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ABSTRACT

While molecular visualization software has advanced over the
years, today, most tools still operate on individual molecular struc-
tures with limited facility to manipulate large multi-component
complexes. We approach this problem by extending 3D image-
based rendering via programmable graphics units, resulting in an
order of magnitude speedup over traditional triangle-based render-
ing. By incorporating a biochemically sensitive level-of-detail hier-
archy into our molecular representation, we communicate appro-
priate volume occupancy and shape while dramatically reducing
the visual clutter that normally inhibits higher-level spatial com-
prehension. Our hierarchical, image based rendering also allows
dynamically computed physical properties data (e.g. electrostatics
potential) to be mapped onto the molecular surface, tying molec-
ular structure to molecular function. Finally, we present another
approach to interactive molecular exploration using volumetric and
structural rendering in tandem to discover molecular properties that
neither rendering mode alone could reveal. These visualization
techniques are realized in a high-performance, interactive molec-
ular exploration tool we call TexMol, short for Texture Molecular
viewer.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Application packages; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Hierarchy and geometric trans-
formations

Keywords: molecular visualization, image-based rendering,
texture-based rendering, imposter rendering, volume rendering,
programmable graphics hardware, level-of-detail, hierarchy, mul-
tiresolution, synchronous view, computer graphics

1 INTRODUCTION

While molecular visualization software has developed over the
years, today, most tools still operate on individual molecular (pro-
tein or RNA - Ribo-nucleic acid) structures and small electron
charge and electrostatic potential fields, with little facility to manip-
ulate larger multi-component complexes, integrate geometric and
volumetric visual representations, or effectively depict molecular
flexibility and dynamics. Few, if any currently used programs allow
for or enable interaction with multi-component macromolecules
and their atomic level properties, such as reconstructed volumetric
maps from tomographic and cryo imaging, that will become com-
mon in the next five to ten years.

We present TexMol (short for Texture Molecular Viewer), an in-
teractive molecular exploration application created in response to
the increasingly demanding visualization needs of the biology com-
munity. To efficiently visualize dynamic and flexible structures,
TexMol uses a molecular specification file to construct the Flex-
ible Chain Complex (FCC), a robust, dynamic data structure that
serves as TexMol’s internal representation for molecular structures.
The FCC models the flexible joints of a molecule and contains a
biochemically-based hierarchy for level-of-detail (LOD) optimiza-
tions.

Besides high visualizer functionality, TexMol delivers rapid, ac-
curate rendering via various novel applications of texture-based
rendering techniques for structural and for volumetric representa-
tions of large bio-molecular data sets. For the field of structural
representation (e.g. CPK1 - union of van der Waal radii spheres,
ball-and-stick model), recent advances in programmable graphics
hardware have opened the door for texture-based rendering – also
known as imposter rendering – that greatly reduces geometric com-
plexity while preserving, and in some cases improving the visual
fidelity of the final image. Structural rendering is aided by Tex-
Mol’s LOD hierarchy, allowing for static and dynamic multiresolu-
tion which reduce the visual clutter that often accompanies atom-
level visualization while still maintaining biochemical structural in-
formation, such as residue-level grouping. Combined with the hi-
erarchy, texture-based rendering allows TexMol to render large and
previously intractable molecules.

TexMol also supports efficient volumetric visualization via 3D
texture mapping based techniques. By combining rendering modes,
the visualizer can either map volumetric data onto the structural
model of the molecule or it can juxtapose multiple volume sets and
structure models concurrently. In both cases, the resulting visual-
ization ties molecular structure to molecular function in an eluci-
dating manner.

In Figure 1, we show some example snapshots from TexMol of
the various visualizations it can produce from proteins and RNA,
including imposter, volume and surface rendering.

