
Light Weight Space Leaping using Ray Coherence

Sarang Lakare and Arie Kaufman∗

Center for Visual Computing (CVC) and Department of Computer Science

Stony Brook University

Stony Brook, NY 11790-4400, USA

ABSTRACT

We present a space leaping technique for accelerating volume ren-
dering with very low space and run-time complexity. Our technique
exploits the ray coherence during ray casting by using the distance
a ray traverses in empty space to leap its neighboring rays. Our
technique works with parallel as well as perspective volume ren-
dering, does not require any pre-processing or 3D data structures,
and is independent of the transfer function. Being an image-space
technique, it is independent of the complexity of the data being ren-
dered. It can be used to accelerate both time-coherent and non co-
herent animation sequences.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.4 [Computer Graphics]: Graphics Utilities; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism;

Keywords: Direct Volume Rendering, Space Leaping, Empty
Space Skipping, Ray Coherence, Volume Rendering Acceleration

1 INTRODUCTION

In this work our focus is on accelerating volume rendering by effi-
ciently skipping empty space in the volumetric data. The main idea
of empty space skipping, or space leaping, is to skip empty voxels
while traversing a ray. Empty voxels are those that have zero opac-
ity and do not contribute to the volume rendering integral. Skipping
empty voxels is beneficial because it avoids sampling data along the
ray in the empty region, saving a substantial number of interpola-
tions.

Two approaches to space leaping have been well studied for ray
casting volumetric data. One uses data structures to mark empty
space so that during ray casting this empty space can be skipped [1,
5, 6, 10, 12]. The other exploits temporal coherence when rendering
a sequence of images using ray casting [13]. There are also other
techniques that combine the two approaches [11]. We analyze these
techniques briefly in this section, and survey existing techniques in
the next section.

The advantage of the data structure approach is that ray casting
for every frame is accelerated. Almost all object space techniques
use some kind of a data structure to store the transparency status of
a voxel or a group of voxels. However, all such techniques require
a large amount of memory that is proportional to the size of the
dataset being rendered. The contents of the data structure are also
dependent on the transfer function. A change in the transfer func-
tion requires rebuilding the data structure. This prohibits interactive
transfer function changes, which are key to data exploration. Ac-
cessing a large data structure during ray casting may also be time
consuming and therefore reduce the benefits of acceleration. An-
other disadvantage of this approach is the pre-processing needed to

∗e-mail:{lsarang,ari}@cs.sunysb.edu

compute the data structure. Depending on the data structure used,
the complexity and time required for the construction will vary.

The main disadvantage of temporal coherence techniques is
that the acceleration achieved depends on the coherence between
frames. Hence, this technique cannot be used to accelerate im-
ages generated from different view points and view directions or
for generation of images out of order. For example, construction of
a mosaic may not get accelerated by this method [8].

In this paper, we present an ideal space leaping acceleration tech-
nique that assumes the best properties from all the previous tech-
niques. In particular, our technique does not need any data structure
or pre-processing. It has very small computational cost per frame.
It accelerates each frame and does not use any temporal coherence.
Our technique allows interactive transfer function changes. It also
works with orthographic as well as perspective projection. Finally,
our technique is extremely easy to implement and understand. The
memory requirement and run-time complexity for our technique is
only proportional to the image size.

The basic idea of our technique is to use ray coherence to skip
over empty voxels. Often a group of rays from the image plane tra-
verse the same distance before they intersect the object. Ray coher-
ence has been used earlier for accelerating ray tracing of traditional
surface models [3]. However, use of ray coherence for accelerating
ray casting on volumetric datasets is not well studied.

The paper is organized as follows. In the next section we sur-
vey the existing space leaping techniques. In Sections 3 and 4 we
describe our method and its accuracy, respectively. In Section 5
we show the results of our method and discuss the implications. In
Section 6 we conclude the work with some pointers for future work.

2 EXISTING SPACE LEAPING TECHNIQUES

In this section we discuss some of the existing space leaping tech-
niques. We limit our discussion to techniques proposed recently
and to those that do not make use of a special data structure for
space leaping.

