
Building Highly-Coordinated Visualizations in Improvise

Chris Weaver∗

Computer Science Department
University of Wisconsin–Madison

ABSTRACT

Improvise is a fully-implemented system in which users build
and browse multiview visualizations interactively using a sim-
ple shared-object coordination mechanism coupled with a flexible,
expression-based visual abstraction language. By coupling visual
abstraction with coordination, users gain precise control over how
navigation and selection in a visualization affects the appearance
of data in individual views. As a result, it is practical to build vi-
sualizations with more views and richer coordination in Improvise
than in other visualization systems. Building and browsing activi-
ties are integrated in a single, live user interface that lets users alter
visualizations quickly and incrementally during data exploration.

CR Categories: D.2.2 [Software Engineering]: Design Tools
and Techniques—User Interfaces; H.2.3 [Information Systems]:
Database Management—Languages; H.5.2 [Information Systems]:
Information Interfaces and Presentation—User Interfaces

Keywords: coordinated queries, coordination, exploratory visual-
ization, multiple views, visual abstraction language

1 INTRODUCTION

Visualization systems have matured into full-featured development
environments that enable users to build visualizations with multiple
coordinated views rapidly. In these systems, users coordinate views
either by using a small set of pre-defined coordinations or by writ-
ing scripts. The choice between these two approaches is a tradeoff
between simplicity and flexibility.

Improvise is an environment for building and browsing visual-
izations of relational data. Like other visualization systems, Impro-
vise enables users to load data, create views, specify visual abstrac-
tions, and establish coordinations interactively. Unlike other sys-
tems, Improvise provides a rich visual abstraction language that can
be coupled with a shared-object coordination mechanism, thereby
increasing the expressive power of both.

The primary goal of Improvise is to enhance data exploration by
offering users fine-grain control over the appearance of visualized
data while preserving their ability to work quickly and easily. Im-
provise combines a simple, direct coordination mechanism called
live properties with a more powerful, indirect coordination mecha-
nism called coordinated queries. The combination is a significant
improvement over existing coordination approaches because it en-
ables users to define complex interactive dependencies between the
appearance and behavior of views.

Live properties coordinates views using a symmetric update and
notification mechanism to link views and other controls through
shared objects. Controls interpret the shared objects as basic for-
matting information (colors, fonts, etc.), limits to abstract spatial
extent (ranges, angles, etc.), data, and data querying operations

∗e-mail: weaver@cs.wisc.edu

(projections, filters, etc.) Visual abstractions are created by pro-
jecting and filtering data using expressions that can themselves be
defined in terms of shared objects. By editing the expressions used
by views to project and filter data, users are able to customize the
visual and spatial abstractions that specify what data to draw, how
to draw it, and where to draw it in a visualization.

Improvise is written in Java. Visualizations are saved to and
loaded from disk as serialized XML documents. Improvise and the
documents it produces are platform-independent.

This paper proceeds as follows. Section 2 reviews coordination
approaches in several visualization systems similar to Improvise.
Section 3 describes live properties and coordinated queries. Sec-
tion 4 describes construction of visual abstractions and coordina-
tions in two Improvise visualizations. Section 5 concludes.

2 RELATED SYSTEMS

Improvise is similar to DEVise [12], Snap-Together Visualiza-
tion [15], and other visualization systems based on the relational
data model. These systems follow a recent trend toward interac-
tive construction approaches that employ simple combinations of
well-known coordination and view types. Although building small
visualizations in these systems is very easy, the number of views
and the degree of coordination that can be practically incorporated
during data exploration is limited.

LinkWinds [10] uses non-view controls to append clauses to
queries for filtering purposes. The ability to reference shared
objects in coordinated queries has a similar flavor. Whereas
LinkWinds has a “track” mode in which mouse drags continuously
update coordinated views, views in Improvise are always tightly
coupled over all coordinations, including all coordinated queries.