The remaining sections of the paper are organized in the follow-
ing manner. Section 2 presents contemporary molecular visualiza-
tion techniques and some of the commonly used molecular visu-
alization packages. Section 3 explains the FCC representation of
the molecule and its properties, including LOD hierarchies. Sec-
tion 4 provides an overview of rapid imposter-based rendering and
describes our specific imposter algorithms for both fast and better
visualization of geometric primitives including dynamic LOD ren-
dering. Section 5 analyzes TexMol’s size scalability and rendering
performance measurements. Finally, Section 6 presents our conclu-
sions and ideas for future work.

1stands for scientists Corey, Pauling, Koltun, who first used this form of
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(a) Rhinovirus chains

(1FPN.pdb)

(b) Small ribosomal

subunit (1J5E.pdb) at the

residue level

(c) Secondary structures in

the hemoglobin (1A00.pdb)

(d) Combined volume and isosurface ren-

dering of a dengue virus capsid protein

(1R6R.pdb)

Figure 1: Different structures and functions at various LODs can be visualized interactively using TexMol. Figure (a) shows the chains in
a rhinovirus colored by the residue they belong to. In Figure (b), we show a small ribosomal subunit at the residue level. Each residue is
approximated by a primitive to provide more overall information to the user than that given by a set of atoms. We show the secondary
structures of hemoglobin in Figure (c). The four hemes containing the iron atom is shown enclosed between the α helices. A combined volume
and isosurface rendering of a virus capsid protein’s hydrophobicity is shown in Figure (d), with the hydrophobic regions shaded yellow and the
hydrophilic regions shaded red.

2 RELATED WORK

Molecular Modeling and Structural Rendering Numer-
ous modeling schemes have been used to represent and display
molecules and their properties on computers [20]. Some models
which are structural in nature include the Stick model, the Ball-
and-Stick model, the Wire-Frame model and the Cartoon model.
All these in fact are different visual representation of an underlying
hierarchical skeletal model of the positions of atoms, bonds, chains,
and residues in the molecule. Hence, structural models are designed
to represent the primary, secondary, tertiary and quaternary geo-
metric structures of the molecule. Many visualization systems such
as RasMol [27], Chime, Protein Explorer [23], PyMol [11], VMD
[18], MidasPlus [14], PMV have been created to display the three-
dimensional structure of a molecule in different styles.

A complementary approach to modeling molecule structure is
to model properties of the molecule as 3D fields defined over the
structural model. This enables either extracting isosurfaces of the
fields and their derivatives or examining them using other visual-
ization techniques such as volume rendering and topology graphs.
Molecules are thus visualized to have surfaces and occupy vol-
ume similar to our perception of surfaces and volume occupancy
of macroscopic objects.

Molecular Surface Rendering The representation and visu-
alization of molecular surfaces is an important tool in the under-
standing of fundamental molecular conformation and three dimen-
sional structure. The molecular surface is defined from the van der
Waal radii of the individual atoms. Molecular surface models can
also represent envelopes of other molecular properties (e.g. elec-
trostatic potential, spin density) [4, 9, 17] and also some molec-
ular interactions in the presence of a solvent (e.g. solvent acces-
sible, solvent contact) [6, 7, 24, 30]. Such surfaces are usually
visualized using isosurface or volume renderings of scalar fields
along with displays of their gradient vector field or Laplacian scalar
field [24, 30, 26, 29].

A vast amount of previous work has covered the representation
and visualization of molecular surfaces. Originally proposed by
Lee and Richards for use in biochemistry [21], the solvent acces-
sible surface was first extended to computer graphics by Connolly

[7, 6] and Max [24]. Much of this preliminary work, along with
later extensions [29, 25, 1, 26, 3] focused on finding fast methods
of triangulating the solvent-accessible surface. Two prominent ob-
stacles in surface visualization are the correct handling of surface
self-intersections to avoid visual artifacts and the high communi-
cation bandwidth needed when sending tessellated surfaces to the
graphics hardware.