Yagel and Shi [13] have used inter-frame coherence to accelerate
generation of consecutive frames using volume rendering. The ba-
sic idea is to use a C-buffer (Coordinates buffer) to store the object-
space coordinate of the first non-empty voxel encountered by each
ray. For the next frame, the C-buffer is transformed according to the
change in the viewing parameters. The rays for the region visible in
both frames are space leaped, whereas rays for new regions that be-
come visible in the new frame cannot use space leaping. Depending
on the amount of transformation, the acceleration varies.

Wan et. al. [12] have proposed a distance from boundary (DFB)
based technique to skip empty space. The idea is to store the dis-
tance from the nearest boundary for every voxel, and then use this
information to skip the empty spaces along the ray. Using DFB
for space leaping has been shown to be very effective. However,
storing the DFB information for each voxel may require substantial
memory. For accurate floating point DFB, the storage requirement
maybe as high as 4 bytes per voxel. For a 100MB dataset, this
could mean an additional 400MB of data just for space leaping. In
addition, a DFB-based technique does not allow interactive transfer

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

19

Object Surface

Image Plane

Eye
Space leap rays

Detector ray

Figure 1: The detector rays that determine the depth of the object
are interspread among the rays that are space leaped.

function changes. Any change in the transfer function would need
re-computation of the DFB values. Also, computing the DFB is a
pre-process that may be time consuming [7].

Another recent technique by Wan et. al. [11] has used tempo-
ral coherence in addition to the spatial coherence used by the DFB
technique. For exploiting temporal coherence, they project cells
visible from the previous frame onto the image plane of the cur-
rent frame and update the depth buffer to be used for the current
frame. For the pixels in the depth buffer that have no values (i.e.,
no cell projected on them), the earlier DFB based technique [12] is
used. Due to the use of DFB, this technique also has high memory
requirements. In addition, this technique is also susceptible to er-
rors when an object that is absent in a frame, suddenly appears in
the next (due to large changes in viewing angle, changes in transfer
functions, etc.). This is not desirable for applications that demand
high accuracy (e.g., medical imaging applications).

Sharghi and Ricketts [9] have also proposed a method similar to
Wan et al [11]. Their method differs from Wan’s in the way the cells
to be projected are detected. They detect the cells to be projected
at run-time by first shooting a ray and finding the cell that the ray
would intersect. Then, the cell is projected onto the image plane
and the pixels on which the cell gets projected are space leaped.
However, their method has accuracy problems as mentioned by the
authors themselves. These inaccuracies make the technique imprac-
tical for applications that demand accuracy.

3 OUR SPACE LEAPING METHOD

We now present our light weight space leaping acceleration tech-
nique. The main idea of our technique is to exploit the ray coher-
ence. It is observed that a group of rays often traverses the same
distance before intersecting an object. Knowing how far one of the
rays in the group travels, we can determine how to space leap the
other rays in the group (Figure 1).

For a projection, we divide the rays that are cast into two groups.
The first group of rays is responsible for detecting the depth of the
object while also performing the usual ray casting tasks: sampling,
compositing and shading. We call these rays the detector rays. The
rest of the rays are leaped ahead before performing the usual ray
casting tasks. We call these rays space leap rays. The image plane
pixels from which the detector rays emanate are called the detector
pixels, and the rest of the pixels from which the space leap rays
emanate are called the space leap pixels.

Before we describe our algorithm, we give some additional defi-
nitions. We define a cell as a cubical region with voxels on all of its
eight corners and no voxels inside. A cell is called empty or trans-
parent when the opacity of all the voxels on its corners is zero. This
results in zero opacity for all sample points inside the cell. This is
true when using an interpolation technique similar to the commonly
used tri-linear interpolation. In case of higher order interpolation,

Figure 2: A portion of the image plane showing the location of the
detector pixels (green dots). The rest of the grid points are non-
detector pixels.

all neighboring voxels that would contribute to the opacity inside
the cell should be considered when deciding if a cell is empty or
not. For this discussion, we assume the use of tri-linear or similar
interpolation.

We now describe our algorithm. We start with the detector rays,
then explain the leap buffer before describing how we accelerate
the rest of the rays.

3.1 The Detector Rays

The detector rays return the distance to the first non-empty cell lo-
cation as well as the composited color along the ray. The distance
information is used to space leap the neighboring rays.