Given an input table, IVEE [2] automatically selects appropri-
ate controls (such as range sliders or checkboxes) for each data
attribute. Users can create one or more views (scatterplots, geo-
graphic maps, or cluster views) and specify projections that map at-
tributes into view parameters. The conjunction of slider selections
is used to filter the contents of all views (as well as the contents
of the sliders themselves). In Improvise, views can be filtered in-
dependently using filter expressions that depend on navigation or
selection in any combination of sliders or views.

Tioga-2 [23] uses a data flow model to support advanced navi-
gation features such as tunneling (wormhole-like hyperlinks), view
cloning, and nested views. DataSplash [17] adds end-user visual-
ization construction in the form of tuple painting and a zoom layer
manager for editing how tuples appear at different levels of mag-
nification. VIQING [16] is an extension of DataSplash that allows
users to express queries by conjoining views into the visual equiv-
alent of projections, selections, and joins. The elements of Impro-
vise visualizations are declarative rather than procedural; users can
generate nested views and semantic zoom, but approaches like tun-
neling and layer management have to be built into views as fixed
features that allow little or no customization by the user.

Polaris [21] automatically generates multiscale visualizations
and the queries needed to draw them using a formal specification
language. Zooming in Polaris is conceptually equivalent to travers-
ing an edge of a zoom graph [20] in which each node corresponds

October 10-12, Austin, Texas, USA
0-7803-8779-1/04/$20.00 ©2004 IEEE

IEEE Symposium on Information Visualization 2004

159

vis
Note
Please see conference DVD for supplementary material.

to a particular visual representation in a data cube. Nodes are drawn
in a graphical notation that describes the visual query at that point
in the graph. Because Improvise users build coordinated queries
using custom-defined expressions, complex or unusual visual rep-
resentations are possible, but simple or common ones cannot be
manipulated as quickly or as easily as in Polaris.

In the coordination model prototyped in CViews [5], explicit co-
ordination objects in a coordination space manage visual parame-
ters and access data using a dataflow model to define a particular
type of coordination, such as brushing. Views connect to coordina-
tion objects through translation functions. The equivalent space in
Improvise consists of coordinated query graphs that connect views
through navigational parameters, selections, data, and expressions.
In this space, coordinations exist implicitly as recognizable patterns
of interactive dependence between views, rather than as explicit ob-
jects. Translation (spatial transformation, rendering, and so on) is
an inherent function of views and is not user-customizable.

Snap-Together Visualization uses a relational data model that co-
ordinates views using primary key actions. When two views are co-
ordinated, invoking an action in one view causes the other view to
perform its corresponding action. Actions are extensible and in-
clude loading (of a relation), selection (of tuples), and scrolling
(over a list of tuples). Coordinated queries create similar interactive
dependencies between views, but allow fine-grain user customiza-
tion of dependencies between visual encodings as well as data.

DEVise uses a relational data model to coordinate multiple views
of large datasets. Users can create, destroy, coordinate, and specify
the contents of views interactively. Its only view—the scatterplot—
and few coordination types—cursor, visual link, record link, and
set link—are quite powerful. However, reproducing common vi-
sualization constructions in DEVise frequently involves convoluted
chains of linked scatterplots (many of which are undesirable arti-
facts that must be intentionally hidden offscreen). Coordination
graphs of DEVise visualizations reveal that all four coordination
types can be reproduced by treating the X and Y ranges of scatter-
plots as shared objects or as dynamic parameters in simple query
expressions. This discovery motivated the design of live properties
and coordinated queries in Improvise.

3 IMPROVISE

This section presents the two major parts of the architecture and im-
plementation of user-definable coordination in Improvise. The first,
live properties, is a direct coordination mechanism that uses a sim-
ple shared object model to create interactive dependencies between
views. The second, coordinated queries, is an indirect coordination
mechanism in which the data and visual encodings that determine
each view’s appearance are calculated from user-definable expres-
sions that can depend on interaction in other views.

3.1 Live Properties

Live properties is a user interface architecture for directly coor-
dinating controls—including views, sliders, and other widgets—
through shared objects called variables. Each control defines one
or more live properties, each of which can bind to at most one vari-
able. Live properties may be either active (access and modify vari-
ables) or passive (access only). Changes to variables are propagated
to controls via their live properties, as shown in figure 1.

