
A History Mechanism for Visual Data Mining

M. Kreuseler∗

SD Industries GmbH,

89423 Gundelfingen,

Germany

T. Nocke†

Institute of Computer Science

University of Rostock

Rostock, Germany

H. Schumann‡

Institute of Computer Science

University of Rostock

Rostock, Germany

ABSTRACT

A major challenge of current visualization and visual data mining
(VDM) frameworks is to support users in the orientation in complex
visual mining scenarios. An important aspect to increase user sup-
port and user orientation is to use a history mechanism that, first of
all, provides un- and redoing functionality. In this paper, we present
a new approach to include such history functionality into a VDM
framework. Therefore, we introduce the theoretical background,
outline design and implementation aspects of a history management
unit, and conclude with a discussion showing the usefulness of our
history management in a VDM framework.

CR Categories: H.5.2 [Information interfaces and presentation]:
User interfaces—Graphical user interfaces, interaction styles and
user-centered design

Keywords: Visual data mining, Visualization, History, Undo/
Redo

1 INTRODUCTION

Visual Data Mining (VDM) has proven to be successful in explor-
ing large, heterogeneous data sets. By combining automated and
visual mining methods, a variety of exploration tasks can be sup-
ported to get a deeper insight into the data. Contrariwise, each ex-
ploration task is supported by different mining techniques, which
require the processing of several steps in a special sequence.

Exploration denotes an undirected search for interesting features
in a data set. Therefore, exploration typically includes different
undo and redo steps to choose appropriate mining techniques as
well as appropriate parameterizations to achieve the desired results.
Moreover, it is often difficult to reuse earlier settings to roll back
the same results. Thus, the analysis of huge data sets can be very
time-consuming and confusing for a user.

To avoid several ”trial and error” steps during the exploration pro-
cess, Shneiderman introduced the history task in his Task by Data
Type Taxonomy [18]. Following Shneiderman this task means to

”keep a history of actions to support undo, replay, and
progressive refinement.”

Introduced already in 1996, Shneiderman’s claim that information
visualization systems should include functionality to preserve ”the
sequence of searches so that they can be combined or refined” is
still not solved for most systems. This is an essential drawback

∗e-mail: kreuseler@sd-industries.de
†e-mail: nocke@informatik.uni-rostock.de
‡e-mail: schumann@informatik.uni-rostock.de

especially in the context of visual data mining considering the in-
creased number of visual and non-visual mining techniques in large
frameworks.

Typically a user passes through similar tasks again and again, and
only advanced users can handle complex tasks satisfyingly. Thus,
users need support to handle large data sets effectively. This has
to be considered when designing user interfaces for VDM frame-
works. Especially, this includes the following aspects:

• simplifying the user interaction by undo/redo mechanisms,

• improving the user comprehension of the exploration process,

• improving the reusability of mining techniques, parameters
and results, and

• supporting the selection of appropriate mining techniques for
a certain data set.

In this paper we will design a history mechanism to achieve the
goals discussed above. We have integrated this history functionality
in our scalable VDM framework InfoVis (see Kreuseler et al. [13]).
The paper is organized as follows. In section 2 we briefly describe
related work. Section 3 gives a short overview about the general
architecture of a framework for visual data mining including an ef-
fective history management. We introduce the theoretical basis of
our history mechanism in section 4. Design and implementation
aspects will be discussed in section 5. Finally, we show the ap-
plicability of our approach and discuss its challenges in section 6.
We conclude in section 7 with a short summary and an outlook on
further work.

2 RELATED WORK

History functionality has been established as an important fea-
ture of interactive software systems for a long time. For instance,
Berlage [1] discusses the principal problems of selective undo of
(isolated) actions in software systems. Moreover, he introduced the
storage of, and the interaction with, actions in a history tree. Such
undo/redo functionalities have been established in many fields of
application, for example in computer-aided design (CAD) to sub-
stantially improve the construction process. The fast establishment
of such undo functionalities in this background can be indicated by
their spread from the year 1995 (in an overview paper for CAD sys-
tems undo functionality has not even been mentioned [4]) to 1997
(undo functionality is one of the evaluation criteria for CAD sys-
tems [5]).

Other examples for the usefulness of history functionality are the
e-learning background and web guiding. The success of e-learning
systems can be improved if former interactions of a user are used
to adapt the learning process (see e.g. Kashihara et al. [11] and
Plaisant et al. [16]). As an example for web guiding, Hightower
et al. [7] introduce a graphical history-map of visited web pages
in an internet browser to support user orientation, and proved their
usefulness in user studies.