Image Based Rendering Techniques Large environments
have traditionally been rendered using image based rendering tech-
niques. These techniques usually suffer from popping artifacts and
are rigid to changes in lighting. Hence, a renderer must strike the
right balance between visual fidelity and performance. View depen-
dent texture mapping, which we employ in TexMol, is commonly
used for image-based rendering. In [10], the authors describe an ef-
ficient way of implementing such texture mapping through the tra-
ditional graphics pipeline. A survey of image based techniques for
improving the rendering quality of traditional techniques is given
in [5]. Large scale environment visualization through images was
shown in [2, 28, 22, 15]. Better depth maintenence was shown in
[8, 19]. In [12], an image based rendering algorithm is given which
depends on lighting conditions. Using artistic techniques and mul-
tiperspective images, [16] present a method of improving the occlu-
sions of objects during motion.

Programmable Graphics Hardware The recent interest in
image-based rendering has been due in large part to increasingly
powerful and increasingly programmable graphics hardware. Cg
is a high level Graphics Processing Unit (GPU) programming lan-
guage developed by NVIDIA that allows users to write custom pro-
grams for the vertex and fragment processors in commodity GPU’s.
Previous work for practical applications of GPU’s [13] describes
the texture-based sphere renderer which was adapted for use in Tex-
Mol.

Our main contribution for structural rendering is extending pre-
vious work on sphere rendering by providing new imposter-based
algorithms for cylinders and helices. Our fast, general visualiza-
tion technique overcomes the bandwidth and artifact problems as-
sociated with triangle-based structural rendering. Under imposter-
based rendering, each complex geometric primitive is represented
by a set of simpler geometric objects, such as a single quadrilateral,
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Figure 2: Flexible Chain Complex: Combined volume (through hard-
ware accelerated 3D texture mapping based volume rendering) and
imposter rendering, showing the chain together with the high den-
sity volumetric regions formed by the functional groups protruding
outwards from the chain.

in contrast to the numerous triangles needed to tessellate complex
curved primitives. In addition, primitive-primitive intersections un-
der imposter-based rendering are correct on a pixel level with no
extra computation, which differs from the expensive clipping algo-
rithms needed to remove artifacts from intersecting sets of triangu-
lations.

3 INTERNAL REPRESENTATION

The Flexible Chain Complex (FCC) is our main hierarchical repre-
sentation for molecular structure. For each chain in the molecule,
the chain backbone is stored along with all the residues (amino
acids or nucleotides), which are placed at the connection point to
the backbone. A helix surrounded by the electron density around
the backbone is shown in Figure 2. FCC allows the application
to interactively update flexible dihedral angles along the backbone.
TexMol also has support for manipulating the rotamer angles within
a residue

Physical properties of a molecule (e.g. the electron density, elec-
trostatic potential, hydrophobicity, and surface curvatures) can be
represented as functions of the atom centers along with the atoms’
properties. Hence the FCC provides a unique skeletal and an im-
plicit volumetric format to efficiently represent structural and func-
tional properties of a molecule. In this paper, we concern ourselves
only to visualization and exploration of large FCCs.

The FCC can also contain pointers to volume files which explic-
itly represent properties of the molecule. The volume files are in
two formats. Apart from the conventional color index format, we
also use the older RGBA format to efficiently render pre-computed
structures of the molecule. For example, we could have an RGBA
dataset where the molecule is colored per atom according to the
color of the residue to which it belongs. The A channel is used
to show the dropoff in electron density as distance from the atom
center increases.

3.1 Static level-of-detail

The FCC sorts the atoms and superstructures of a molecule into a
four-tiered hierarchy which is derived from the biochemical hierar-
chy used in Protein Data Bank (PDB) files [31]. In this paper, all
filenames associated with a molecule refer to the commonly used
PDB filename. The following is a top-down view of the hierarchy.

• Chain - chain backbone information is stored

• Secondary structure - a Helix, a Turn, or a Sheet

(a) Atom level (b) Residue level with a low

blobby factor

Figure 3: LOD volume rendering of a large ribosomal subunit
(1JJ2.pdb). The parameter blobbiness controls the spread of the
density around a pseudo atom when blurring the chain complex

• Residue - either an amino acid or a nucleotide

• Atom - lowest tier, each member is a single atom

The hierarchy is constructed from the bottom up, so that every
member of the hierarchy, except chains, contains all relevant mem-
bers from the level immediately below it. For example, each atom
only contains itself, since atom is the lowest level of the hierarchy.
A residue contains all atoms that are a part of it, while a secondary
structure contains all residues that are a part of it. Chains are a
unique in that they only contain some of their component members,
which will be explained in detail later in this section.

