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Figure 1: Illustration of our view-dependent isosurface rendering algorithm using a Lego car dataset. (a) The 241K isopoints (isovalue 120.5)
extracted from a density volume. (b) The active isopoint set for the current viewpoint (Green: inherited from the previous frame, Red: newly
refined or collapsed). The size of each isopoint is proportional to the size of the octree cell where it resides. (c) The isosurface constructed from
the active isopoint set (Green: inherited, Red: newly extracted), 61K triangles.

ABSTRACT

We present Selective and Hierarchical Isopoint Clustering (SHIC)
as a framework for interactive isosurface visualization. SHIC is an
octree-based vertex hierarchy where each surface component in a
cell is represented by a vertex (isopoint) with encoded connectivity.
We describe a novel connectivity encoding scheme, called Con-
nectivity Encoding Bitmap, and two topology-preserving isopoint
clustering algorithms to build the vertex hierarchy. Our framework
is able to cluster surface components with up to four intersection
points on a cell edge. During rendering, an incremental isosurface
extraction algorithm is used to construct the isosurface dynami-
cally. Events associated with vertex tree modifications and active
vertices changes are unified using timestamps. Our framework is
efficient, space-saving, and suitable for rendering large isosurface
objects with local modifications.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Object hierarchies.

Keywords: isosurface simplification, vertex clustering, level-of-
detail rendering

1 INTRODUCTION

For large volumetric datasets, a large amount of tiny triangles are
usually generated by isosurface extraction algorithms. Visualizing
them in real time is a challenging task. Level-of-detail (LOD) ren-
dering techniques have been developed to address this problem. Us-
ing multiresolution techniques, LOD algorithms improve rendering
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performance without significantly losing image quality. In isosur-
face rendering, the LOD techniques can be classified into two cate-
gories: (1) isosurface pre-extraction, followed by LOD surface ren-
dering [9, 15]; (2) isosurface extraction on a pre-simplified volume
hierarchy. However, algorithms in both categories have shortcom-
ings. For large volumes, isosurface extraction in full resolution is
very time-consuming. The extracted mesh may be too large to fit
into the main memory. If the volume is dynamically modified, the
mesh has to be re-extracted and re-processed, which results in long
latency. On the other hand, the pre-simplified volume hierarchy is
hard to handle the topology problems arising from hierarchical cell
merging. The cracks between different levels have to be patched
[20, 22], which slows down the isosurfacing process.

Volume simplification algorithms can be classified into field sim-
plification and isosurface simplification. In the first category, He
et al. [6] have used low-pass filters to convolve a 3D volume buffer.
This tends only to blur the objects. Tetrahedra refinement [4, 5, 17]
is a good strategy to generate a coarse-to-fine hierarchy of the
volume, where the longest edge bisection is used. Gerstner and
Pajarola [4] have presented a table-based method for topology-
preserving volume simplification, where the critical points are ex-
tracted and preserved. In isosurface simplification, there are two
major types: MC-based [20, 22] and isosurface clustering [11]. The
former algorithms decimate the isosurface on an octree-based grid.
One major issue is crack patching for different levels. Another is
that these algorithms can’t handle more than one intersection point
on a cell edge. Although point-based clustering [1, 7, 18] has been
studied and decimation algorithms, such as principal component
analysis, have been presented, isosurface clustering hasn’t gained
significant attention. Ju et al. [11] have described a topology-
preserving algorithm for clustering cells of different materials using
one representative vertex per cell. We have used the Enhanced Cell
representation for isosurface simplification [25]. In terms of rep-
resentation power, the enhanced cell is equivalent to the method
presented in this paper. However, the representation in this paper is
more compact. Furthermore, our previous simplification algorithm
is limited to at most two intersection points on a cell edge.
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Based on the Progressive Mesh (PM) [8] framework for simplify-
ing arbitrary manifold meshes, Xia and Varshney [24] and Hoppe
[9] have independently extended PM to support LOD rendering,
where vertices in the mesh are organized into a forest. In Hoppe’s
View-Dependent Progressive Mesh (VDPM) [9], the system main-
tains a list of active vertices. Using vertex split and edge collapse,
these vertices are merged or refined, according to view parame-
ters. Later, Hoppe [10] has elaborated his algorithm with output-
sensitive memory consumption and a geomorphing technique to
smoothly interpolate two successive meshes. Luebke and Erikson
[15] have presented a dynamic vertex clustering algorithm on a tight
octree. Some specialized algorithms have been presented for ter-
rain rendering, such as height field based algorithms [2, 13]. The
ROAMing algorithm [2] uses longest edge bisection to subdivide
height field cells into crack-free triangles and a dual-queue tech-
nique to refine and merge cells. Besides, the tetrahedra refinement
strategy [5] is efficient enough for view-dependent isosurface ren-
dering.