We increase the efficiency of detector rays by not performing
interpolation, shading or compositing when the detector ray passes
through empty region. We efficiently detect if a cell is empty or not
by using simple OR operation instead of expensive interpolation.
In case of tri-linear interpolation, we simply OR the opacity values
of all the voxels of the cell in which the sample point occurs. If the
result is non-zero, then the cell is non empty. Else, the cell is empty.
In case of a higher order interpolation, the OR should include all the
voxels that will be considered when performing the interpolation at
the given sample point.

The detector pixels are interspersed among the space leaped pix-
els. In Figure 2 we show an example scheme for the location of
detector pixels in an image plane. The configuration shown in the
image uses 1 detector ray for every 4 pixels in the image. That is,
one detector ray is cast for every group of 4 rays. We found the
zig-zag scheme shown here to be the optimal scheme for position-
ing the detector pixels. Compared to other possible schemes, this
scheme can detect the smallest objects. We refer the reader to Sec-
tion 4 where we derive the size of the smallest object that can be
guaranteed to be detected.

3.2 The Leap Buffer

We construct a buffer called the leap buffer to store the distance
information obtained from the detector rays and to store the leap
information for the space leap rays. This information can be stored
in various ways. One way is to store the absolute distance traversed
by the detector ray before hitting a non-empty cell. This would need
more memory as we have to store them as float or double. Instead,
we choose to store the number of samples the detector ray makes
before hitting a non-empty cell. We use an 8 bit or 16 bit integer
per pixel to store the sample count. The distance traversed by the
ray can be easily computed by multiplying the number of samples
by the sample distance. In the following discussions we assume
the use of such an integer buffer. The technique can be very easily
adjusted to use a float buffer with actual distances if needed.

20

15

17

12

24

(a)

15

12

24

17

(b)

15

17

12

24

15 17

12 12 17

12 17

12 12

12

12

17

(c)

Figure 3: Filling of the leap buffer: (a) shows the leap buffer after
casting the detector rays (green); (b) shows how one detector pixel
value is spread around; and (c) shows the leap buffer after the value
at every detector ray is spread around. The values in blue are used
for space leaping.

The resolution of the leap buffer is the same as that of the im-
age plane. Every pixel on the image plane has a corresponding
location in the leap buffer. For the detector pixels, the leap buffer
stores the number of samples the ray encountered before reaching
a non-empty cell. For the space leap pixels, the leap buffer stores
the minimum number of samples during which the rays would en-
counter empty space. This information will be used later to space
leap these rays by moving the start point of the rays ahead by those
many samples. Initially, the leap buffer is empty. When a detector
ray is cast, the leap buffer location corresponding to the detector
pixel is marked indicating it to be a detector ray. The number of
samples before hitting a non-empty space, as returned by the detec-
tor ray, is stored at the location in the leap buffer.

In the first phase of our algorithm, all the detector rays are cast
and the returned value is stored in the leap buffer. As the detector
rays also serve as regular ray-casting rays, the composition along
these rays is done according to the rendering technique used and
the resultant color is stored in the image buffer.

After casting all detector rays, all non-detector pixels (i.e., the
space leap pixels) in the leap buffer are empty. The empty regions
are filled using the leap information from the detector rays. The
algorithm for filling up is as follows. From every detector pixel,
we take the leap information (Figure 3a) and spread it around to
the neighboring non-detector pixels that are in the influence area
of the detector pixels (Figure 3b). The influence area includes all
the pixels around the detector pixel that should use detector ray
information for space leaping. The selection of the influence area
is discussed in Section 4.2.

While spreading the leap information, we check if the value at
the neighboring location was already set. If it had been set, we
compare it with the new value and store the lower of the two (Fig-
ure 3). The lower value gives us a conservative estimate for space
leaping making sure that the ray will not overshoot a non-empty
cell in between. If the value was not set, then we simply store the
leap information.

After the leap information from all the rays is spread around,
we get a completely filled leap buffer (Figure 3c). For all non-
detector pixels, the leap buffer has the space leaping information
stored in them. In the next step we cast the space leap rays using
this information.