TexMol associates each level of the hierarchy with a geometric
representation. An atom is represented by a single sphere with the
atom’s van der Waal radius. A residue is represented by a minimal
single bounding sphere that encloses all of its component atoms.
A volume rendering of the atomic and residue level is shown in
Figure 3 for a large ribosomal subunit (1JJ2.pdb). In Figure 9, we
show the bacteriophage virus’ capsid proteins (1GW7.pdb) at two
different levels using different visualization techniques.

For secondary structures, sheets and helices are represented by
an appropriately-sized geometric sets of cylinders and helices. The
orientation, length and radius of these are determined by a least
mean square fitting of the central axis to all of the atom centers
in either the helix or the sheet’s strand. The third type of sec-
ondary structure, turns, are simply represented by their component
atoms and bonds along the chain backbone, since turns are usually
short atom sequences that feature sharp angles. Not all residues are
part of secondary structures, so we simply cluster these otherwise
parent-less residues under an imaginary SS NULL group.

Chains are represented by including only the atoms in the back-
bone of the chain. Hence, the chain level does not include any of
the functional groups attached to the molecular backbone.

Once the hierarchy is created, the user may interactively change
the LOD in the hierarchy by picking one of its tiers to visualize.
Under static LOD, this selection is applied uniformly across the en-
tire molecular complex (contrast this viewing mode with dynamic
LOD explained in Section 4.5).

4 IMPOSTER RENDERING

The models we encounter in molecular visualization, including the
union of balls model, the ball and stick model, the secondary struc-
ture model, are composed of regular curved surfaces. The tradi-
tional method of rendering these surfaces is to triangulate the sur-
face and render the triangle strips. Due to the large sizes of the data
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sets we are trying to render, triangulated curved surface rendering
is either too computationally expensive or is plagued by visual arti-
facts.

Hence we introduce some new image-based rendering tech-
niques that extend earlier work in sphere rendering. Our main idea
comes from the fact that in the programmable graphics hardware,
we are allowed to perform a depth replacement at the fragment
level. This allows us to render a curved surface with some axis
of symmetry without the need for triangulation. NVIDIA’s Cg Tu-
torial [13] describes a method of rendering spheres with a single
quadrilateral, with correct depth and normals under an orthographic
projection. In the perspective view, the depth turns out to be an ap-
proximation, but still retains good smoothness properties. We ex-
tend this work to include other primitives (Figure 4) and apply these
new primitives in our molecule visualization.

One key advantage of imposter-rendering is per-pixel accurate
shading within the resolution of the normal map. Although the
resolution of the normal map imposes some limits, the normal
map’s resolution may be increased arbitrarily based on the applica-
tion requirements. In contrast to imposter-based renderers, typical
molecular visualizers, such as RasMol and its derivatives, tessellate
their geometric primitives, which produces approximate lighting ef-
fects and tessellation-related artifacts. Another benefit of imposter-
rendering is its occurrence near the end of the rendering pipeline,
meaning it can be combined with software-based acceleration tech-
niques, such as occlusion culling and adaptive tessellation, to fur-
ther increase visualizer performance.

4.1 CPK model

The CPK model of a molecule is the geometric union of all of
van der Waal radius spheres that correspond to the atoms in the
molecule.

4.1.1 Sphere rendering

Texture-based sphere rendering is shown in one of NVIDIA’s Cg
Tutorials [13]. We use their method to render spheres in TexMol.
The cylinder and helix renderers that will be described in Sections
4.2.1 and 4.3.1, respectively, are extensions of the sphere renderer.