In this paper, we present Selective and Hierarchical Isopoint Clus-
tering (SHIC), a view-dependent framework for interactively ren-
dering large isosurfaces. For a user-defined isovalue, we extract the
points that lie on the isosurface, or isopoints, as the representation
primitives. Each isosurface component in a cell is represented by an
isopoint. The isopoints are pre-simplified using our novel isopoint
clustering algorithms with topology-preservation and are organized
into an octree. During rendering, a set of isopoints are dynamically
selected for constructing a crack-free, view-dependent isosurface.
Our framework provides an approach for interactive rendering large
isosurfaces. It also attempts to tackle the problem of LOD isosur-
face rendering of volume datasets while permitting local modifica-
tions, which is rarely reported in literature.

The primary contributions of this paper are:

• A novel connectivity encoding scheme for isopoints. Each
isopoint is associated with an edge bitmap, called Connectiv-
ity Encoding Bitmap (CEB), to provide compact encoding.

• Two topology-preserving isopoint clustering algorithms to
build the vertex hierarchy. In the hierarchical clustering al-
gorithm, the vertices from different surface components are
clustered independently using connectivity bitmaps. The se-
lective clustering algorithm can handle up to four intersection
points on a coarse cell edge.

• A view-dependent isosurface extraction algorithm. Our sys-
tem doesn’t store the full mesh. Triangles are constructed on-
the-fly in view-dependent rendering.

2 PROBLEM STATEMENT AND DESIGN

Our framework is inspired by the Hierarchical Dynamic Simplifi-
cation (HDS) [15] algorithm for rendering surfaces. However, our
system has two unique characteristics: (1) Our clustering algorithm
preserves isosurface topology by using multiple representative ver-
tices in a cell. (2) We don’t store an explicit mesh of the finest res-
olution. Instead, the isopoint connectivity is encoded and the mesh
used for rendering is dynamically constructed. Our motivation for
such an algorithm design is stated as follows:

Vertex Clustering: In this algorithm, the space is partitioned into
cells and vertices that fall into the same cell are replaced with one
representative vertex. To apply this algorithm, for a given isovalue,
the isosurface is extracted from the implicit function f (x,y,z) on
the volume grid first. The grid lines split the space into cells. The
surface components existing in a cell may be complex. To merge
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Figure 2: Simplifying two surface components in the volume grid.

these cells into a coarse cell p, the surface components in p can
be even more complex. We only consider the vertex clustering al-
gorithm in a cubic cell environment. Since the isopoints are the
vertices used for clustering, we don’t distinguish them in this pa-
per. Figure 2 shows a large cell ABCD, which contains 16 child
cells. Two surface components, S1 and S2, pass this cell. In each
child cell, there is at most one surface component. To cluster the
surface components, we need to answer three questions:

• Shall we allow more than one representative vertex in a cell?
In the large cell ABCD, there is no doubt that keeping the two
surface components is better than merging them into one.

• How to recover the vertex connectivity for cell ABCD? If we
use the Marching Cubes (MC) algorithm [14], only one sur-
face component can be extracted. The connection on edge BC
is lost since B and C have the same sign.

• How to handle the cases where a surface component is split
into several segments by a grid line? For example, in cell
EBFG, edge EB cuts S2 into two segments. How can we re-
connect them? Can it be simplified as the blue dash line?

Surface-based vertex clustering algorithms provide no answers to
these questions. These algorithms use one vertex per cell and are
topology-blind. Existing topology-preserving simplification algo-
rithms [4, 11] are unable to solve these problems, too. These algo-
rithms maintain all critical points. Instead, we use multiple repre-
sentative vertices to overcome these problems.