3.3 Space Leaping Rays

In the second phase of the algorithm, the space leap rays are cast.
The leap buffer is swept from top to bottom looking for locations
that are not detector pixels. Whenever a non-detector location is
found, a ray is cast from that location. The ray is space leaped

(a)

(i) (ii) (iii)

(b)

Figure 4: (a) A voxel (shown in red) is part of 8 cells (only 4 cells
are shown in 2D for simplicity). Collectively, we call these cells the
cell group of the voxel (marked by the red boundary). (b) Projection
of a cell group on the image plane can have several shapes. The
projection size is smallest when only one face is visible (i). When
two or three faces are visible (ii and iii, respectively), the projection
size is larger.

using the information stored in the leap buffer.
The space leaping is performed by moving the ray ahead by a

distance of leap buffer value times sample distance along the ray
direction. After this, the ray continues on its path of regular ray
sampling, compositing and shading. Other ray acceleration tech-
niques, such as early ray termination [4], can then be applied to the
ray to achieve further speedup.

4 ACCURACY

An ideal space leaping technique would not have any change in
the rendered images compared to non-space leaped rendering. This
is because space leaping should do exactly that: leap over empty
space. As empty space does not contribute to the final rendered
image, there should be no difference in the final image with and
without space leaping.

We now show that our technique is accurate and that there is no
change in the final image after using our space leaping technique.
We guarantee that the detector rays will detect even a single non-
empty voxel in an otherwise empty region and not miss it. We also
prove that no region is accidentally leaped over by the space leap
rays.

4.1 Single Voxel Regions

We guarantee that our technique will not miss any part of the object.
Due to discrete sampling, the smallest object will be represented by
a single voxel. If we can guarantee that even a single voxel object
will be detected by our detector rays, then we guarantee that nothing
will be missed during rendering.

Every voxel in the dataset is part of 8 cells (Figure 4a). We
refer to this as the cell group of the voxel. For a non-transparent
voxel, this means that all the eight cells around it are considered

21

w

p

Figure 5: Projection of the smallest face of a group of 8 cells onto
the image plane. The maximum width of the projection without
intersecting a detector ray is w. Whenever the projection width is
greater than w, at least one detector ray will intersect the cell group.

non-empty. This means that if we have at least one detector ray that
goes through this cell group and detects it, then no single voxel can
go un-detected.

We determine the maximum size of a cell group that can miss
detector rays by analyzing the projection of the cell group onto the
image plane. The maximum projection that can fit between detector
rays gives the maximum size of a cell group that can miss detection
by the detector rays. The minimum projection of a cell group is
the smallest face of the cell group (Figure 4b). The maximum size
of this face that can fit between the detector pixels gives us the
maximum size of the cell group that can be missed by the detector
rays.

In Figure 5, we show the maximum projection of the smallest
face of the cell group such that no detector ray intersects it. The
projection of the cell group is marked by red lines. The detector
pixels are shown by green dots and the rest of the pixels are not
shown for simplicity. It can be observed that an edge of the projec-
tion of length equal to the maximum distance between two detector
pixels (given by w) stretches between the two detector pixels. For
any projection edge larger than or equal to w, there will be at least
one detector ray that intersects the projection.

The minimum length of an edge of the projection that is accept-
able is thus w. The minimum w can be computed from Figure 5 in
terms of the distance p between the pixels on the image plane. We
make a practical assumption here that the image plane is isotropic
with an inter-pixel distance of p in the world coordinates. How-
ever, it is not too difficult to extend the following calculations for
anisotropic image planes.

The minimum value for w in world coordinates can be calculated
to be:

wmin =
√

p2 +(2p)2 = p
√

5 (1)

The value of wmin gives the minimum projection width of the
cell group’s smallest face. The smallest face will be of size
2µmin × 2µmin2, where µmin and µmin2 are the lengths of the two
smallest edges of the cell (voxel unit sizes), with µmin ≤ µmin2. For
simplicity, we substitute µmin for µmin2. The smallest face is then
2µmin ×2µmin. To guarantee an intersection with the detector rays,
each side of the cell group should be at least wmin. In other words,

2µmin ≥ wmin

or

Eye

Image Plane

x1

y1

xn

yne

r1

r2

(a)

Image Plane

x1

y1

xn

yne

r1

r2

(b)

Figure 6: The case of perspective projection. The distance between
the rays increases as the rays move away from the image plane.