Live properties serve two purposes. First, they are value slots
that a control uses to determine its appearance and behavior. For
instance, a scatterplot has two range properties that specify which
region of the cartesian plane to show, and a color property that spec-
ifies the color used to fill its background. Second, live properties
act as ports through which controls communicate with each other
as a result of interaction. Variables and live properties are strongly

typed, and binding is type-matched. Each live property also has a
default value which is used by the control when the live property is
not bound to any variable.

Live properties may be thought of as an instance of the Model-
View-Controller architecture [11] with many small models. Simi-
larly, the Abstraction-Link-View paradigm (ALV) [8] employs an
encapsulated communications mechanism between views and data
to link views shared by one or more users. However, live properties
is not a constraint model (as in ThingLab [4]). By implementing
controls so as to change their live properties only in response to
user interaction, potential cycles and deadlocks are avoided.

Athena MUSE [9] defines integer values in bounded ranges
as global parameters on views (“multidimensional information”)
and uses bidirectional equality constraints to link parameters to
view attributes through reversible linear functions (“declarative
constraints”). Variables are like these parameters, but are neither
bounded nor limited to integers. Bindings between variables and
live properties are like declarative constraints limited to the identity
function.

3.2 Coordinated Queries

Coordinated queries is a visual abstraction language based on the
relational database model. An expression is a tree of operators that
calculates the value of an output field using the fields of a input
record. Expressions make up query operations that views use to
visually encode data records into graphical attributes (as in [13]):

• Filters use a single expression to calculate a boolean value for
each input record. Views draw records for which this value is
true.

• Projections use one or more expressions to calculate succes-
sive fields of an output record for each input record. Views
draw records using graphical information (such as position
and color) contained in the fields of the output record. This
information is often encapsulated in view-specific glyphs.

Projections and filters are constructed in a tree-based expression
editor (figure 2). The user builds each expression top-down, by
choosing an operator for each position in the tree. Subexpressions
are automatically appended whenever the chosen operator takes ar-
guments. Editing this way takes a little getting used to, but has the
advantage of being syntactically constrained. Editing is live; the
visualization reflects changes immediately.

Expressions are composed of eight different kinds of operators.
Function operators perform a variety of duties including object
construction, type casting, member access, arithmetic, and statis-
tics. Value operators evaluate to a user-edited value of a particular
type. Attribute operators evaluate to the value of an input record
field. In addition to these three basic kinds of operators, aggregate
operators allow the calculation of simple aggregates on tables, con-
stant operators provide easy access to frequently used fixed values

Figure 1: Direct coordination. (1) A control modifies the value of
one of its (active) live properties in response to interaction. (2) The
live property assigns the new value to its bound variable. (3) The
variable sends a change notification to all live properties bound to it.
(4) The live properties notify their respective parent controls of the
change. The controls update themselves appropriately.

160

Figure 2: The lexicon editor, showing a projection that generates rectangle scatterplot glyphs. Users can select individual operators in an
expression for modification (A), or copy-and-paste/drag-and-drop entire subexpressions. Cloning whole objects (B) allows users to experiment
with variations of expressions quickly and reversibly. Large libraries can be built up for reuse or rapid switching during data exploration.

(e.g. pi), and conversion operators perform common numeric con-
versions between units (e.g. feet to meters). Index operators pro-
vide indexed data lookups, by mapping a primary key value of an
attribute to a foreign key value of an attribute in a different dataset.

Indirect coordinations are created using variable operators.
Whenever an expression is evaluated, variable operators take on the
current value of their corresponding variable. When a control de-
pends directly on a variable that contains a projection or filter, it also
depends indirectly on any variables referenced by the expressions
of the projection or filter. Through variable operators, expressions
can depend not only on the navigation and selection parameters of a
visualization, but also on its projections, filters, and datasets. This
multi-stage dependence is used for aggregation, grouping, index-
ing, nested views, and other kinds of queries. Figure 3 shows how
interaction propagates through one level of dependence in an indi-
rect coordination. A shortcoming of the current implementation is
that it does not detect or handle cycles in coordinated query graphs.

