θ , cos mφ, m > 0
Nl,0 Pl,0(cos θ) /

√
2, m = 0

Nl,m Pl,|m|(cos θ) sin |m|φ, m < 0
, (18)

where l denotes order, m denotes degree, and l and m are
quantum numbers subject to 0 ≤ l < ∞ and −l ≤ m ≤ l.
The normalizing constants are by

Nl,m =
p

((2l + 1)/2π) (l − |m|)!/ (l + |m|)!. (19)

where Pl,m are the associated Legendre polynomials which
can be evaluated efficiently using the recurrence relations

P0,0(x) = 1, (20)

Pm,m(x) = (1 − 2m)
p

1 − x2Pm−1,m−1(x), (21)

Pm+1,m(x) = x(2m + 1)Pm,m(x), (22)

Pl,m(x) = x
2l−1

l−m
Pl−1,m(x)− l+m−1

l−m
Pl−2,m(x). (23)

The Laplace series has some useful properties that stem from
spherical harmonics. A function on a sphere is uniformly
represented in the azimuthal and polar directions when all
m coefficients are obtained for a given l. Also, if the inten-
sity and opacity functions have bilateral and radial symme-
try (which they do for Phong style shading illuminated by
a headlight), all coefficients with odd l are zero and need
not be computed, regardless of how these functions are ori-
ented with respect to the sphere. The Laplace series coeffi-
cients, Cl,m, can be computed via the orthogonal projection
of f(θ, φ) onto the spherical harmonics basis functions. The

111

coefficients can be approximated for discrete samples by ap-
proximating the projection surface integral via a summation
over the surface weighted by the area corresponding to each
sample. For n samples numbered i ∈ {0, 1, . . . , n − 1} with
corresponding coordinates (θi, φi) on the unit sphere, and
with corresponding area Ai, the Laplace series coefficients
are

Cl,m =

n−1
X

i=0

f(θi, φi) Yl,m(θi, φi) Ai. (24)

We distribute the samples over the sphere in a fairly uniform
manner. An octahedron is placed with its center at the ori-
gin in spherical coordinates, and the radial component of
its vertices are scaled to unity. Each triangular face is then
subdivided into four sub-triangles by introducing vertices at
the midpoint of each edge, and scaling the radial component
of each new vertex back up to unity. For k subdivision it-
erations on a polyhedron with p initial triangular faces, n
triangles are produced according to n = 4kp. In selecting an
appropriate n, we considered the trade-off between quality
and sampling speed. Each triangle center provides a sample
location (θi, φi) and associated spherical triangle area Ai.
The images in this paper used an octahedron, subdivided
two or three times for a total of 128 or 512 sample points
on the sphere. We discard any coefficient which does not
significantly contribute to the accuracy of the approximated
f(θ, φ). The RMS error contribution of a coefficient Cl,m,
which is |Cl,m|2.

6 Rendering

In traditional 3D textured volume rendering, there is one
rgbα value per voxel. A voxel is isotropic; it has the same
rgbα value regardless of viewing direction. An AVR voxel,
however, is anisotropic. Rendering consists of two stages.
First, AVR voxels are evaluated according to the current
view, results in traditional voxels. The second stage is to
render the traditional voxels using any preferred renderer.

For the most accurate image, the spherical harmonics basis
functions should be evaluated per voxel, according to the
viewing direction for that voxel. However, to reduce ren-
dering time, the basis functions are evaluated only once per
block of voxels, where the blocks are small enough that all
view vectors from within the block are, to a good approxi-
mation, equal. Once the basis functions have been evaluated
for the current view, the coefficients from each AVR voxel
are used to scale them to produce a corresponding single
rgbα value.

When voxel boundaries are filtered for rendering, opacity
weighted interpolation [Wittenbrink et al. 1998] is more im-
portant for preventing visual artifacts than when rendering
solids, because the artifact happens on both sides of the thin
projected line. This is particularly significant for volume line
data because the effect happens at the border of all empty
voxels surrounding a line.

7 Results

This section begins with a few images to demonstrate cor-
rectness and quality relative to an unscalable (but correct)
approach. This is followed by images demonstrating the ca-
pabilities of AVR on several large datasets from computa-
tional fluid dynamics and electromagnetic and particle track-
ing simulations.

In verifying correctness of AVR’s operation, we compare
identical views of a small (100k segments), artificially con-
structed dataset consisting of red vortex spirals. The bench-
mark image that we compare against is these spirals rendered
as polygonal tubes at 10 times the screen resolution (accom-
plished by repeatedly rendering the polygonal scene one tile
at a time to produce a 10×10 mosaic of tiles, and then av-
eraging the results back down to the normal image size).
This supersampling of the polygonal model was necessary
because the small triangles composing it aliased badly at
a comparable resolution. Both AVR and the supersampled
polygonal approach used identical material properties, light
properties, and light orientation. The left column of Fig-
ure 4 compares the AVR image (at 2563 voxel resolution)
with the benchmark image.