µmin ≥
wmin

2
(2)

From Equations 1 and 2, we can say that for a given volumetric data
with the lowest voxel unit distance µmin, the maximum inter-pixel
distance has to be:

pmax =
2
√

5
×µmin (3)

In other words, the inter-pixel distance in order to guarantee a de-
tection by detector rays has to be:

p ≤
2
√

5
×µmin (4)

For any projection with the pixel distance less than pmax, we
can guarantee that at least one detector ray will hit a cell group,
making sure that no non-transparent voxel is missed. It has to be
noted however, that this condition on pixel width is only for parallel
projection. In parallel projection, the distance between the pixels on
the image plane is exactly the same as the distance between the rays
cast from those pixels. In case of perspective projection, this is not
true. We now discuss the accuracy in case of perspective projection.

For perspective projection, the distance between the rays in-
creases as they move away from the eye. In Figure 6 we show an
example of perspective projection. We consider two neighboring
rays r1 and r2 as shown in the figure. The two rays originate from
the eye position e. At the image plane, the distance between the two

22

rays is x1y1 and after travelling a certain distance, the rays are xnyn
apart.

In our earlier discussion on parallel projection, we derived that as
long as the parallel rays are at most pmax apart (Equation 3), we can
guarantee that no voxels are missed. We can extend this to perspec-
tive projection rays too and say that as long as the distance between
the perspective rays does not exceed pmax, we can guarantee that
no voxels are missed. In other words, our guarantee stays if:

xnyn ≤ pmax =
2
√

5
×µmin (5)

From Figure 6b we observe that the two triangles ex1y1 and exnyn
are similar triangles. We can thus write:

ex1

exn
=

x1y1

xnyn
(6)

Our goal is to compute the distance the rays traverse before they
move so far apart that we cannot guarantee accuracy anymore. That
is, the condition in Equation 5 is not satisfied. Substituting the con-
dition in Equation 6 we get:

ex1

ex1 + x1xn
=

p
2√
5
×µmin

(7)

where p is the distance between pixels on the image plane. Solving
for x1xn we get:

x1xn = (

2√
5
×µmin

p
−1)× ex1 (8)

In Equation 8, p, µmin and ex1 are all known for a given imple-
mentation of ray casting and the input dataset. Using these values,
we get the maximum length of a ray up to which we can guarantee
the accuracy of our space leaping. If δ is the sampling distance,
then the number of sample points a ray traverses before the accu-
racy cannot be guaranteed is:

N =
x1xn

δ

In our implementation, we use N as the upper limit to the leaping
for a space leap ray. Whenever the leap distance is greater than
x1xn, we use x1xn as the leaping distance. The rays continue on
their regular path after that.

4.2 Influence of a Detector Pixel

The leap buffer is filled after the detector rays are cast. During the
filling of the leap buffer, the distance returned by the detector ray
is spread to the neighboring pixels for space leaping the neighbor-
ing rays later in the algorithm. The neighboring pixels to which
the information is transfered are said to be in the influence area of
the detector pixel. The selection of the pixels that belong to the
influence area is crucial for the accuracy of the algorithm.

The idea behind spreading the distance information is that if a
detector ray detects a non-empty cell group at a certain distance,
then it is very likely that the rays around this detector ray will also
hit the same cell group at approximately the same distance. As we
never explicitly project the cells on to the image plane, we do not
know the exact pixels around the detector pixel whose rays would
hit the same cell group. However, we can determine an upper limit
on the pixels around the detector pixel whose rays could possibly
hit the same cell group as the detector ray, without the cell group
intersecting any other detector ray. In other words, for a projection
of a cell group on the image plane that includes only one detector
pixel, we want to determine all non-detector pixels that can also be
part of the projection, for the various shapes of the projection.

(a)

(b)

Figure 7: (a) A projection of a cell group on the image plane such
that only one detector pixel intersects it. It can be observed that the
cell group can never intersect any non-blue pixel (from (b)) without
also intersecting another detector pixel. (b) Influence of a detector
pixel (green in the center) on the neighboring non-detector pixels
(blue). The rest of the non-detector pixels are not influenced by the
central detector pixel.