Figure 3: Indirect coordination. (1) An upstream object propagates
a value change to a variable. (2) The variable notifies all lexical val-
ues that contain expressions which reference the variable. (3) Each
expression notifies variables to which it is assigned as a value. (4)
The variable sends a change notification to all downstream objects.
Upstream and downstream objects can be live properties (as in fig-
ure 1), or other lexical values.

Each Improvise visualization stores schemas, data, and query op-
erations in a central respository called the lexicon. To access these
objects, views define live properties that bind to variables of the de-
sired lexical type. The user assigns the value of a lexical variable
by choosing from available objects of the same type in the lexicon.
To specify the visual abstraction of a view, the user binds lexical
variables to the view’s data, projection, and filter properties.

4 BUILDING COORDINATED QUERIES

The combination of live properties and coordinated queries en-
ables Improvise users to build highly-coordinated visualizations
with complex visual encodings. This section describes how a va-
riety of well-known coordination types are reproduced in the con-
struction of two typical Improvise visualizations, shown in figures 4
and 11. Proceeding from navigation coordinations through selec-
tion coordinations to semantic zooming, each coordination is intro-
duced in terms of related research. Figures 5-10 and 12-16 capture
the corresponding coordinated query graphs used in Improvise to
help users visualize coordination structure as they work.

Sliders and other controls are often useful for manipulating in-
dividual parameters of a visualization. In Dynamic Queries [1],
non-spatial data attributes can be manipulated using range sliders.
LinkWinds provides controls that can be coordinated with views
for dynamic filtering. Users browse Improvise visualizations by
interacting with views and non-data controls such as checkboxes,
textfields, and sliders. Improvise axis controls are independent of
scatterplots, but perform the usual roles of marking, labeling, and
handling interaction in one dimension. Figure 5 shows how hori-
zontal and vertical axes can be coordinated with a scatterplot.

Figure 5: Coordination graph for a scatterplot with axis controls (see
figure 4A). Panning or zooming in the T (or X) axis changes the value
of the T (or X) range variable, which causes the plot to translate or
stretch horizontally (or vertically). Manipulating the plot changes
both variables, causing both axes to update appropriately.

Views can also be coordinated with each other. Synchronized
scrolling is a common form of coordination in which two views

161

Figure 4: Visualization of a simulated ion trajectory in a cubic ion trap. (A) Axis controls label a plot and provide a way to change X and time
independently. (B) Horizontal synchronized scrolling coordinates three time series plots showing the X, Y, and Z positions of ions over time.
(C) A scatterplot matrix shows the trajectory as seen from three orthogonal sides of the ion trap. (D) An overview uses a portal (circled) to
select the extent of a detail view. (E) A perceptual slider enables users to select a visible range of time using a color gradient instead of numeric
values. (F) The names of the available trajectory datasets are accompanied by nested views that project each trajectory into a 3-D view.

are constrained to show the same data items or the same region
of a coordinate space. For instance, scatterplots in DEVise can be
coordinated with visual links to show the same range of X and/or
Y. In Snap-Together Visualization, synchronous scrolling between
lists of items is achieved by coordinating their scroll actions.

Plots can be coordinated with each other in the same way that
they coordinate with axis controls: through their range properties.
Figure 6 shows three plots in which scrolling is synchronized hor-
izontally. This is done by binding the same range variable to the
X range property of all three views. The flexibility of property-
variable binding makes it simple to construct numerous variations
of synchronized scrolling, including two-dimensional (sharing X
and Y ranges), horizontal (sharing only the X range), vertical (shar-
ing only the Y), and crossed (one view shows XY, the other YX).

Scatterplot matrices [3] show an N-dimensional space as a
stairstep arrangement of 2-D scatterplots. Synchronized scrolling
in this case is complicated by the need to invert the coordinates of
some plots in order to produce the expected navigation behavior.
Figure 7 shows how inverting the coordinates of a plot is a simple
matter of swapping the range variables bound to its live properties.
(Building plot matrices is straightforward but tedious; Improvise
provides shortcuts for creating common multiview constructions.)