Memory and Latency Considerations: The basic rendering ele-
ments of an isosurface are triangles, which are usually tiny and vast
in amount, since the volume representation has to use high reso-
lution to sample the original object. CSG operations also require
the sampling resolution to be high enough to reconstruct the high
frequencies created in modeling. The emergence of the feature-
sensitive volume modeling techniques [11, 12, 21] require much
more memory to store the directed distances. For example, a possi-
ble data structure for octree cells can be:

struct OctreeCell {
OctreeCell* child[8]; //pointer to the child cells
QEF qef; //quadric error metric
HermiteData* edge[12]; //intersection points and normals
byte sign[8]; //signs at the corner points

};

The above data structure implies that space requirement for stor-
ing cells is huge. At the same time, LOD surface rendering al-
gorithms also have significant space consumption, since they only
work on pre-extracted meshes. For large isosurfaces, pre-extracting
the whole isosurface might be impractical, both in storage and la-
tency. For example, the connectivity space takes a large portion in
storage. It may also be unnecessary since not all regions are vi-
sualized in full detail. Furthermore, the volumetric scenes can be
dynamically modified. Most existing LOD algorithms are suitable
for rendering static scenes only and a time-consuming preprocess-
ing stage is required. Therefore, we use encoded connectivity and
dynamic surface construction to address these issues.
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3 ISOSURFACE ENCODING AND CLUSTERING

Given a user-defined isovalue, our framework extracts the isosur-
face components in cells and converts them into the isopoint repre-
sentation. Each surface component is represented by an isopoint
with an associated connectivity bitmap. The isopoints are posi-
tioned using the MC algorithm or dual contouring [11]. Two clus-
tering strategies are developed to build the vertex hierarchy: hierar-
chical clustering and selective clustering.

3.1 Connectivity Encoding Bitmaps

Our encoding scheme is inspired by the SurfaceNets algorithm [19],
where a quad is constructed around an edge e which shows a sign
change. The sign change indicates that the isosurface passes that
edge once. Therefore, all of the 4 vertices in the cells that share e
can be associated with e. Given a list of vertices, the quad can be
recovered by finding the 4 vertices. For each isopoint representing
a surface component S, its associated edges are the edges that S in-
tersects with. We also need to decide the bits required for each edge
in the encoding. Following the assumption of [21], the isosurface
may pass an edge twice. Since the cell edges are axis-aligned, we
order the end points of each edge in its axis direction. Each edge
must be one of the following four cases:

• ◦ : No isosurface passing;

• + : End point 1 inside and end point 2 outside (1 passing);

• - : End point 1 outside and end point 2 inside (1 passing);

• +-: The isosurface passing the edge twice and both end points
showing the same classification value.

We distinguish the sign changes of each edge along its axis direc-
tion. If end point 1 is inside the object and end point 2 is out, we
call it a + sign change. If reversed, we call it a - sign change. The
two cases are called directed sign changes in general. Distinguish-
ing them allows us to setup the correspondence of vertices when
two intersection points are found on one edge. We use 2 bits to en-
code the above 4 cases. Totally a bitmap of 24 bits is required for
the 12 edges. We name this scheme Connectivity Encoding Bitmap
(CEB). Figure 3 shows the structure of the CEB. Besides building
a CEB for each isopoint, we can also construct a CEB for each cell.
The CEB of a cell describes the connectivity of all vertices in the
cell and is computed by the OR operation on all the vertex CEBs.
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Figure 3: The indexing sequence of the 12 cube edges (left), and the
structure of a CEB (right).

The CEBs provide us a way to encode more complex connectivity
than the cube-based encoding. A CEB can fully encode the connec-
tivity of an isosurface component. Figure 4 shows some examples,
where the cube-based encoding can’t represent Figures 4b and 4c.
Especially, Figure 4c has singular connectivity. Our motivation of
using powerful encoding is to reduce the amount of cells necessary
to preserve the isosurface topology. Although more than one repre-
sentative vertex may appear in a cell, these vertices are temporarily
stored and are waiting for chances to be merged in other levels.
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Figure 4: Our encoding scheme can represent: (a) Two disconnected
surface components; (b) Two intersection points on an edge, includ-
ing loops; and (c) Singular connectivity.

3.2 Hierarchical Clustering

In our hierarchical clustering algorithm, the octree cells are merged
in a bottom-up manner. A cell p is constructed from its eight child
cells, unless the CEB of a vertex in p or the CEB of p can’t be
constructed. There are two tasks: generating new representative
vertices for each cell and creating a new CEB for each vertex.

To generate new representative vertices, we need to determine the
surface components first. Vertices in the same surface component
of the coarse cell are merged. Vertices are treated as connected
if they form quads or triangles. Since the CEBs encode the con-
nectivity, the vertices that share one cell edge and have the same
directed sign change must be connected. The connected vertices
are collected into a set. To generate the representative vertex of
this set, the quadric error metrics [3] are applied. The quadric er-
ror functions associated with those vertices are added into Q(x). A
representative vertex is computed by minimizing the error of Q(x).
To get a robust result, we use the Singular Value Decomposition
(SVD) method.