October 10-12, Austin, Texas, USA
0-7803-8779-1/04/$20.00 ©2004 IEEE

IEEE Symposium on Information Visualization 2004

49

vis
Note
Please see conference DVD for supplementary material.

Similar functionality has been developed for visual data mining and
visualization systems as well. Komlodi [12] analyzes the changes
of history searches in information-retrieval systems. Derthick and
Roth [3] use selective undo in combination with a time-line-based
tree visualization for the data exploration system Visage. Events
are marked with the current timestamp and ordered in a (tempo-
ral) hierarchy. Undo can be performed navigating along the time
axis with a slider, and selective redo can be performed by dragging-
and-dropping of event chains. Gayer and Slavik [6] introduce fluid
simulator state trees for a complex combustion simulation scenario.
This tree allows to store system and simulation changes caused by
user interactions and replay resulting simulations in real-time.

Roberts [17] introduces multiple views of a data set, extending the
sequential visualization pipeline to a hierarchic structure. In alter-
native analysis chains (branches of the tree), differing by alternative
but similar parameterizations, many parameters can be reused, ap-
plying ”feature-sets” and ”render groups”. This improves the com-
parability of views (e.g. by using similar color maps) and relieves
users to redo same parameterizations in similar analysis chains. An-
other approach to improve the reusability of a visualization design
has been introduced by Humphrey [8], who uses a graphical nota-
tion that is easy to understand even to non visualization experts to
layout and reuse graphic designs. Ma [14] introduces image graphs
that enable users to directly interact with a set of preview visual-
ization nodes that represent different parameterized volume visual-
ization images. Edges in this graph represent changes in parame-
terizations from one image to the other. Thus, the user can better
understand parameter change impacts, and the exploration process
itself. These image graphs are a kind of history trees, storing and
managing all images of current interest intuitively. Jankun-Kelly
et al. [10] extend Ma’s [14] approach by a visualization transfor-
mation and a visualization session model. These models serve as
a basis for the visualization of process graphs and are stored in an
XML file format. Furthermore, Jankun-Kelley and Ma [9] intro-
duce a new Focus & Context approach to the visualization of larger
process graphs.

Altogether, history, selective undo/redo and operator management
functionality has been proven to be very helpful in data analysis.
However, it has been only partly established in visualization and
visual data mining systems. Thus, we will describe a more general
approach of history management for visual data mining systems,
that includes undo/redo functionality and opportunities to reuse and
select suitable mining techniques for visual analysis tasks.

3 VDM FRAMEWORK ARCHITECTURE

Existing frameworks for visual data mining tasks include a vari-
ety of visual and non-visual mining functionality. The theoretical
background for such systems was laid out by the data state reference
model of Chi and Riedl [2] that introduces several data transform-
ing operators.

Figure 1 shows the architecture of a general VDM framework with
history management based on this data state reference model.

The architecture consists of a GUI that enables users to steer the
analysis process and to select and parameterize different kinds of
operators, including all three categories introduced by Chi and
Riedl. Data and metadata can be imported. These metadata can
be used to control the application and parametrization of operators.
Moreover, internal data structures for operators and data are the
base for an efficient operator execution. Furthermore, the opera-
tor management handles operator execution, operator states, opera-
tor dependencies and is the interface between the data structures

History management unit

Operators

data
transformation

visualization
transformation

visual mapping
transformation

Graphical user interface (GUI)

Data

Metadata

Internal data structures

Internal information
model

Internal metadata

Internal data

Operator data

Operator parameters

Operator interaction data

Stored
history
trees

Operator
management

Operator
execution

Figure 1: General layout of a visual data mining framework with an
analysis process management unit

and the operator library. The history management unit (includ-
ing undo/redo functionality) is connected with all the internal pro-
cesses. Thus, operator states as well as their parameter values can
be stored and reused. The user can interact with all these inter-
nal modules, including views on data structures, parameterization
windows for the operators and views for the interaction with the
operators (e.g. data flow diagram between the operators).

4 A HISTORY MECHANISM FOR VDM

In this section fundamental terms and definitions for the design of
a unit encapsulating history functionality will be discussed.