When the number of segments is increased tenfold, even the
supersampling approach breaks down, and artifacts appear.
The middle and right columns of Figure 4 compares AVR
with the supersampled approach for the larger (1M seg-
ments) spiral dataset, and shows that AVR does not suffer
from this sort of aliasing problem. The reason that super-
sampling does not scale is that when the polygonal tube
radius is reduced by a factor of n, the needed number of
tiles increases by a factor of n2.

Figure 4: AVR images (top row) compare favorably to 10×10
supersampled geometry (bottom row), and avoid aliasing ar-
tifacts. less time to render.

The first simulation dataset, obtained from a dense stream-
line seeding of CFD simulation of air flow behind the tail of
an aircraft, has over 1.3 million segments. The blue and or-
ange lines represent velocity and vorticity, respectively. Fig-
ure 5 compares headlight illumination with a light held fixed
in world space for different views. Each of these images con-
sists of 2563 AVR voxels and took 3 seconds to render.

The second simulation dataset consists of 10 million seg-
ments representing dark current paths of two categories of
particles within a 5-cell linear accelerator structure. Red pri-
mary particles are emitted from the interior surface of the
structure in response to strong local electric fields. Green
secondary particles are emitted according to a stochastic dis-
tribution as the result of a particle collision with the surface.
Secondaries greatly outnumber primaries. Figure 6 shows
how the primaries can be seen alone or in the context of the
secondaries by reducing the radius of the secondary paths
and increasing the radius of the primary paths. Adjusting
the radius can occur during the visualization run and does
not require re-sampling the line data, although it does in-

112

Figure 5: These images compare illumination with a white
light for a headlight (left) and a fixed light shining straight
down (right).

Figure 6: The left image shows primary particle paths only.
The right image shows them in the context of secondaries
whose paths have been deemphasized by reducing their ra-
dius. These were produced from 10243 voxel samples.

cur a performance penalty because the two sets of spherical
harmonics coefficients would have to be merged at run time.
The primaries image took 51 seconds to render, and the pre-
combined image took 3 minutes. Preprocessing times are
difficult to report meaningfully because preprocessing was
done on a heterogeneous compute farm with CPUs having
different speeds. The overall preprocessing CPU time was
roughly 10% of overall simulation CPU time.

Another possibility with AVR is to sample at different reso-
lutions so that once a user has seen an overview of the whole
dataset and has identified an area of interest, a higher reso-
lution sub-region can be swapped in and examined for fine
detail. Interactively adjusting opacity can help discern local
vs. global structure. This process is illustrated in Figure 7.

For a fixed AVR sampling resolution, there is a fixed upper
bound on the storage requirements for the AVR data. This
can convert O(n) line segments to O(1) storage. Although
the constant is large, Figure 8 shows that the crossover can
occur before some of the more dense datasets used in this
paper. In other words, for suitably dense line data, AVR can
provide useful data compression. As datasets grow in size
and detail, this compression will become even more signifi-
cant.

Similar to the case for storage, AVR also converts rendering
time from O(n) line segments to O(1), again with a large

Figure 7: Once a global overview is presented (upper left),
higher resolution blocks of AVR voxels can be loaded to show
finer structure (upper right). Interactively adjusting opacity
(bottom row) helps emphasize global or local detail.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 10000 100000 1e+06 1e+07 1e+08

Si
ze

 (b
yt

es
)

Segments

Segment and AVR Dataset Sizes

Segments
AVR 2563

AVR 5123

Figure 8: Disk storage requirements for segment data grow
more quickly than for AVR as the number of segments in-
creases.

constant. Figure 9 shows the crossover where AVR outper-
forms geometry for tubes in two ways. Tubes in a display list
are clearly fast, but quickly run out of memory. Even ignor-
ing memory and extrapolating the results for the display list,
AVR still wins for the 100 million segment dataset. Tubes
rendered in immediate mode avoid the memory problem, but
are significantly slower than the display list. Although plain
lines would be faster, doing so is still O(n).

8 Conclusion and Future Work

This paper presents Anisotropic Volume Rendering as an ef-
ficient and effective way to show global and local detail in ex-
tremely dense line-based datasets. By using anisotropic vox-

113

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10000 100000 1e+06 1e+07 1e+08

T
im

e
(s

)

Segments

Rendering Times

AVR 2563

AVR 5123

Tubes immediate mode
Tubes display list

Display list insuff. mem.