Coordination using the overview+detail [19] technique differs
from synchronized scrolling in that the entire area shown in a detail
view is synchronized with a subarea of an overview. Cursors in

Figure 6: Three scatterplots with synchronized horizontal scrolling
but independent vertical scrolling (see figure 4B). All three plots
update in unison whenever the value of T changes.

DEVise are an example of this technique in which a selection box in
a scatterplot has the same X and Y ranges as some other scatterplot.

In Improvise, portals (not to be confused with portals in DataS-
plash) are draggable controls for selecting a rectangular region.
(Portals can also draw data, acting as lenses above the plots that
contain them.) Figure 8 shows how the X and Y ranges of a detail
plot are coordinated with the ranges of a portal inside an overview
plot. This construction can be chained to create multiple levels of
detail (as in [18]). Omitting the two X (or two Y) range variables
produces vertical (or horizontal) versions of overview+detail.

Another use of one-dimensional portals is in a perceptual sliders,

162

Figure 7: Coordination graph for a 3-D scatterplot matrix (see fig-
ure 4C). The shared Z variable synchronizes vertical navigation in
the XZ plot with horizontal navigation in the ZY plot.

Figure 8: Coordination graph for overview+detail (see figure 4D).
The portal covers the region in the overview (its context) that cor-
responds to the full region visible in the detail view.

which allow users to select data by thinking visually while acting
spatially. Figure 9 shows how a plot is coordinated with a portal
in a gradient view to create a perceptual slider based on color. The
projection expression used by the plot visually encodes points along
an ion trajectory by mapping (normalized) time into the same color
gradient shown in the gradient view. The filter expression used by
the plot elides points that would fall outside the range of color se-
lected by the portal. Although the user perceives the position of the
portal as a selection on color, the selection is actually on a range
of time values. (Perceptual sliders are similar to visualization slid-
ers [7], but present a set of possible perceptual values instead of a
distribution of values that actually occur in the data.)

Nested views enable exploration of a group of related datasets
by displaying each dataset in its own view, all of which are con-
tained in a larger view. In DataSplash, portals are clickable hyper-
link windows into other data spaces. In Improvise, nested views are
special glyphs in which the value being visually encoded is an en-
tire dataset. Because all Improvise views use projection expressions
to generate glyphs, they all can contain nested views. In figure 10,
a list visually encodes data files as a filename next to an icon which
shows the data as 3-D points. The projection expression that draws
each list item generates a nested 3-D view glyph by applying a sec-
ond projection to the data from the corresponding file.

North and Shneiderman [14] have described a taxonomy of
strategies for coordinating multiple views in terms of selecting
items and navigating views. In Improvise, a selection is a bitstring
that indicates selected records by the integer identifiers assigned to
them when data is accessed during visualization. Decoupling selec-
tions from data in this way separates coordination of views on data
from coordination of views on selections. This approach makes it
possible to coordinate multiple views using multiple independent
selections of the same dataset in a single visualization.

Shared selection is a form of brushing that allows the user to
select an item in a view, and see the corresponding item in other
views. In XGobi [6], users can brush items in multiple scatterplots

Figure 9: Coordination between a scatterplot and a gradient slider
(see figure 4E). The scatterplot draws ovals colored by mapping time
into a color gradient, relative to minimum and maximum values, but
only for relative times in the range selected by the slider portal.

Figure 10: Coordinated query graph for a list of available datasets
(see figure 4F). Each item in the list consist of a formatted file name
and a nested 3-D plot. These plots are navigationally coordinated
with the main 3-D stereogram through variable operators (A).

of high-dimensional data. Brushing-and-linking in Snap-Together
Visualization uses select actions to coordinate selections in two
views of the same data. Figure 12 shows how two Improvise views
are coordinated to share a selection over data that describes the 83
counties in Michigan. The scatterplot draws counties as polygons
read from shapefiles; the table view draws each county as a row of
text with a nested bar plot. Selecting items in either view (by click-

163

Figure 11: Visualization of election results in Michigan from 1998 to 2002. (A) Shared selection of counties between a table view and a map.
(B) Selecting a race causes the election results for that race to be loaded (from a file) and shown throughout the visualization. (C) A pie chart
uses a filter to compare results for selected candidates only. (D) A scatterplot highlights selected counties with gray bars. (E) A four-layer
scatterplot colors counties by winning candidate party. (F) Semantic zoom labels counties with nested bar plots at sufficient zoom.