Software system
A (software) system can be described as a 6-tuple (A, I,O,z,δ ,γ),
with A as the set of system attributes ai (i = 1 . . .n), I the set of
inputs, O the set of outputs, and with z as the current system state.
Furthermore, δ : I ×Z → Z is the state transition function (with Z
as set of states), and γ : I ×Z → Y is the output function (with Y as
the set of outputs). Then, the system state z is an element from the
set Z = D1×D2×·· ·×Dn, with Di is the value range of the system
attribute ai. The function α : Z×A → Di returns the attribute value
av of the attribute ai in the state z: av = α(z,ai).

VDM basics
This general description has to be refined for our purposes. We want
to describe a VDM framework as a 6-tuple (A, I,O,z,δ ,γ) with the
following semantics:

• A = {OP,OC,EV} is the set of system attributes, with OP the
set of operator states, OC the set of Operator connections and
EV environment settings (e.g. user profiles).

• I = {UI,DI,MR} is the set of inputs, with

– UI as the set of user interactions (setting of operator
and environmental parameters, of operator connection
adjustments and graphical interaction),

– DI as data input

– MR as mining results (output data from previous steps).

• O = {MR} is the set of system outputs that are mining results
(which can be computed by any operator and are stored and
displayed in any kind of windows).

50

• zi = {av1, . . . avn} is the current system state, and is defined
by the value of all current relevant system attributes.

• δ : UI × Z → Z is the operator transformation function that
transfers an operator (and its result windows) from one state
to another triggered by user interactions, and as the case may
be, as well transfers connected operators. An example for
this is the recalculation of an visualization window driven by
a mouse interaction. This may lead e.g. to a rotation of the
displayed data.

• γ : I×Z →O is the output function, with the following special
cases:

1. γ1 : DI ×Z → MR - transferring raw input data to min-
ing results, for instance the application of a cluster al-
gorithm that clusters the raw data, or a visualization of
the raw data

2. γ2 : MR× Z → MR - transferring mining results from
previous steps to further refined mining results.

The functions δ and γ can be understood as data mining operators
that transfer input data – based on user interactions – to new opera-
tor states and to visual and non-visual outputs. Furthermore, these
operator functions can be organized in chains that are automatically
executed by a single user action.

Dependencies
In a VDM framework several state transitions δ and output func-
tions γ are combined to generate certain operator states as well
as output data. For the storage and the reconstruction of such
chains for the purpose of history management, dependencies be-
tween these operators have to be considered. Let Iopi

be the set
of inputs for an operator opi and Oopi

be the set of outputs of the
operator opi. Then,

opi is independent of op j (i 6= j) :⇐⇒ Oop j
∩ Iopi

= /0. (1)

Vice versa,

opi is dependent of op j (opi ∼ op j) (i 6= j) (2)
:⇐⇒ Oop j

∩ Iopi
6= /0.

Furthermore, an operator

opi is competing to op j (opi !op j) (i 6= j) (3)
:⇐⇒ Oopi

∩Oop j
6= /0.

Figure 2 depicts an operator chain which transfers a given data in-
put into a calculated mining result. This operator chain includes
dependent and competing operators. Moreover, the figure includes
the associated dependency structure. Two types of dependencies are
considered: system inherent dependencies and user defined depen-
dencies that describe the temporal order of the operations invoked
by user interactions.

History Management
Operator chains express dependencies of transfer and output func-
tions in general. However, to manage concrete user interactions
for undo and redo purposes, we need an appropriate data structure
which stores executed operators and their states. We call this struc-
ture a history tree. A history tree stores a whole (mining) explo-
ration process on a data set owing to its dependency structure, start-
ing at the initial state, branching on nodes, if alternative operator
chains were executed. Beneath the possibilities to undo and redo
operations based on this history tree, successful branches can be
labelled and stored to the file system to recall them for later explo-
ration and presentation purposes.

Analysis sequence

z0 z1 z2 z3 z4 z5 z6 z7

op1 op2 op3 op4 op5 op6 op7

System inherent dependencies User defined dependencies

op2 ~ op1 op7 ~ op5 op7 ~ op6 op4 ~ op1 op3 ~ op2 op5 ~ op4 op6 ~ op4

Competing actions

op4 ! op2

Dependency structure

op1

op4

op2

op5

op6

op3

op7

states z0, ..., z7 in Z

operators op1, ..., op7 in d and g

Figure 2: Example for an analysis sequence and its dependency struc-
ture

To realize this history management we define a VDM framework
with history management as a 7-tuple (A, I ′,O′

,H,z,δ ,γ), with H
as the history tree, I′ is the extended input set with I ′ = I∪H, and O′

is the extended output set with O′ = O∪H. This means that history
information can be internally and externally stored and reloaded.