To build the CEB of a vertex, we merge the CEBs of its child ver-
tices. In these CEBs, only the edges that lie on the edges of the
coarse cell are used. The directed sign changes on each coarse cell
edge is counted. If the count exceeds the limit, this CEB can’t be
constructed. Otherwise, the corresponding bits on the CEB are set.

3.3 Selective Clustering

The hierarchical clustering algorithm is restricted by the following
two factors:

• The representation power of the CEB.

• The mip-map style merging sequence.

In the first factor, the CEB imposes a limitation on cell merging:
edges with more than two intersection points can’t be represented.
We name these edges complex edges. In the merging tree, this will
stop the merging of the four coarse cells sharing a complex edge
and their parents. In the second factor, the mip-map style hierarchi-
cal cell merging enforces that a coarse cell could only be built from
child cells. This makes the first factor unavoidable. On the other
hand, for the child cell edges which don’t lie on the coarse cell
edges, the total count of intersection points can exceed the limit.
Based on this observation, we present a selective clustering algo-
rithm. In this algorithm, a complex edge is no longer the bottle-
neck, as long as the intersection points on that complex edge is in
one surface component.

This algorithm is illustrated in Figure 5. Figure 5a shows two coarse
cells, A and B. The two cells share one complex edge e. The isosur-
face is cut by e and three intersection points are created. There are
five surface components in the child cells, which are represented
by vertices v0 to v4. To cluster them together, we create a virtual
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Figure 5: Selective vertex clustering on a complex edge e. (a) The
isosurface has three intersection points on e, which is shared by cells
A and B. (b) Virtual cell C is created by merging the four child cells
sharing e. C is mergable since e is an inner edge now. (c) The repre-
sentative vertex vc in C is copied to A and B. (d) The four-intersection-
point case. (e) The simplified result.

coarse cell C from the 4 child cells sharing e, shown in Figure 5b.
C contains only v0 to v4. In C, edge e becomes an inner edge and
v0 to v4 are in one surface component. Since there is no restriction
on the count of intersection points on an inner edge during cluster-
ing, C can be merged safely. The clustering process generates one
representative vertex vc. The connectivity bitmap of vc, CEBvc , can
be constructed from its child vertices using the method in Section
3.2. Note that CEBvc contains the connectivity from both A and
B. Finally, we need to store vc into the real coarse cells. In each
coarse cell, we create a copy of vc. Suppose it is va in A and vb
in B. The connectivity of the two vertices is computed by splitting
CEBvc into two parts: one part that goes from A and another part
from B. CEBva is former part, while CEBvb is the latter.

In Figure 5c we show the copied vertices and their connectivity.
Note that the connectivity is singular, as there is only one connec-
tion for each vertex. This can only be represented by our encoding
method. Our algorithm also guarantees that there will be no crack
during surface extraction. Although va or vb can only reconstruct
a partial triangle fan centered at vc, the union of them will be a
crack-free triangle fan, since va and vb are actually the same ver-
tex. In terms of error measurement, since va and vb are copies of
vc, they are assigned the same error of vc. Furthermore, to avoid
cracks, they should be processed specially in subsequent clustering
operations since they are tied as one vertex.

The above algorithm can also be used to merge cells where four in-
tersection points are found on a complex edge, as long as they are in
one surface component, such as the case shown in Figure 5d. The
difference is that since cell A has no contribution in connectivity
(see Figure 5e), there is no need to copy the vertex to A. How-
ever, this algorithm can only handle one complex edge per surface
component.

4 OUR RENDERING FRAMEWORK

The following shows the structure of the representative vertices and
octree cells used in the SHIC system:

struct RepVertex {
bit active; //vertex activeness in rendering
bit recursion; //indicating a path to active decedents
bit edgevector[24]; //connectivity encoding bitmap (CEB)
vec repvert; //representative vertex position
RepVertex *pParentvert; //parent vertex to be merged to
QEF qef; //quadric error metrics
float qerror; //quadric error of repvert

};

struct OctreeCell {
.... //other octree cell information

byte vertcount; //# of representative vertices
RepVertex *pRepvert; //pointer to representative vertices
word timestamp; //CSG & LOD rendering time stamp

};

In the vertex hierarchy, vertices can be classified into active and
non-active, according to whether or not they participate in isosur-
face construction of the current frame. In the RepVertex structure,
the active field is the flag of activeness. If not active, the recur-
sion field indicates whether or not there is a path from this vertex
to its active descendants. In additions, the parent vertex link and
quadric errors associated with a vertex are stored in pParentvert
and qerror fields, respectively. In the OctreeCell structure, since
multiple representative vertices are allowed in a cell, the qef field in
the previously-defined OctreeCell structure has to be moved to each
vertex. A timestamp field is used for indicating cell CSG and LOD
rendering events. The RepVertex structure costs 31 extra bytes per
vertex. Since there is only a small portion of cells that contain mul-
tiple vertices, the cost per cell is also close to 31 bytes. This number
can be reduced by quantizing some floating point fields.