Figure 12: Coordination graph for shared selection between a table
view and a scatterplot (see figure 11A). Selection of items in either
view causes both views to redraw their shared data.

ing shapes or rows) changes the selection variable, causing both
views to redraw with the selected items highlighted.

Users often want to select from multiple related datasets (or sub-
sets of one large dataset) in a single visualization, such as during
analysis of a sequence of experiments. Selecting a dataset in one
view to show in another view is a form of drill-down. For instance,
Snap-Together Visualization supports drill-down by coordinating a
select action in one view with a load action in another view.

Selection-dependent loading of data in Improvise is performed
using an expression that is defined in terms of (1) data that lists the
names of (or otherwise identifies) loadable datasets, and (2) a se-
lection on that data. In figure 13, the election results for each office
are stored in separate files. The expression constructs the name of
a file to load using the name of the selected office. Whenever the
user selects an office, the visualization loads data from the corre-
sponding file. Using expressions, the user can specify a file, URL,
or database as the source of data to visualize.

Selection-dependent filtering is an asymmetric version of shared
selection in which the filtered view differentiates between selected

Figure 13: Coordinated query graph for selection-dependent loading
of data (see figure 11B). An index on the races dataset maps the
record identifier of the first selected race into a filename. The “Re-
sults” view displays an info (an expression that calculates a dataset)
that reads data from the corresponding file of voting results.

and unselected items by not drawing unselected items instead of
highlighting selected ones. DEVise uses this technique in the form
of record links that cause a “destination” view to render only those
tuples that are visible in a “source” view.

Whereas selection-dependent filtering determines the visibility
of items, selection-dependent projection determines the appearance

164

Figure 14: Views can be indirectly coordinated through filters or
projections that depend on selection variables (see figure 11C, 11D).
The filter expression states that “for each candidate, draw it only if it
is selected.” The projection expression states that “for each county,
draw a rectangle if it is selected, a triangle otherwise.” The height
of each rectangle is an aggregate of the dataset created by grouping
the overall election results by the corresponding county.

of items. Most visualization systems can coordinate two views so
as to highlight the items in one view that correspond with items
selected in the other view. Highlighting is usually a fixed function
of the type of view, typically implemented as a special background
color. In XGobi, points and lines in scatterplots can be brushed
using glyphs as well as color.

By using expression-based projections to determine the entire
visual encoding of items in views, highlighting in Improvise is a
user-customizable visual differentiation of selected and unselected
items. Highlighting of items can therefore appear as a special back-
ground color, reverse video, a special font, or just about any varia-
tion on color or other visual attributes the user can dream up. Cus-
tomizable highlighting can also be used to avoid conflict with nor-
mal visual encoding of items. In figure 14, the “Candidate Shares”
pie chart shows vote shares for candidates selected in the “Candi-
dates” table view. Although both views display the same data, the
filtered view elides unselected candidates using an expression de-
fined in terms of the selection. The result is a kind of multi-item
details-on-demand that allows comparison of details for selected
subsets of items. The “Votes v. County” scatterplot highlights
counties based on whether they are selected in the “Counties” table
view. Although the filter and projection expressions in this example
depend on independent selections (one of candidates, one of coun-
ties), it is easy to extend them to depend on conjunctions or disjunc-
tions of selections. The effect would be similar to additive encoding
of selection highlighting in interactive externalizations [22].

Figure 15: Coordinated query graph for a four layer plot (see fig-
ure 11E). The top three layers draw different projections of the same
data. All four layers invoke user-defined expressions (not shown) to
load county shapefiles for drawing.