5 DESIGN AND IMPLEMENTATION OF A HISTORY MANAGE-
MENT FOR VDM

After the discussion of the theoretical background of history man-
agement in a VDM system, this section will outline practical chal-
lenges in designing and realizing such a history management. There
are 4 aspects to be considered in this context:

1. internal history management, including the internal manage-
ment of the history tree and the operator state information,

2. the interface between the history management unit and the
actions in the visual data mining system

3. the external storage of history trees in a file system and

4. the intuitive, interactive visual representation of the history
tree.

5.1 History data structures and history management

Following Berlage [1], there are four possibilities to recall operator
states:

• Storage of actions: all actions are stored. A recall of any state
of the visual mining operators is done by returning to the start-
ing state of the system and recalling the actions one by one.

• Storage of actions and inverse actions: additionally, the in-
verse actions are stored. This allows to undo actions directly.
In some cases, the inverse actions are not trivial to be calcu-
lated.

• Storage of the system state: the entire state is stored. Recall-
ing is done by exchanging the state of all operators. Disad-
vantage of the procedure are high storage costs.

• Storage of the system state change: all the internal data struc-
tures that have been changed by an action (that resulted from
operator execution) are stored. This is not as storage expen-
sive, but not trivial to implement.

51

Our implementation is based on the first variant describing the ac-
tions in a history tree that is implemented as a common explicit
tree. This is practicable for visual data mining, because for many
operators no efficient inverse operation exists. Usually, it is easier
to recalculate operators than to roll back the last action. Applying
the first variant, the tree can be stored memory-efficiently both in-
ternally and externally (see fig. 1 and section 5.3). Moreover, we
cache the last executed operator states and enable users to enrich all
operators with additional information about the aquired knowledge.
This information can be used to prevent users from time-consuming
re-calculations. Altogether, we achieve a balanced compromise of
memory efficiency on the one hand and usability, reusability and
general applicability on the other hand. The nodes of the tree rep-
resent operators and the edges represent the dependency structures
between the operators.

To support reuse, interpretation and evaluation of operators and of
history tree branches for the exploration process, a variety of in-
formation are stored in the history tree nodes. Automatically, the
input data of an operator, its parameterizations to describe the cur-
rent state, its output data and information about the system state are
stored. Furthermore, users can specify additional information about
the interpretation of the mining result constructed by the operator.
These additional information include the exploration tasks the oper-
ator execution supports and a textual specification of insights. The
idea of using exploration tasks in this context is to evaluate if a
certain chain of operator executions performed can be reused in a
similar scenario, for instance on another yet similar data set. Then,
the user specifies a task, and the history management reloads a cer-
tain chain of operators experienced on another data set. Further-
more, operators can be grouped to to single nodes: for instance a
complex visualization operation contains a chain of elementary op-
erators, such as a visualization transformation and visual mapping
transformation operators.

In the special case that no inherent dependencies between two fol-
lowing operators are given, an additional edge is inserted to show
the temporal (user-defined) dependency of these nodes. More-
over, suitable functions for the insertion and deletion of nodes and
branches have been included. Among other things, this enables
users to delete partial trees that are not relevant for further investi-
gation.

5.2 Interface

The realization of a history management unit requires an interface
to the visual data mining system that allows to protocol and recall
user actions in the VDM system. This includes that the VDM sys-
tem sends transfer information to the history management, and that
the functionalities of the VDM system can be externally driven by
the history management.

Our solution is the implementation of an interface class, including a
registration mechanism for all the operator transformation functions
that can be activated by user interactions. This class manages op-
erator execution and operator parameterization functions. If a user
interaction starts a function, several information can be acquired
from this class concerning the invoked function. Furthermore, the
play-back mechanism of the history management uses this class to
call the operator functions related to the nodes of the history tree.

5.3 External storage of history and states

Many systems which are using history mechanisms such as CAD
programs or word processors produce and save documents as results

of the working process. This is different in VDM where insights of
the data are usually revealed by applying mining functions in an it-
erative fashion. This includes re-applying functions with different
parameters and changing input values. This means the result of data
mining process is much more a sequence of mining steps than a fi-
nal document. Moreover in many exploration scenarios, especially
in the context of heterogenous or very large data sets, it might be
useful to re-execute or to continue with a previously recorded min-
ing process. In order to achieve this, we provide mechanisms to
make recorded histories persistent. Therefore, we construct and
store a history tree that makes a variety of information describing
the exploration process available.