Our framework contains two stages: a preprocessing stage that sim-
plifies the input isopoint set into a static vertex hierarchy, and an
interactive stage that extracts view-dependent isosurfaces from this
vertex hierarchy frame by frame.

4.1 Preprocessing

The input isopoint sets are extracted from regular density or di-
rected distance volumes. The hierarchical clustering and selective
clustering algorithms are performed. Figure 6 shows our prepro-
cessing algorithm. In this process, the quadric error is computed
and stored in each vertex. To keep track of the parent-child rela-
tionship, the pParentvert pointer is also maintained. There are some
restrictions to merge the parent cells of those cells containing com-
plex edges. We must link the parent vertices of the copied vertices.
Copied vertices from the same complex edge only vanish after they
are all merged into one surface component.

procedure Preprocessing(OctreeCell root)
1. hierarchical clustering(root); //complex edges ⇒ QUEUE
2. while QUEUE �= Ø
3. edge e ⇐ HEAD QUEUE();
4. selective clustering(e);
5. for each coarse cell p sharing e
6. hierarchical clustering(p); //complex edges ⇒ QUEUE

Figure 6: Preprocessing algorithm.
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4.2 CSG Updating

We use directed distances for feature-preserving CSG operations.
For each cell edge, up to two intersection points with normals are
stored. To decide the surface components in a cell, we group the in-
tersection points using the algorithm described in [21]. The system
keeps a global timestamp TS for CSG operations. Before a CSG
operation, TS is increased by one. The affected region is indicated
by the timestamp field of the octree cells. Each affected cell is as-
signed the new timestamp, and hereby its ancestors. After the CSG
operations, we re-compute the representative vertices and perform
a similar preprocessing on the affected region of the octree.

4.3 Screen-space Error Metric

The screen-space error metric provides an error measurement for
each representative vertex in the vertex hierarchy when projected on
to the screen. There have been many sophisticated error metrics [9,
13]. Due to lacking of the normal vector for each vertex, we use a
simplified computation model. Figure 7 illustrates our error metric,
where a representative vertex v has a distance r to the isosurface
and d to the viewpoint. Suppose the view angle is f ovy and the
screen error threshold is τ pixels. The maximum possible screen
projection size Pro jv of a line segment of length r is:

Pro jv = r ·h/(d · f ovy) (1)

The error v.qerror is the sum of squared distances of v to a set of
triangle planes represented by v. It is an over-estimation of r2. By
replacing r with v.qerror1/2 and requiring Pro jv < τ , we have:

v.qerror < d2 · (τ · f ovy/h)2 (2)

We define a qrefine function to compute whether or not a vertex
should be refined. qrefine is similar to the function defined by
Hoppe [9]. It uses two criteria: the view frustum and the screen-
space error. This function returns true only if a vertex is inside the
view frustum and its screen error satisfies Equation 2.
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Figure 7: The screen-space error for a representative vertex.

4.4 Active Vertices and Triangles

A set of active vertices is maintained in the vertex hierarchy. The
active vertices are not stored separately. Instead, they are just indi-
cated by the active field in the RepVert structure. For each frame,
constructing the isosurface from the vertex hierarchy contains two
steps: (1) Updating the active vertex set. After each updating,
the active vertex set is adapted to the current viewpoint. There
are three possible actions for each active vertex from the previous
frame: collapsing, refinement and no change. (2) Incremental iso-
surface extraction. The active vertex set is initialized using a view-
independent error threshold δ . The recursion field of the non-active
vertices are initialized to keep track of the paths to the active ver-
tices in the vertex hierarchy.
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Figure 8: The active vertices of two consecutive frames. Although
there may be multiple vertices in an octree cell, these vertices are
raised or lowered independently.