Layered plots (such as piles in DEVise) enable users to visualize
multiple datasets using different visual encodings in a single plot. A
common use of layering is to visualize a single dataset using a layer
to highlight selected items in a lower layer. In Improvise, scatter-
plots have multiple layers each defined by its own data, projection,
and filter properties. Figure 15 shows how a four layer scatterplot
draws a map using four different projections of two data sets. The
bottom layer draws all counties. The top three layers fill, high-
light, and label only the counties which are involved in the selected
election. Drawing labels in the highest layer keeps them from be-
ing obscured by shapes in underlying layers. The combination of
layering and compound glyphs provides extensive control over the
z-order of items drawn in plots.

Semantic zoom is a form of details on demand that lets the user
see different amounts of detail in a view by zooming in and out.
For instance, the layer manager in DataSplash allows the user to
select the amount of detail by changing a view’s “altitude”. The
view draws data using the visual encodings visible at the chosen
altitude. Semantic zoom in Improvise uses expressions that calcu-
late glyphs as a function of a plot’s own X and Y ranges. Figure 16
shows how the county map plot depends on two ranges both directly
and indirectly. Although this example demonstrates synchronized
zoom between plot layers, the expressions could be edited to make
the layers change detail at different zoom levels. One-dimensional
zooming and multiple levels of detail are also straightforward.

5 CONCLUSION

In Improvise, users interactively build and browse multiview vi-
sualizations using a simple shared-object coordination mechanism
coupled with a flexible, expression-oriented visual abstraction lan-
guage. Improvise is a fully-implemented, self-contained Java ap-
plication that has been used to create complex visualizations of
election results, particle trajectories, network loads, county maps,
music collections, the chemical elements, and even the dynamic
coordination structure of its own visualizations during construction

165

Figure 16: Semantic zoom in the county map (see figure 11F). At
sufficient zoom, the top layer draws a centered label and a scaled,
nested bar plot for all counties. To make the top layer easier to read,
the fill layer reduces the saturation of the winning candidate’s party
color at the same zoom level.

and data exploration.

Highly-coordinated visualizations appear to be much easier to
build in Improvise than other visualization systems because views
are connected indirectly through a coordination model in which
navigational parameters, selections, data, and visual encodings are
shared objects that can be edited on-the-fly. Unlike other visualiza-
tion systems, there is no need to link views pairwise or in sequence
to achieve complex coordination semantics. By way of example,
the bottom half of the visualization in figure 4 contains ten scatter-
plots, four portals, and 13 axes but uses only eight numeric ranges
for navigational coordination.

A major goal for Improvise has been to increase coordination
flexibility substantially without significantly decreasing ease-of-
use, as compared to similar systems like DEVise and Snap; to make
simple coordinations (like synchronized scrolling) easy, and com-
plex coordinations (like semantic zoom) possible. Although com-
parative user studies will be needed to determine if this goal has
been achieved, the possibilities for highly-coordinated visualization
in Improvise appear to be limited only by user creativity.

6 ACKNOWLEDGMENTS

Thanks to Miron Livny and Raghu Ramakrishnan for support and
advice, and Kevin Beyer and Kent Wenger for many discussions.

REFERENCES

[1] Christopher Ahlberg and Ben Shneiderman. Visual information seek-

ing: Tight coupling of dynamic query filters with starfield displays. In

Proceedings of CHI ’94 Conference: Human Factors in Computing

Systems, pages 313–317, 479–480, Boston, MA, April 1994. ACM.

[2] Christopher Ahlberg and Erik Wistrand. IVEE: An environment for

automatic creation of dynamic queries applications. In Proceedings of

CHI ’95, pages 15–16, Denver, CO, May 1995. ACM.

[3] Richard A. Becker, P. J. Huber, William S. Cleveland, and A. R. Wilks.

Dynamic graphics for data analysis. Stat. Science, 2, 1987.

[4] Alan Borning. The programming language aspects of ThingLab, a

constraint-oriented simulation laboratory. ACM Transactions on Pro-

gramming Languages and Systems, 3(4):353–367, October 1981.

[5] Nadia Boukhelifa and Peter J. Rodgers. A model and software sys-

tem for coordinated and multiple views in exploratory visualization.

Information Visualization, 2003(2):258–269, September 2003.