In addition to the internal history tree as described above, we also
externally store attributes such as execution time and date of an op-
erator. In order to manage and store the history tree we created a
hierarchical file format which is based on XML. Our file format is
generally applicable for a variety of environments. Since storage of
history trees is not memory expensive and can be done very time-
efficiently, we do not store the computed data structures explicitly,
but store kind and parameters of the operators to achieve the data
structures. Furthermore, our data format allows assigning several
mining histories to a single data set. This is more efficient in terms
of disk space and makes it easier to compare different mining pro-
cesses of the same data.

5.4 GUI and History visualization

Usability and value of the history management depend on the capa-
bilities of the user interface.

Our user interface supports two primary groups of operators - gen-
erating and displaying visual representations of the recorded his-
tory, and providing a set of tools for manipulating, (re)executing
and evaluating operators of the recorded history.

The dynamic nature intrinsic to the work with interactive VDM sys-
tems causes permanent changes resp. steady growth of the current
history. This has to be incorporated into the history visualization.
Subsequently special requirements have to be fulfilled such as

• generating compact visual representations of the history in or-
der to avoid overlap with the VDM system’s primary display
windows,

• updating the history display driven by events, and

• visualizing the history tree, i.e. how operations within the his-
tory relate to each other, displaying the most important prop-
erties of the current history’s elements.

Our graphical interface displays the current history based on a
node-link hierarchy tree layout. Here, visual representations of the
hierarchy nodes depict operators or grouped operators. Since we
assume the user of a classical data mining session is – in general
– interested in the last few executed operators only, a classical tree
layout is sufficient for this purpose (for further discussion see be-
low). The nodes are represented by small glyphs that encode two
types of information. First, a thumbnail picture displays which op-
erator has been applied. In contrast to the works of Ma, Jankun-
Kelly and Gertz [9][10][14] we use abstract icons to describe the
operators instead of concrete rendered preview images. The idea
behind this is that a metaphoric icon can often encode more infor-
mation and be identified faster than a downscaled image. Second,
we added small icons that encode the following information:

• type of operator(s) represented by the node: colored rectan-
gles and triangles depict what kind of operators and what kind

52

of output functions had to be called by the VDM system in
order to perform this particular mining or visualization oper-
ator represented by the hierarchy node. Types of operators
are for instance data transformation operators (indicated by
a white-blue triangle), visualization transformation operators
(indicated by a blue-yellow triangles) and parameterizations
(indicated by a dotted white rectangle),

• the number of operators (for grouped operator nodes).

Operator nodes are connected by edges that refer to user interac-
tions that triggered new VDM operations, i.e. consecutive user in-
teractions within the visual mining process are linked by an edge
within the tree representation. There are two types of edges:

• user-defined (temporal) dependencies are represented by
dashed lines,

• system-defined dependencies are represented by continuous
lines.

Figure 3 illustrates the visual representation of a recorded history
of a complex mining process.

Figure 3: Visualization of a mining history based on a hierarchy
tree in combination with an editor window for assigning special user
information to hierarchy nodes.

The hierarchy display provides a basis for analyzing and navigating
the recorded history. Furthermore, our visual interface implements
a set of interaction tools. Each node of the displayed history can be
selected. A variety of operations can be applied on selected nodes,
such as activating, deactivating, changing, undoing or redoing the
action behind that node. A complete branch of the history which
represents a chain of operators can be replayed, i.e. all mining op-
erations which have been recorded to that history branch are re-
executed. Alternatively, one can choose a particular node in order
to replay only small parts of the recorded history. Thus the entire
mining process or single parts of it can be repeated.

The visual interface is linked via a Brushing mechanism to the
VDM system, i.e. as soon as a history node is activated or selected
the corresponding window within the VDM system is highlighted

as well. We found that especially this feature makes working with
a history tree resp. with redo/undo mechanisms a lot easier.