Figure 8 shows the refining and collapsing of the active vertex set
between two consecutive frames. These operations are efficient
since there is no need to manage connectivity. In the adaptive re-
finement algorithm (see Figure 9), the octree is recursively visited.
There may be multiple vertices in a cell. They may not be selected
simultaneously, such as v1 and v2 in Figure 8. Therefore, we use
the recursion field to ensure that no surface components are lost.
To generate a smooth transition between frames, we specify that for
each vertex, the coarsening and refining processes can only raise or
lower the vertex by one level.

procedure adaptive refinement(OctreeCell p)
bool recursion=false;
for each vertex v in p

recursion|=v.recursion;
if v.active and qrefine(v)

expand vertex(p, v);
if recursion or p.pRepvert==null //there are other paths

for each child cell q in p
adaptive refinement(q);

for each vertex v in p where !v.active
if all of v’s child vertices can be collapsed

if !qrefine(v) collapse vertex(p, v);
procedure expand vertex(OctreeCell p, RepVertex v)

v.active=false, v.recursion=true;
for each child cell of p

for each child vertex t of v
t.active=true;

procedure collapse vertex(OctreeCell p, RepVertex v)
v.active=true, v.recursion=false;
for each child cell q of p

for each child vertex t of v
if t.active==true

t.active=false;
else

t.recursion=false;
t’s descendants active, recursion fields ⇐ false;

Figure 9: Adaptive vertex refinement algorithm.

The adaptive refinement procedure has no difficulty in handling the
copied vertices in Section 3.3. These vertices are treated equally as
other vertices. The reason is that for each complex edge, the copied
vertices have the same quadric error and position. Therefore, they
have the same screen error. They are either selected into the active
vertex set or vanish together. No crack will appear.

Due to the temporal coherence, in each frame, only a small portion
of the active vertices changes. It is inefficient to extract the whole
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isosurface again. Therefore, an active triangle buffer is maintained.
Prior to the isosurface extraction, each triangle in the active buffer
is tested. The invalid triangles are collected for recycling. To val-
idate the triangles, the timestamp field is used. Before rendering
each frame, the global timestamp TS is increased by one. In the
adaptive refinement procedure, the timestamp field of each cell p is
updated to TS if the following rule is satisfied:

( ∑
v⊂p

v.active⊕v.active(old))) > 0, (3)

where ⊕ is the XOR operator. This rule ensures that the timestamp
is updated if a vertex in the cell has changed its active status. For
each triangle in the active buffer, the validation function checks the
maximum timestamp tmax of the four cells where the three vertices
are created from. If tmax equals TS, this triangle is invalid. We don’t
directly use the active field for triangle validation since vertices may
not be addressed after a CSG operation. However, the octree cells
are always accessible.

4.5 Incremental Surface Extraction

The timestamp field can indicate two different events: CSG oper-
ations, which perform local modification on the vertex hierarchy,
and view-dependent refinement of the vertex hierarchy. Therefore,
we can handle them in a unified way using a truncated isosurface
extraction algorithm. The full isosurface extraction is an extension
of the SurfaceNets algorithm on a vertex hierarchy. The truncated
algorithm has the same recursive rule as the full algorithm and saves
the result into the active triangle buffer. The difference is that the
truncated algorithm checks the timestamp field stored in each octree
cell before extracting the isosurface. The criterion for performing
isosurface extraction on a cell using timestamps is:

• When a cell’s timestamp is older than TS and none of the
timestamps of its 18-neighborhood cells equals TS, this cell,
together with all its descendants, are skipped.

procedure incremental surf extraction(OctreeCell p, word TS)
1. if p.timestamp < TS return;
2. if all timestamps of p’s 18-neighborhood < TS return;
3. bool recursion=false;
4. for each vertex v in p
5. recursion|=v.recursion;
6. if v.active
7. //half of the 12 edges are used, as in SurfaceNets alg.
8. for each edge e of the 6 edges from v’s CEB
9. for each directed sign change on e
10. find the 4 vertices in the 4 cells sharing e;
11. generate triangles;
12. if recursion or p.pRepvert==null
13. for each child cell q in p
14. incremental surface extract(q, TS);

Figure 10: Incremental surface extraction algorithm.

Checking the 18-neighborhood is necessary since a triangle always
crosses cell boundary. By skipping cells, the incremental surface
extraction procedure only takes time proportional to the count of
the affected cells. Figure 10 shows our incremental surface extrac-
tion algorithm in detail. The full extraction part (steps 3-14) shares
similarity with the extended dual contouring algorithm [21]. How-
ever, our algorithm works on a dynamically refined vertex octree.
The vertices used for constructing triangles are usually in the inter-
mediate levels. Based on the screen-space errors, not all the vertices

in the same cell are chosen. On the contrary, their algorithm uses
the vertices from the boundary leaf cells only.