4.2 Ball and Stick model

The ball and stick model is the geometric union of all the atoms
and bonds in a molecule, where each atom is represented by a van
der Waal radius sphere and each bond is represented by a cylinder
that extends between the two atoms that form the bond. Atom radii
must be intentionally reduced from the values given in the PDB
file in order to make the bonds visible. While the ball and stick
model is otherwise very similar to the CPK model, the understated
atomic radii places more emphasis on the internal connectivity of
the molecule.

4.2.1 Cylinder rendering

The cylinder uses a single quadrilateral as the underlying geometric
primitive, along with three texture maps. Unlike a sphere, a cylin-
der is not rotationally invariant, so its corresponding quadrilateral
in clip space reflects the orientation of the actual cylinder in clip
space. In our algorithm, we need only one quad to obtain a per-
fect cylinder, but due to a compiler bug in Cg, we are forced to use
two quads. The algorithm for the vertex program and the fragment
program is given in Algorithm 1 and Algorithm 2. Our vertex and
fragment programs work in GeForce FX cards and beyond.

In each of the algorithm descriptions, we have tried to
be as brief as possible and also use common abbrevia-
tions due to space constraints, without losing any informa-

tion. ES, OS refer to EyeSpace and ObjectSpace respectively.
MV , MV I, MV P, Pro j, MV PI are the OpenGL ModelView,
ModelViewInverse, ModelViewPro jection, Pro jection and the
ModelViewPro jectionInverse matrices respectively.

By using the vertex and fragment programs in Algorithm 1 and
Algorithm 2, we create a single front sided cylinder where the two
cylinder bases are not well defined. This design increases perfor-
mance with no loss in visual quality, since the cylinder bases are
always hidden inside spheres in the ball and stick model.

In Algorithm 3, we create cylinders with defined bases by en-
suring that we have the correct opacity at the ends of the cylinder.
This algorithm requires the coordinates of one end point, the axis
of the cylinder, and the MVPI matrix. Due to space constraints, we
present only the subset of the program that needs to be inserted into
the Stick Fragment Program given in Algorithm 2. Figure 4 (b) and
(c) depict how quads are transformed in the programmable graphics
card into cylinders with proper depth and lighting. Algorithm 1 is
still used as the vertex program.

Algorithm 1 Stick vertex program

1: Inputs are: [P1, P2, MV, radius, offset, MVI, MVP, Proj]
2: [OS]axis← P2−P1
3: [ES]axis← normalize(MV ∗ [OS]axis)

4: h← 1
[ES,xy]gradient

= 1

sqrt(1−[ES]axis.z2)

5: [ES,xy]unitAxis← normalize([ES]axis.y,−[ES]axis.x,0,0)
6: [ES,xy]axis = [ES,xy]unitAxis∗o f f set ∗ radius
7: if P associated with P1 then
8: if ES.axis.z < 0 then
9: [ES]o f f set ← [ES,xy]o f f set + [ES]axis ∗ h ∗ radius ∗

[ES]axis.z
10: else
11: [ES]o f f set ← [ES,xy]o f f set + [ES]axis ∗ h ∗ radius ∗

[ES]axis.z∗−1
12: end if
13: else
14: if ES.axis.z < 0 then
15: [ES]o f f set ← [ES,xy]o f f set + [ES]axis ∗ h ∗ radius ∗

[ES]axis.z∗−1
16: else
17: [ES]o f f set ← [ES,xy]o f f set + [ES]axis ∗ h ∗ radius ∗

[ES]axis.z
18: end if
19: end if
20: [ES]o f f set←MV I ∗ [ES]o f f set
21: if P associated with P1 then
22: outP← P1
23: else
24: outP← P2
25: end if
26: HPOS←MV P∗ (outP +o f f set)
27: radius← radius∗h
28: [z,w]center← [MVP[2],MVP[3]].outP
29: [z,w]o f f set← radius∗ [Pro j[2], pro j[3]].z
30: Output: [[z,w](center,offset), HPOS, LightVector, Normal,

EndPoints, normalized xy position]

4.3 Secondary structure representation

We visually represent helix and sheet secondary structures using
imposter-based helices and cylinders. Turns are represented by
their component atoms and bonds along the backbone since they
usually consist of only a handful of atoms.
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(a) Sphere rendering from NVIDIA’s depth replace example. We consider two overlapping specular spheres, whose correct appearance is as shown

in the rightmost image. We render two rectangles (leftmost image), perform opacity culling (left middle), perform per-pixel normal and lighting

evaluation (right middle), and finally replace depth values to obtain the final image (rightmost image).