In Figure 7a we show an example projection of a cell group onto
the image plane such that only one detector ray hits the cell group.
To determine all the possible neighboring space leap pixels that the
cell group could project to, without projecting on another detector
pixel, we consider all possible shapes for the projection (Figure 4b).
All the possible space leap pixels that the cell group could project
to are shown in Figure 7b by blue dots. These pixels make up the
influence area of the detector pixel. If a cell group projects onto any
other space leap pixel on the image plane, then it is guaranteed to
also project onto another detector pixel. In addition, the other space
leap pixel will be in the influence area of the other detector pixel
whose ray intersects the cell group.

4.3 Objects on the Boundary

In Section 4.1 we proved that even a single voxel object will not be
missed by our space leaping technique. However, the proof breaks
down at the boundary of the image plane. We show an example in
Figure 8a where a ray on the image plane intersects the cell group
but the ray is not a detector ray. This breaks our algorithm because
we now have a cell group that is not intersected by any detector ray.

23

(a)

(b)

Figure 8: An example leap buffer (b) showing the detector pixels
(green) and non-detector pixels (blue). The boundary pixels of the
image buffer are all used as detector pixels in order to make sure that
objects that only project on the boundary pixels are not missed, as
in (a).

This cell group will be leaped over and missed if the detector rays
around this cell group projection intersect another cell group further
away.

In order to avoid this, we consider all the boundary pixels as
detector pixels (Figure 8b). That is, detector rays are shot from all
the boundary pixels. This guarantees that no object on the boundary
is missed.

4.4 Backtracking Space Leap Rays

We have proven that our technique can never miss a cell group.
Now we want to prove that a space leap ray will never leap beyond
an object boundary inside a cell group. It is equivalent to saying
that the space leap ray will never miss a non-transparent sample
point inside a cell group. We apply a rule to all space leap rays:
the first sample of a space leap ray should always be in an empty
cell. If the first sample is not in an empty cell, then it is possible
that the space leap ray has missed a non-transparent sample point
(Figure 9). However, if the first sample point is in an empty cell,
then the ray is definitely before the cell group.

In order to satisfy the above rule, we perform two operations.
First, when we leap the space leap rays, we leap them one sam-

Figure 9: An example showing a space leap ray (blue) getting leaped
beyond an object boundary (pink) due to the detector ray (green)
finding the first sample inside the cell (thick red). The location on
the space leap ray is moved back until a transparent cell is found.

ple less than the number stored in the leap buffer. This is because
the leap buffer stores the number of samples the detector ray took to
reach a non-empty cell. Thus, the sample before that is the last sam-
ple in an empty cell. Care should be taken to check for a boundary
condition of leap buffer value of zero. In that case the space leap ray
should not be leaped at all. Second, we backtrack a space leap ray if
the first sample point is inside a non-empty cell (Figure 9). The ray
is backtracked until the sample point is inside an empty cell. Con-
sideration has to be given to the leap buffer value for the leap ray.
The backtracking should not be performed beyond the leap buffer
value else the ray will go behind the image plane.

It is important to note here that the number of samples a ray
needs to backtrack depends on the sampling distance. The upper
limit for the number of samples can be calculated by dividing the
longest edge of a cell group by the sample distance:

Mmax = 2×
MAX(µx,µy,µz)

δ
(9)

In practice, we found Mmax to be between 1 – 3. Backtracking a
ray does not cause any additional overhead because the ray should
have been sampled at the missed points anyway. While backtrack-
ing, we simply store the sample values in a temporary buffer and
use them for compositing once the backtracking is completed to
avoid sampling at the same locations again.

5 RESULTS AND DISCUSSION

We have incorporated our space leaping acceleration technique into
our Vikon system that provides perspective direct volume rendering
using ray casting. The system allows the user to navigate inside a
3D dataset, which is especially useful for endoscopy applications,
such as Virtual Colonoscopy [2]. Interactive rendering is essential
for such a system, so as to allow the user to interactively navigate
inside the organ of interest. Space leaping acceleration technique is
appropriate for such a system because often there is plenty of empty
space in front of the camera.