In step 10 of Figure 10, we need to find the other three vertices shar-
ing an edge e. Normally, we match the CEB stored in each vertex.
Figure 11 shows our algorithm of finding one matched vertex for a
starting vertex v. The recursion field is used for making decisions
of traversing the current cell upward or downward.

function find matched vertex(OctreeCell p, RepVertex v, int e)
1. OctreeCell q ⇐ p’s neighboring cell in the same level;
2. while q== null
3. q ⇐ q’s parent cell;
4. find a vertex t in q matching v; ///CEB matching;
5. while t.active != true
6. if t.recursion == true;
7. for each child cell r of q which contains edge e
8. finding vertices(r, v, e);
9. else t = t.pParentvert;
10. return t;

Figure 11: Algorithm for finding a matched vertex.

The incremental surface extraction algorithm can also be used to
extract surfaces from adaptively sampled volumes. In such a sce-
nario, the finding vertices function may have difficulty in finding
matched vertices using the CEB information. For example, in Fig-
ure 12, the small cell has one vertex v0, while the large cell has two
vertices v1 and v2. Both are boundary leaf cells. Since the edge
e lies on one face of the large cell, there is no corresponding edge
in the large cell. Therefore, vertex v0 has difficulty in finding the
matched vertex. The CEB matching method fails in such cases. To
find the matched vertex, we use the following rules:

1. If v0 has another edge e′ with a directed sign change and e′
is on the boundary edge of the large cell, use e′ to find the
matched vertex in the large cell. This is equivalent to using
the connected surface component for matching.

2. If no such edges, find the corresponding vertex using heuristic
metrics such as minimal normal deviation or minimal distance
between v0 and other vertices.

v1
v2

e

v0

Figure 12: An example where CEB
matching fails. Edge e is the edge that
shows a directed sign change. In this
configuration vertex v0 of the small cell
is unable to find the matched vertex in
the large cell using its own CEB.

5 EXPERIMENTAL RESULTS

We have performed tests on a 3.0GHz Pentium IV PC with 1GB
memory and an on-board Intel 82865G graphics controller. The PC
runs Windows XP operating system. We have used two datasets:
a Lego car (Figure 1a, isovalue=120.5) and a Temple (Figure 13a,
isovalue=0). Table 1 shows the statistics for the two datasets. In
Figure 13a, although a large portion of the Temple is flat, the uni-
fied modeling space requires the objects to be sampled at a high
resolution so that tiny details can be reconstructed correctly. In
both examples, a screen-space error threshold of 2 pixels is used in
LOD rendering. Due to the LOD rendering techniques, our tests
runs well on the low-end graphics board.
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Figure 13: LOD rendering for solid modeling using the zero isosurface. (a) A view before the CSG operations. (b) Another view after three
consecutive CSG operations are performed. After each CSG operation, the isopoint octree is maintained efficiently. (c) The underlying mesh
rendered from a viewpoint similar to that of (b).

Table 1: Statistics for the two datasets.

Model Resolution # leaf cells # rep. vertices
Lego car 132×204×110 240K 241K
Temple 5123 2.57M 1.62M

Temple(CSG) 5123 2.89M 1.81M

5.1 Rendering Performance

The preprocessing time for the Lego car and Temple datasets are
2.8 sec. and 18.2 sec., respectively. Figure 14 shows the random
navigation timing and triangle counts of 1000 frames for the two
datasets. No backface-culling is used. For the Lego car, the sys-
tem maintains a buffer of about 60K triangles. For the Temple, the
buffer size is around 25K triangles. In Figure 14, The updated trian-
gle count is the sum of invalid triangles and newly created triangles
in each frame. Directly rendering the full resolution on average
takes 0.28 sec. and 2.22 sec., respectively. Table 2 shows the aver-
age cost of the several stages of LOD rendering in the navigation.
We observe that rendering triangles takes relative constant percent-
age (29% and 35%) for the two datasets. For a complex model
(Lego car), there are more triangles to be updated. Therefore, the
surface extraction stage takes more time. On the contrary, triangle
validation stage takes more time for the Temple model.
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Figure 14: Triangle counts and timing results for the two datasets.

Table 2: Average percentage of cost in navigation and speedup (AR:
adaptive-refinement; TV: triangle validation; SE: surface extraction;
RT: rendering triangles).