As already mentioned above, we assume that the user of a classi-
cal data mining session is – in general – interested in the last few
operators only, a classical tree layout is sufficient, and – even for
non-visualization experts – easy understandable. Thus, using the
scrolling mechanisms of the window, the last operators assure that
the most important part of the history tree stays within the focus.
Another case is if the user wants to work with externally stored his-
tory trees, and for example therefore wants to recall certain history
states. In this case,

• if history trees get larger, and

• if the user wants to get general orientation and/or

• jump into arbitrary operator nodes,

he can resize the history window to screen size. For our current
scenarios this strategy was sufficient (until a number of approx-
imately 50 operator nodes). For the visualization of even larger
history trees other paradigms such as Focus & Context or informa-
tion hiding could be applied, for instance using the hierarchy vi-
sualization technique MagicEyeView. A further solution to handle
larger history trees is to extend the operator grouping mechanism
by nesting groups of operators in multiple abstraction layers, and
thus reducing the number of operator nodes to be displayed.

Moreover, our history contains an editor for adding further informa-
tion to each history tree node (see fig. 3). This editor was especially
designed for gathering data mining results, i.e. for recording the
insights into the data, which have been obtained from related oper-
ators in the VDM system. In order to make the data input more effi-
cient, the editor offers a set of predefined exploration tasks common
in visual data mining which can be selected and assigned to nodes.
Furthermore, priorities, rankings and supplying textual information
for individual user notes for operator nodes can be specified.

The recorded information, which may represent the main results of
the data mining process, can be used for gathering deeper insights
into the data. Therefore we provide a tool that allows searching the
recorded history tree based on the user supplied additional infor-
mation, i.e. the user can search, for instance, for all those history
nodes that represent operators related to a particular exploration
task. Other examples might be finding all history nodes with a pri-
ority above a given threshold or with specific characteristics such
as a certain type of operator. Furthermore we plan to extend our
searching tool to compare different history trees of different mining
processes.

6 DISCUSSION

After these considerations we want to introduce an example for the
application of the history management in a VDM framework, and
discuss its advantages as well as challenges for our future work.

Figure 4 shows a history tree (left) of a data mining process and
the related visualization windows (right) of the VDM system. This
example illustrates the usefulness of a visual representation of a
recorded history for the VDM process. A data set is selected (top
node). This data is displayed by a technique called the data table
view (2nd node). The data table view provides a general overview
(compact line mode in the context area), and detailed information
about values of the country Botswana. After exploring the table,
the user employs a hierarchical cluster algorithm (3rd row) to ana-
lyze the general structure of the countries. As a first display tech-
nique, the hierarchical technique MagicEyeView is launched to vi-

53

Figure 4: Screen shot from the VDM System InfoVis (a demographic data set of the countries of the world) with History tree (left), DataTable
display in a table lense mode (center), tree visualization (MagicEyeView) of result of a hierarchical cluster algorithm (top-left), parallel coordinate
display with the selected polyline of Botswana (center-bottom), and a ShapeVis display (bottom-right) showing all the countries from the captured
countries from the MagicEyeView

sualize the cluster results (1st node in the 4th row). Particular clus-
ters which contain developing countries are focused in the display.
Afterwards, the user decides to get further insight into the struc-
ture of these clusters. Therefore another visualization technique
called ShapeVis is applied (2nd node in the 4th row). ShapeVis
displays details about those countries within the clusters of interest
with green spheres while the remaining, less interesting countries
are aggregates and represented by 2 black spheres. Continuing our
example, the user selects the country of Botswana that has different
attributes compared to all other countries within the cluster. Af-
terwards, to get deeper insight of this aspect, a parallel coordinate
view is launched (5th row). Now the data of the country Botswana
can be analyzed in different views - the parallel coordinate view
and the TableView. As a result the user obtains the information that
Botswana has both relatively low birth and death rates in compari-
son with similar countries.

The example shows the advantages of a history management: the
user can continue the exploration process by investigating other
clusters of countries and roll back to former results, for instance
to the specifics of the country Botswana whenever he wants. Fur-
thermore, he can directly select one of the output windows by click-
ing the associated node in the history tree. This is of high benefit
considering the usually numerous, overlapping output windows (in
figure 4 we avoided overlapping for better understanding our exam-
ple; however, typical VDM systems produce a lot of overlapping
windows).

Figure 5 shows the editor window to enrich a node of the history
tree with additional information. Here, the knowledge gathered and
the tasks fulfilled with a certain mining operator can be described
and stored. On the one hand the dialog allows to specify goals
and tasks that have been performed by the exploration of the Mag-
icEyeView output. In this case these are a general overview about
the cluster structure of the data set and details-on-demand about the
underlying categories. Furthermore the user can annotate and eval-
uate how well these goals are fulfilled by the technique. On the
other hand, the user can store the knowledge gathered by the output
window and its importance for the general exploration process. In
this case information about two general clusters of the countries are
extracted: two small cluster of developing countries, and 2 bigger
clusters of the other countries.