(b) Four rectangles (two overlapping pairs) (c) Cylinders after correct opacity, lighting,

and depth are assigned

(d) Helices formed from the previous

pair of cylinders (new viewpoint).

Figure 4: Imposter rendering of some primitives

Algorithm 2 Stick fragment program

1: Inputs are: [normalized xy position (xy), LightVector, Color,
Ambient light]

2: Normal← Lookup(normalMap,(xy))
3: Depth← Lookup(depthMap,(xy))
4: OutColor = CalculateOut putColor()
5: [z,w]←Depth∗ [z,w]o f f set +1∗ [z,w]center
6: OutDepth← z/w∗0.5+0.5
7: Output: [color,opacity,depth]

Algorithm 3 Cylinder fragment program

1: Inputs are: [P1, axisDCs, length, MVPI, IN.xy]
2: ndcPos← (IN.x, IN.y,z/w,1)
3: [OS]P = MV PI ∗ndcPos
4: y← axisDCs.(([OS].P−P1).xyz)
5: if y < 0 then
6: opacity← 0
7: else if y > length then
8: opacity← 0
9: else

10: opacity← 1
11: end if

Algorithm 4 Helix fragment program

1: Inputs are: [refVector, crossRefVector, opacityMap, pitch]
2: if y.inRange() then
3: V ← normalize((IN.xy)−P1− y∗axisDCs)
4: x← cos−1(V.(re fVector))
5: side←V.crossRe fVector
6: if side < 0 then
7: x← 2∗π − x
8: end if
9: y←

f mod(y,pitch)
pitch

10: opacity← lookup(opacityMap,x,y)
11: end if

4.3.1 Helix rendering

Helices are composed of two quadrilateral primitives and are an ex-
tension to cylinder rendering. We present the fragment program in
Algorithm 4, which is the extension which needs to be added to the
cylinder fragment program in Algorithm 3. For this fragment pro-
gram, we need the additional input parameter of a crossRe fVector,
which is a vector from one end point of the helix on the axis to any
particular point on the helix in object space. Another input needed
is an opacity map (a bitmap containing a wrapped diagonal band
of the required thickness), which generates the shape of the helix
via alpha values. Figure 4(d), shows the two cylinders from Fig-
ure 4(c) under the new helix opacity mapping. A slightly different
viewpoint is used for the helices to show the correct per-pixel inter-
sections and shading. Figure 5 shows the myoglobin molecule with
its helices represented using imposters.
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Figure 5: Coils showing the presence of α helices in the myoglobin
protein. The heme group is shown here with an orange iron atom.

4.3.2 Sheet rendering

Sheets are composed of multiple strands. One method of rendering
a sheet is to render the set of strands as cylinders. Hence we use our
cylinder rendering when visualizing sheets. The two β sheets of a
snake toxin are represented by sets of differently colored cylinders
in Figure 6. Multiple cylinders per strand and a color gradient could
be used to enhance the folding of the sheet and the strand directions.

4.4 Function-on-surface rendering

We implement embedded surface rendering by extending the previ-
ous GPU programs. It is often useful to study the variation of func-
tions on molecular surfaces. These properties can be visualized by
accessing two additional custom texture maps in the fragment pro-
gram. The user can set one texture to the volumetric function, while
assigning to the other texture a transfer function map which allows
the user to interactively modulate the function being mapped onto
the imposter model. One could also implement implicit functions
using the fragment program instead of an explicit volumetric grid.
In Figure 8, we show the hydrophobicity function being mapped
onto the union of balls model of the hemoglobin molecule.