[6] Andreas Buja, Dianne Cook, and Deborah F. Swayne. Interactive

high-dimensional data visualization. Journal of Computational and

Graphical Statistics, 5(1):78–99, 1996.

[7] Stephen G. Eick. Data visualization sliders. In Proceedings of UIST

’94, pages 119–120, Monterey, CA, November 1994. ACM Press.

[8] Ralph D. Hill. The abstraction-link-view paradigm: Using constraints

to connect user interfaces to applications. In Proceedings of CHI ’92,

pages 335–342, Monterey, CA, May 1992. ACM.

[9] Matthew E. Hodges, Russell M. Sasnett, and Mark S. Ackerman. A

construction set for multimedia applications. IEEE Software, 6(1):37–

43, January 1989.

[10] Allan S. Jacobson, Andrew L. Berkin, and Martin N. Orton.

LinkWinds: Interactive scientific data analysis and visualization.

Communications of the ACM, 37(4):43–52, April 1994.

[11] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-

controller user interface paradigm in Smalltalk-80. Journal of Object-

Oriented Programming, 1(3):26–49, August 1988.

[12] Miron Livny, Raghu Ramakrishnan, Kevin Beyer, G. Chen, Donko

Donjerkovic, Shilpa Lawande, Jussi Myllymaki, and Kent Wenger.

DEVise: Integrated querying and visualization of large datasets. In

Proceedings of SIGMOD ’97, pages 301–312, Tucson, AZ, 1997.

ACM.

[13] Jock D. Mackinlay. Automating the design of graphical presentations

of relational information. ACM Transactions on Graphics, 5(2):110–

141, April 1991.

[14] Chris North and Ben Shneiderman. A taxonomy of multiple window

coordinations. Technical Report CS-TR-3854, University of Maryland

Department of Computer Science, 1997.

[15] Christopher Loy North. A User Interface for Coordinating Visual-

ization Based On Relational Schemata: Snap-Together Visualization.

PhD thesis, University of Maryland, 2000.

[16] Chris Olston, Michael Stonebraker, Alexander Aiken, and Joseph M.

Hellerstein. VIQING: Visual Interactive QueryING. In Proceedings of

the 14th IEEE Symposium on Visual Languages, Halifax, Nova Scotia,

Canada, September 1998. IEEE.

[17] Chris Olston, Allison Woodruff, Alexander Aiken, Michael Chu, Vuk

Ercegovac, Mark Lin, Mybrid Spalding, and Michael Stonebraker.

DataSplash. In Proceedings of SIGMOD ’98, pages 550–552, Seat-

tle, WA, June 1998. ACM.

[18] Catherine Plaisant, David Carr, and Ben Shneiderman. Image browser

taxonomy and guidelines for designers. IEEE Software, 12(2):21–32,

March 1995.

[19] Ben Shneiderman. The eyes have it: A task by data type taxonomy

for information visualizations. In Proceedings of IEEE Symposium on

Visual Languages ’96, pages 336–343, Boulder, CO, September 1996.

IEEE.

[20] Chris Stolte, Diang Tang, and Pat Hanrahan. Multiscale visualization

using data cubes. In Proceedings of Infovis 2002, pages 7–14, Boston,

MA, Oct 2002. IEEE.

[21] Chris Stolte, Diang Tang, and Pat Hanrahan. Polaris: A system

for query, analysis, and visualization of multi-dimensional relational

databases. Transactions on Visualization and Computer Graphics,

8(1):52–65, Jan 2002.

[22] Lisa Tweedie. Characterizing interactive externalizations. In Proceed-

ings of CHI ’97, pages 375–382, Atlanta, GA, March 1997. ACM.

[23] Allison Woodruff, Alan Su, Michael Stonebraker, Caroline Paxson,

Jolly Chen, Alexander Aiken, Peter Wisnovsky, and Cimarron Taylor.

Navigation and coordination primitives for multidimensional visual

browsers. In S. Spaccapietra and R. Jain, editors, Proceedings of the

3rd IFIP 2.6 Working Conference on Visual Database Systems, pages

360–371, Lausanne, Switzerland, March 1995. Chapman & Hall.

166