Figure 9: The large constant on the O(1) rendering perfor-
mance of AVR is still small enough to outperform the O(n)
geometry based methods for datasets we tried.

els, lighting details such as specular highlight help provide
visual cues to convey the structure of the data. A specific
solution for Phong style lighting as used by OpenGL is pre-
sented as an example, but the framework presented applies
to more general lighting models. The AVR representation,
based on a Laplace Series, is compact and efficient enough
to compress very large and dense line datasets sufficiently
to fit in memory and reduce rendering time over other line
drawing methods. Because preprocessing is done entirely in
software no quantization error occurs prior to rendering.

Future work consists of several things. Further optimization
will be pursued. Because AVR has a large amount of avail-
able parallelism, it is a good candidate for running on a clus-
ter for producing interactive visualization at very high reso-
lution. Other lighting models will be investigated, including
those which are anisotropic and/or non-photorealistic. Fur-
ther perceptual enhancements should be possible. Addition-
ally, the AVR voxel is a very general representation which
could convey geometric primitives other than lines. The
coming generation of graphics hardware may allow enough
flexibility to evaluate the AVR voxels directly in hardware in
spite of our nonlinear approach of discarding small Laplace
Series coefficients to reduce storage.

9 Acknowledgments

This work has been sponsored in part by the U.S. National
Science Foundation under contracts ACI 9983641 (PECASE
award), ACI 0325934 (ITR), and ACI 00222991; and the
U.S. Department of Energy under Memorandum Agreements
No. DE-FC02-01ER41202 (SciDAC) and No. B523578
(ASCI VIEWS).

References

Arvo, J., and Kirk, D. 1989. A survey of ray tracing
acceleration techniques. Academic Press, San Diego, CA,
USA.

Banks, D. C. 1994. Illumination in diverse codimensions.
Proceedings of SIGGRAPH 94 , 327–334. ISBN 0-89791-
667-0. Held in Orlando, Florida.

Cabral, B., Max, N., and Springmeyer, R. 1987. Bidi-
rectional reflection functions from surface bump maps.
In Computer Graphics (Proceedings of SIGGRAPH 87),
vol. 21, 273–281.

Daubert, K., Kautz, J., Seidel, H.-P., Heidrich, W.,
and Dischler, J.-M. 2003. Efficient light transport us-
ing precomputed visibility. IEEE Computer Graphics and
Applications 23, 3 (May), 28–37.

Glassner, A. S. 1995. Principles of Digital Image Synthe-
sis. Morgan Kaufmann, San Francisco, CA.

Interrante, V., and Grosch, C. 1998. Visualizing 3D
flow. IEEE Computer Graphics & Applications 18, 4 (July
– Aug.), 49–53.

Kajiya, J. T., and Kay, T. L. July 1989. Rendering
fur with three dimensional textures. Computer Graphics
(Proceedings of SIGGRAPH 89) 23, 3, 271–280. Held in
Boston, Massachusetts.

Marschner, S., Jensen, H. W., Cammarano, M., Wor-
ley, S., and Hanrahan, P. 2003. Light scattering from
human hair fibers. In Proceedings of ACM SIGGRAPH
2003, Computer Graphics Proceedings, Annual Confer-
ence Series. (to appear).

Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003.
All-frequency shadows using non-linear wavelet lighting
approximation. ACM Transactions on Graphics (TOG)
22, 3, 376–381.

Porter, T., and Duff, T. 1984. Compositing digital
images. In Proceedings of the 11th annual conference
on Computer graphics and interactive techniques, ACM
Press, 253–259.

Ramamoorthi, R., and Hanrahan, P. 2001. An efficient
representation for irradiance environment maps. In Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, 497–500.

Schussman, G. L. 2003. Interactive and Perceptually
Enhanced Visualization of Large, Complex Line-Based
Datasets. PhD thesis, University of California Davis.

Sillion, F. X., Arvo, J. R., Westin, S. H., and Green-
berg, D. P. 1991. A global illumination solution for
general reflectance distributions. In Computer Graphics
(Proceedings of SIGGRAPH 91), vol. 25, 187–196.

Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Pre-
computed radiance transfer for real-time rendering in dy-
namic, low-frequency lighting environments. In Proceed-
ings of the 29th annual conference on Computer graphics
and interactive techniques, ACM Press, 527–536.

Stalling, D., Zöckler, M., and Hege, H.-C. 1997. Fast
Display of Illuminated Field Lines. IEEE Transactions on
Visualization and Computer Graphics 3, 2 (Apr.), 118–
128.

Wittenbrink, C. M., Malzbender, T., and Goss, M. E.
1998. Opacity-weighted color interpolation, for volume
sampling. In Proceedings of the 1998 IEEE symposium on
Volume visualization, ACM Press, 135–142.

Woo, M., et al. 1999. OpenGL programming guide: the
official guide to learning OpenGL, version 1.2, third ed.
Addison-Wesley, Reading, MA, USA.

114