4.5 Dynamic level-of-detail

Dynamic LOD uses the static LOD hierarchy to change regions of
the molecule based on the spatial occupancy of these regions from
the current viewpoint. Dynamic LOD is currently implemented
with bounding spheres on all levels of the hierarchy to limit visually
distracting popping when one region switches its LOD.

When dynamic LOD is active, molecular regions that occupy
fewer pixels on screen are represented with a coarser level in the
static hierarchy. This allows the user to see atom-level detail by
zooming in, while also being able to capture the overall molecular
structure by zooming out. Additionally, realtime scenes with many
molecules interacting with one another benefit from dynamic LOD
by automatically reducing the geometric complexity of a scene
from distant viewpoints, while maintaining the power to explore
the scene in detail from other viewpoints.

Figure 6: Sets of cylinders representing the strands of two β sheet
in a snake toxin protein (1FSC.pdb).

Figure 7: Imposter rendering of the 1.2 million microtubule molecule
in two different LODs. The left image shows the atoms rendered as
spheres with residue colors. The image in the right shows the residue
level of the macromolecule. Rendering such large data sets in high
resolution is especially useful for multi tile display and exploration of
complex large macromolecules like the microtubule and large viruses.

Figure 8: A synchronized multi-view visualization of two functions of
the same hemoglobin dataset. In the left pane, we show the mean
curvature on an isosurface of the electron density of the molecule.
The red color represents positive mean curvature, while the green
shows negative mean curvature and white represents zero mean cur-
vature regions. On the right pane, we have the hydrophobicity func-
tion mapped to the imposters, with red representing hydrophilic re-
gions and green representing hydrophobic regions. The hemes groups
are shown in black.
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Mol NumAtoms NumRes Mem (M) LOD FPS

Hem 4770 574 27 Atom 28.4
Residue 21.3
Chain 85.2

Rib 98543 6577 79 Atom 7.7
Residue 9.5
Chain 42.6

Mic 1210410 78210 643 Atom 1.9
Residue 3.6
Chain 2.4

Table 1: Performance results for rendering in 800x600 resolution,
full screen mode for Hemoglobin (Hem), Ribosome (Rib) and the
Microtubule (Mic).

4.6 Synchronized multi-view visualization

We define a molecular information view (MI view) to be either a
structural representation, a functions-on-surface representation, or a
volumetric representation of a molecule. TexMol provides the abil-
ity for split-screen visualization that juxtaposes multiple MI views
simultaneously. We also allow both synchronous and asynchronous
viewing operations to be performed on each view, in effect separat-
ing the data model from the viewing model.

5 RESULTS AND DISCUSSION

We will first discuss the performance results for running TexMol on
a high-end workstation with commodity graphics hardware. Next,
we will briefly summarize the various features of the software.

5.1 Performance

TexMol’s performance was measured on a dual Pentium III Xeon
800MHz machine with one gigabyte of memory and an NVIDIA
GeForce4 Ti 4200 AGP8X for its GPU. Only one of the dual CPU
processors was used during testing. Table 1 shows performance
for the hemoglobin, ribosome, and microtubule datasets. The
hemoglobin (1A00.pdb) and the large ribosomal subunit (1JJ2.pdb)
are taken from the Protein Data Bank [31]. The microtubule data set
was donated by Dave Sept and Nathan Baker. The second and third
columns list the number of atoms and residues, respectively. The
fourth column lists the peak CPU-side memory usage for each ex-
periment. Since a given dataset is always processed the same way
to generate the static LOD hierarchy, from which all static LODs
can be derived, the CPU-side memory usage is the same regardless
of which LOD is selected for rendering. The time taken to parse
the files to a hierarchy is considered as a preprocessing step and is
not considered here. When we are using dynamic LOD rendering,
the time taken to determine the cut in the tree to render is negligible
compared to the rendering times.