In Figure 10, we show images generated using our system with
our space leaping acceleration enabled. Table 1 shows the effec-
tiveness of our acceleration technique for rendering the images.
The timings were recorded on a Pentium-IV, 2.6GHz PC with 1GB
RAM and Linux OS. For the patient’s CT Colon dataset (Fig-
ures 10a-c), we compute the acceleration at three different locations
inside the dataset. The three locations were selected such that the
camera is at varying distances from the surface and the ray traversal
distance varies. This distance is directly proportional to the amount
of computation a ray would spend on going through the transparent
region. It can be observed from the table that the location where

24

(a) (b) (c)

(d) (e) (f) (g)

Figure 10: Volume rendered images generated with our space leaping technique. (a) - (c) Three frames from the Colon CT dataset with the
camera located at an average distance from the surface, very close to the surface, and very far from the surface, respectively. (d) Head CT
dataset. (e) Engine CT dataset. (f) Dino voxel model voxelized from a polygonal surface. (g) Neghip dataset.

the image plane is closest to the object (Figure 10b) shows the least
speedup, whereas the location where the object is the furthest away
shows the largest speedup (Figure 10c). For the remaining datasets,
we compute the acceleration at some random single camera loca-
tion. Our technique achieves speedups of up to 165% over non-
space leap ray casting for the example datasets.

In order to verify the accuracy of the resulting images, we im-
plemented an automatic verification scheme in our system. In the
verification mode, the system generates two images simultaneously,
The first image uses our acceleration technique, and the second does
not. The images are compared pixel by pixel. If a difference is
found, the system generates an error. So far we have not found any
errors in the datasets that we have rendered.

The memory required by our acceleration technique is O(N2),
where N×N is the size of the image plane. This is because we only
need one buffer - the leap buffer, which has the same size as the
image plane. For all the datasets in Table 1, the memory used by
our algorithm was 256×256 bytes. The computational complexity
of our technique is also O(N2). The only computation required is
filling of the leap buffer (Section 3.2), which scans the leap buffer
once.

Our space leaping acceleration technique is ideally suited for the
Vikon system. The system requires a substantial amount of mem-

ory resources for complex physics based navigation. In particular, it
uses a potential field technique to move the user from one end of the
organ to another. Such potential fields themselves require memory.
Additional memory overhead for the system must be avoided. Due
to the low memory requirements of our technique, our Vikon sys-
tem is able to perform accelerated volume rendering even on large
datasets.

Our method does have a few drawbacks when compared to some
other space leaping acceleration techniques. It cannot achieve as
much empty space skipping as techniques that use data structures
to store the empty/non-empty information for the data voxels can.
As we space leap one out of every 4 rays that are cast, we get 75%
of the possible acceleration. Another drawback of our technique is
that the space leaping is only possible between the image plane and
the first object hit. If there is empty space beyond that, we cannot
leap the rays over this empty space.

It is important to point out that all the considerations for accu-
racy defined in Section 4 are satisfied in our Vikon system. One of
the reasons is that the camera is close to the object surface, which
results in an object cell projecting over many pixels on the image.
Virtual endoscopy and other applications that require camera place-
ment close to the object surface are prime applications for our space
leaping technique. High resolution volume rendering with ortho-

25

Table 1: Acceleration using our space leaping
Image Dataset Dataset No Space Leaping Our Space Leaping Speed Up

Name Size (FPS) (FPS)
Figure 10a Colon 512×512×361 3.5 6.3 79%
Figure 10b Colon 512×512×361 5.6 8.9 61%
Figure 10c Colon 512×512×361 4.2 7.8 85%
Figure 10d Head 256×256×225 2.4 5.4 120%
Figure 10e Engine 256×256×110 2.0 5.4 165%
Figure 10f Dino 175×229×512 1.7 4.2 150%
Figure 10g Neghip 64×64×64 5.9 10.8 84%

graphic as well as perspective projections are also a good candidate
as the accuracy considerations (Equation 4) are satisfied.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a technique to perform space leaping
that has very low memory requirement and very low CPU overhead.
Our technique exploits the coherence between adjacent rays. We
cast detector rays that detect how far an object is from the image
plane, and then use the result to space leap other adjacent rays.