To summarize, the example described above depicts three features
of the history management approach: the intuitive orientation in the
exploration process, the opportunity to simply and quickly recall
history states, and the storage and reuse of evaluated exploration
history for the current data set as well as for similar data sets in a
similar exploration context.

In working with a history management in a VDM framework, there
are still challenges remaining. First of all, there are problems aris-
ing from the size of a history tree. If each atomic user interaction is
represented by a node, the history tree soon becomes complex and
complicated to handle. As described above, for instance Focus &
Context mechanisms can be integrated to solve this problem. Our

54

A small cluster of the 3rd world

countries, and a big cluster for

the others. Both are subdevided

in 2 subclusters.

Figure 5: Screen shot of the mining operator evaluation dialog from
the VDM System InfoVis (for the MagicEyeView history node)

approach was to accumulate operators to functional groups. This
has several advantages:

1. The complexity of the history display can be reduced, and the
user can acquire details-on-demand. This includes the devel-
opment of new visualization techniques to display and navi-
gate the history.

2. In many cases a single mining operator is not sufficient to sup-
port complex exploration tasks. A user may want to mark a set
of operators as suitable for a complex goal with the intention
to reuse the whole group of operators in later explorations on
similar data sets.

However, a combination of grouping and Focus & Context tech-
niques is beneficial. Currently, we are developing another VDM-
System with a history mechanism: the Visana system for visual
data mining in modelling and simulation environments (see Nocke
et al. [15]) that integrates mining operators on a high abstraction
level (a kind of grouping), hiding their internal structure. In this
VDM framework we are currently designing a mechanism for

• user-driven selection of an operator module – covering a cer-
tain number of separate operators – in a data flow chart,

• the automated insertion of operators by a history management,
and

• semi-automatic selection support mechanism in dependency
on the exploration context (VDM design).

In the first case, the user can drag-and-drop operators to the graph
such as in module based visualization systems (e.g. OpenDX [19]).
This requires some knowledge about dependency and operator in-
put and output data types. In the second case, the history manage-
ment inserts operators into the flow chart, based on a user-driven
selection of an operator from the main window menu, not requiring
any knowledge on the operator dependency structure. This struc-
ture is only present by enabling and disabling window menu items.
In the third case, the user will specify goals to be performed on the

current input or mining result in any position of the mining process,
and by a semi-automatic selection support mechanism a set of new
operators and operator transformations will we added to achieve
this goal.

7 CONCLUSIONS

In this paper, we investigated the integration of a history manage-
ment into a VDM framework. Therefore, we described the theoreti-
cal basics of VDM and history management, including a VDM defi-
nition enriched by history functionality and a discussion of operator
dependencies. Based on these theoretical issues, we described our
approach to design and implement a history management system
for VDM systems, and outlined how we integrated the history man-
agement into the InfoVis framework. This involved internal and
external storage of history trees, the definition of an interface be-
tween the history management unit and the VDM functions, and
displaying and editing the history tree itself. Then we outlined the
advantages of using a history tree based on an example.

Finally, further research has to be done to explore the application,
interpretation and reusability of applied operators stored in a history
tree. This includes further improvement of the history tree visual-
ization:

• separating successful history branches from unsuccessful sub-
trees: this can be done e.g. by color coding the branches,

• applying more advanced visualization techniques for larger
history trees, for instance Focus & Context displays (see e.g.
[9]).

Moreover, we must investigate the reusability of operator chains for
similar exploration and presentation tasks. This requires the distinc-
tion of strongly data-set-dependent (e.g. attribute selections) and
data-set-independent (e.g. highlighting of outliers) branches of the
history tree, to decide which operators can be completely reused,
which have to reparameterized and which are not transferable from
one exploration scenario to a similar scenario.

Furthermore, the possible extension from history trees to directed
history graphs has to be considered if the dependency structure gets
more complicated, especially if the execution of an operator de-
pends on more than one input. Then, this history graph becomes a
structure similar to data flow graphs used in module-based visual-
ization systems such as OpenDX (see e.g. [19]).