For each trial, the given molecule was rendered across three
LODs (fifth column): atom level, residue level, and chain level.
The final column lists the frames-per-second performance of the
trial. All trials were performed at 800x600 resolution using Tex-
Mol’s full-screen mode.

The atom LOD sends the most number of geometric primitives to
the GPU, so cases where the atom LOD performs worst are vertex
limited. We expect this case to occur for extremely dense molecules
with high atom counts. The residue LOD provides fewer geomet-
ric primitives to the GPU, but residue representations (a conserva-
tive bounding ball) take up more screen space than their compo-
nent atoms. Thus, more fragments are generated in the GPU frag-
ment processor, so cases where the residue LOD perform worst are

(a) Imposter rendering of

atoms with chain colors

(b) Imposter rendering of

residues with chain colors

(c) Imposter rendering of

residues with protein colors

(d) Volume rendering at the residue

level with depth coloring

Figure 9: The Bacteriophage PRD1 capsid protein (1GW7.pdb). The
virus has 34181x60 atoms and 4452x60 residues. Figures (a) (b) and
(c) show an imposter view of the virus at the atom level with chain
colors and residue level with chain and protein colors. (d) is a depth
colored image of the volume representing electron density

fragment limited. Finally, the chain LOD reduces both vertex and
fragment load from the atom LOD by 1) rendering only atoms and
bonds along the backbone and 2) using primitives that are the size
of atoms rather than larger bounding balls. Note, however, that the
chain LOD renders more than one geometric primitive per residue,
so it still has greater vertex complexity than the residue LOD, which
renders exactly one geometric primitive per residue.

For the atom LOD, the hemoglobin visualization performs
fastest. Since hemoglobin is a relatively small molecule, it stands to
reason that it is not vertex limited. On the other hand, the medium-
sized ribosome shows signs of being vertex limited, since its per-
formance improves slightly under the residue LOD. Finally, the
microtubule, which contains the most vertex information, shows a
speedup of about 90% when switching from atom LOD to residue
LOD. The slowdown of the microtubule chain LOD is a result of the
vertex-limited nature of the rendering, since three atoms are still be-
ing drawn per residue. Memory usage for the two larger molecules
scales linearly with the size of the molecule, while the hemoglobin
memory usage is almost entirely due to the operating overhead of
the program (about 20 M). The bacteriophage shown in Figure 9
renders at a peak rate of around 1.2 fps at the full atomic level res-
olution.
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5.2 Visualizer features

This section summarizes TexMol’s various features. First, TexMol
uses fast imposter-based rendering to render the structural molec-
ular shape at various LODs (Figures 1(a-c), 5, 6). TexMol also
renders volumes (using hardware assisted 3D texture maps) inde-
pendently (Figures 1(d), 3) or in tandem with structure. Structure-
volume rendering modes include embedded rendering (Figure 2),
function-mapping, and synchronized multi-view (Figure 8). Cur-
vatures and isosurfaces are rendered with traditional geometry. Fi-
nally, TexMol can display and animate large molecules at high res-
olution that were previously intractable. Currently, the massive mi-
crotubule complex (Figure 7) animates at a peak rate of 4 fps, and
we hope future optimizations lead to interactive rates.

6 CONCLUSIONS AND FUTURE WORK

TexMol’s ability to perform a wide range of structural and volumet-
ric rendering concurrently, combined with its aggressive use of pro-
grammable graphics hardware, distinguish it from existing molecu-
lar visualizers. We hope TexMol will effectively serve the biology
community in its ongoing research.

In our continuing work, we intend to incorporate visibility and
culling techniques to further increase rendering performance. Our
ultimate goal is to visualize the 1.2 million atom microtubule
dataset at an interactive rate. We are also working on a GPU tech-
nique that increases the visual fidelity of volumetric rendering by
exploiting symmetry, which is inherent in many large biomolecules,
like icosahedral viruses. Future work will also include experiment-
ing with the synchronous multi-view framework in order to dis-
cover new ways to visualize the inherent links between molecular
structure and molecular function.
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