Our technique has various advantages over other space leaping
techniques. Being an image space technique, it is independent of
the size and complexity of the dataset being rendered. Our tech-
nique allows interactive transfer function changes. The space leap-
ing acceleration is done per-frame, allowing acceleration of non-
coherent as well as coherent animation sequences. Our technique
has very low memory requirement making it ideal for use in mem-
ory intensive applications. The low CPU overhead makes our tech-
nique suitable for CPU intensive applications. In addition to the
above, the technique is very easy to implement and can be easily
plugged into an existing ray casting system.

As future work, we would like to exploit more applications for
our space leaping acceleration. Being an image space technique,
it is a very good candidate for parallelization. Other future work
would include combining this technique with cell projection to get
an accurate estimate of the projection of the cell that a ray intersects.

ACKNOWLEDGMENTS

This work has been supported by grants from NIH #CA82402, NSF
grant CCR-0306438, CAT Biotechnology, NYSTAR, and ONR
#N000110034. The Colon dataset is courtesy The Stony Brook
University Hospital. The Engine dataset is courtesy GE. The au-
thors wish to thank Manjushree Lakare and the visualization lab
members for their support. The authors wish to thank Suzanne
Yoakum-Stover and Susan Frank for discussions and comments on
a draft of this paper.

REFERENCES

[1] D. Cohen and Z. Shefer. Proximity Clouds - an Acceleration Tech-
nique for 3D Grid Traversal. Technical Report FC 93-01, Department
of Mathematics and Computer Science, Ben Gurion University of the
Negev, Feb 1993.

[2] L. Hong, A. Kaufman, Y. Wei, A. Viswambharn, M. Wax, and
Z. Liang. 3D Virtual Colonoscopy. In Proc. Symposium on Biomedi-
cal Visualization, pages 22–32, 1995.

[3] K. I. Joy and M. N. Bhetanabhotla. Ray Tracing Parametric Surface
Patches Utilizing Numerical Techniques and Ray Coherence. In Proc.
SIGGRAPH, volume 20, pages 279–285, Aug. 1986.

[4] M. Lovoy. Efficient Ray Tracing of Volume Data. ACM Trans. on
Computer Graphics, 9(3):245–261, 1990.

[5] M. Meißner, M. Doggett, J. Hirche, and U. Kanus. Efficient Space
Leaping for Ray Casting Architectures. In Volume Graphics, Work-
shop on Volume Graphics, pages 149–161, June 2001.

[6] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive
Ray Tracing for Isosurface Rendering. In Proc. IEEE Visualization,
pages 233–238, 1998.

[7] T. Saito and J. Toriwaki. New Algorithm for Euclidean Distance
Transformation of an N-Dimensional Digitized Picture with Appli-
cations. Pattern Recognition, 27(11):1551–1565, 1994.

[8] I. W. O. Serlie, F. M. Vos, R. E. van Gelder, J. Stoker, R. Truyen,
F. A. Gerritsen, Y. Nio, and F. H. Post. Improved Visualization in
Virtual Colonoscopy using Image-Based Rendering. In Proc. Joint
Eurographics - IEEE TCVG Symposium on Visualization, pages 137–
146, May 2001.

[9] M. Sharghi and I. W. Ricketts. Interactive Visualisation of a Virtual
Colonoscopy by Combining Ray Casting with an Acceleration Corri-
dor. In Proc. 6th Annual Meeting on Medical Image Understanding
and Analysis, pages 133–136, July 2002.

[10] K. Subramaniam and D. Fussel. Applying Space Subdivision Tech-
niques to Volume Rendering. In Proc. IEEE Visualization, pages 150–
158, Oct. 1990.

[11] M. Wan, A. Sadiq, and A. Kaufman. Fast and Reliable Space Leaping
for Interactive Volume Rendering. In Proc. IEEE Visualization, pages
195–202, Oct. 2002.

[12] M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M. Wax. Volume Ren-
dering Based Interactive Navigation within the Human Colon. In Proc.
IEEE Visualization, pages 397–400, 1999.

[13] R. Yagel and Z. Shi. Accelerating Volume Animation by Space-
Leaping. In Proc. IEEE Visualization, pages 62–69, 1993.

26