Model AR TV SE RT Time (sec.) Speedup
Lego car 18% 17% 36% 29% 0.091 3.07
Temple 6% 42% 17% 35% 0.033 66.5

5.2 Latency

In Figure 13b, we introduce three CSG operations on the original
scene. These operations are marked as I, II and III. They are non-
trivial since each operation involves 57K to 71K leaf cells and 30K
to 57K representative vertices. Each of these operations is com-
puted within 1.0 second. To measure the latency of a CSG op-
eration in our LOD rendering algorithm, we define the latency as
the time between finishing a CSG operation and starting the LOD
rendering procedure. It contains 3 steps: computing representative
vertices, simplifying the affected octree region, and pre-selecting
active vertices. Table 3 presents the time of each step. For each
CSG operation, the major cost is re-building the vertex octree and
the latency is within one second. The results show that our approach
is efficient in rendering a dynamic vertex hierarchy.

Table 3: Latency (in sec.) between finishing a CSG operation and
starting LOD rendering (CR: Computing representative vertices).

CSG op. CR Simplification Selection Total
I 0.12 0.75 0.01 0.88
II 0.09 0.54 0.01 0.64
III 0.10 0.55 0.01 0.66

5.3 Memory Consumption

The Temple dataset is challenging since an octree depth of 9 is used
and the finest level cells are abundant. The modeling part almost
exhausts the physical memory of the PC. The 1.81M representative
vertices will form about 3.62M triangles, if fully extracted. In our
experiments, the total vertices in the vertex hierarchy is about 1.3n,
where n is is the count of vertices in the finest level. The extra cost
for LOD rendering takes about 78M bytes for the Temple dataset.

We also compare the memory consumption of our algorithm with
the VDPM [9], SVDPM and HDS [15] algorithms in theory. Table
4 gives the space requirements of the four algorithms without con-
sidering the octree cost. We discard the ROAMing [2] algorithm
since it is dedicated to terrain rendering. In VDPM, one drawback
is that all its data structures scale proportionally with the size n of
the fully refined mesh Mn. In SVDPM, Hoppe [10] redesigned the
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vertex data structure into two parts: a static part encoding the ver-
tex hierarchy and refinement dependencies (size 88n bytes), and a
dynamic part encoding the connectivity of the active mesh M (size
112m bytes), where m is the count of active triangles. The space
requirement of the HDS algorithm is not reported. We estimate it
in the tight octree case using the assumption of 4 triangles, 1 subtri-
angle and 4 children per cell. View-dependent error metrics are not
included. Our algorithm gains 456%, 118% and 544% space saving
over VDPM, SVDPM, and HDS, respectively.

Table 4: Memory consumption for several LOD rendering algorithms
(n: # vertices in the finest mesh, m: # active triangles; g: # morphing
vertices, usually n >> m > g).

Algorithm Space (bytes) Percentage
SHIC (ours) 31n∗1.3+42m 100%

VDPM 224n 556%
SVDPM 88n+112m+52g 218%

HDS 228n∗1.3+32m 644%

5.4 Limitations

Our framework suffers the common problems encountered by other
grid based isosurface simplification algorithms. The CEB has lim-
ited encoding ability for handling too complex topology. Therefore,
it has a larger lower bound of top vertices in the vertex hierarchy.
Our method can’t handle cases where the isosurface intersects cube
faces only. Therefore, we prevent these cases from happening in
CEB merging. Furthermore, the simplified mesh quality is not as
good as gridless isosurfacing and optimization algorithms [16, 23],
since the vertex positioning scheme in our framework hasn’t con-
sidered the mesh quality issue.

6 CONCLUSIONS AND FUTURE WORK

We have presented SHIC, an isopoint clustering framework for ren-
dering large isosurfaces. Different from surface-based and point-
based clustering, our framework is connectivity guided. Our con-
tributions are: a connectivity encoding scheme using edge bitmaps,
topology-preserving hierarchical and selective clustering to handle
complex edges, the usage of a timestamp field to unify vertex tree
modification and view-dependent vertex refinement events, and an
incremental surface extraction algorithm from the isopoint hierar-
chy. Our experiments show that SHIC is efficient, memory-saving
and suitable for rendering dynamic isosurface objects. SHIC is also
easy to implement.

Currently, our framework only works for a fixed isovalue. We
plan to extend our algorithms for a range of values using an
isovalue spanning tree. For some isovalue ranges, the surface
topology in a cell won’t change, only the representative vertex
positions change. We can construct the same vertex tree and
fill the vertex positions dynamically. It is also possible to ex-
tend our framework for out-of-core isosurface visualization since
our method integrates space subdivision and connectivity encoding.
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