ACKNOWLEDGEMENTS

The authors thank all the students working on our VDM-framework
for their involvement. Our special thank goes to Arne Klaassen
for implementing the history mechanism and integrating it into our
framework. Furthermore, we thank Georg Fuchs for proofreading
our English.

REFERENCES

[1] T. Berlage. A selective undo mechanism for graphical user interfaces
based on command objects. ACM Transactions on Computer-Human
Interaction, 1(3):269–294, 1994.

[2] E.H. Chi and J.T. Riedl. An Operator Interaction Framework for Vi-
sualization Systems. Proceedings of the Symposium on Information
Visualization ’98, 1998.

55

[3] M. Derthick and S. F. Roth. Enhancing Data Exploration with a
Branching History of User Operations. Knowledge Based Systems,
14(1-2):65–74, March 2001.

[4] G. Fandel, P. Francois, and K.-M. Gubitz. CAD market study (in
german: CAD Marktstudie). AIP-Institut Hagen, 1995.

[5] M. Furrer. Market overview CAM systems I & II (in german: Markue-
bersicht CAM-Systeme). Technical Report 16, CAD-CAM-Report,
1997.

[6] M. Gayer and P. Slavk. Pre-Calculated Fluid Simulator States Tree.
In: Twelfth IASTED International Conference on Applied Simulation
and Modelling. Anaheim : Acta Press, pages 610–615, 2003.

[7] R.R. Hightower, L.T. Ring, J.I. Helfman, B.B. Benderson, and J.D.
Hollan. Graphical Multiscale Web Histories: A Study of PadPrints.
Benderson, Shneiderman (eds.): The Craft of Information Visualiza-
tion, Readings and Reflections, pages 220–227, 2002.

[8] M.C. Humphrey. Creating Reusable Visualizations with the Relational
Visualization Notation. Proceedings of the IEEE Visualization’00,
Salt Lake City, Utah, USA, pages 53–60, 2000.

[9] T.J. Jankun-Kelly and K.-L. Ma. MoireGraphs: Radial Focus+Context
Visualization and Interaction for Graphs with Visual Nodes. In Pro-
ceedings of the IEEE Information Visualization 2003 Conference, Sea-
tle, USA, October 2003.

[10] T.J. Jankun-Kelly, K.-L. Ma, and M. Gertz. A Model for the Visual-
ization Exploration Process. In Proceedings of the 13th IEEE Visu-
alization 2002 Conference, R. Moorhead, M. Gross, K. I. Joy (eds.),
pages 323–330, October 2002.

[11] A. Kashihara, Y. Satake, and J. Toyoda. A History Visualization for
Learning-by-Exploration in Hypermedia on WWW. Proceedings of
WebNet 98. Orlando. Florida., pages 497–502, 1998.

[12] Anita Komlodi. Search history for user support in information-seeking
interfaces. Extended Abstracts of ACM CHI 2000: Human Factors in
Computing Systems Conference. The Hague, The Netherlands, pages
75–76, 2000.

[13] M. Kreuseler and H. Schumann. A Flexible Approach for Visual Data
Mining. IEEE Transactions on Visualization and Computer Graphics,
8(1), January-March 2002.

[14] K.-L. Ma. Image Graphs - A novel Approach to Visual Data Explo-
ration. Proceedings of the IEEE Visualization’99, San Francisco, CA,
USA, pages 81–88, 1999.

[15] T. Nocke, U. Boehm, H. Schumann, and M. Flechsig. Information
Visualization Supportung Modelling and Evaluation Tasks for Cli-
mate Models. In: Proceedings of the Winter Simulation Conference,
WSC’03, New Orleans, USA, December 2003.

[16] C. Plaisant, A. Rose, G. Rubloff, R. Salter, and B. Shneiderman. The
design of history mechanisms and their use in collaborative educa-
tional simulations. Proceedings of the Computer Support for Collab-
orative Learning, CSCL’99, pages 348–359, 1999.

[17] J. C. Roberts. On encouraging multiple views for visualization. In
Proceedings Visualization’98, pages 8–15, 1998.

[18] Ben Shneiderman. The eyes have it: A task by data type taxonomy
for information visualizations. Technical Report UMCP-CSD CS-TR-
3665, College Park, Maryland 20742, U.S.A., 1996.

[19] D. Thompson, J. Braun, and R. Ford. OpenDX, Paths to Visualization.
Visualization and Imagery Solutions, Inc., first edition edition, 2001.

56

