
Texture-Encoded Tetrahedral Strips

Manfred Weiler∗

University of Stuttgart

Paula N. Mallón†

University of Santiago de Compostela

Martin Kraus‡

Purdue University

Thomas Ertl∗

University of Stuttgart

Figure 1: Volume visualizations of tetrahedral meshes which have been encoded in a compact texture representation based on tetrahedral
strips and are stored in the texture memory of the graphics adapter. The renderings have been computed with a ray casting algorithm for
programmable graphics hardware adapted for this mesh representation.

ABSTRACT

The use of triangle strips is a common method to compactly store
and efficiently render large polygonal meshes. The advantages of
triangle stripification also apply to tetrahedral meshes; therefore,
tetrahedral strips are an attractive data structure for storing and vol-
ume rendering tetrahedral meshes as noted in several publications.
However, tetrahedral strips are still not supported by current graph-
ics hardware.

In this paper, we present the first system to take advantage
of tetrahedral strips in off-the-shelf graphics hardware. This is
achieved by encoding tetrahedral strips in texture maps and ren-
dering them with the help of a ray casting algorithm running solely
on the graphics chip. Our data structure supports sequential and
generalized tetrahedral strips by including a small amount of adja-
cency information, which allows us to access all face neighbors in
constant time.

Utilizing these texture-encoded tetrahedral strips, our enhanced
graphics-hardware-based volume ray casting algorithm for tetrahe-
dral meshes is capable of handling large data sets. Additional im-
provements presented in this paper include support for multiple ray
traversal steps in one rendering pass and the intrinsic support for
non-convex meshes using a rendering technique similar to depth
peeling.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and Framebuffer Operations, Display Algo-
rithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, Shading, Shadowing, Texture, Raytracing

∗e-mail: {weiler|ertl}@vis.uni-stuttgart.de
†e-mail: paulanm@dec.usc.es
‡e-mail: kraus@purdue.edu

Keywords: tetrahedral strips, ray casting, pixel shading, pro-
grammable graphics hardware, cell projection, tetrahedral meshes,
unstructured meshes, volume visualization, pre-integrated volume
rendering

1 INTRODUCTION

Polygonal strips and in particular triangle strips are one of the most
popular representations for surface objects. The main reason is their
compactness, which is achieved by encoding t triangles with t + 2
vertex indices instead of the 3t vertex indices required by a triangle
list. Due to the rapidly growing demand for more complex objects
in interactive graphics applications, these low storage requirements
are of increasing importance.

Graphics hardware can benefit from supporting polygonal strips
in several ways: The data transfer bottleneck between the CPU and
the GPU, which has turned out to be one of the most limiting factors
of the current hardware architecture, is widened. The capacity for
storing objects as vertex arrays in the local memory of the graphics
card is increased. Last but not least, repeated processing of vertices
can be reduced since the repetitious pattern of strips permits effec-
tive caching strategies. Therefore, a wide support for polygonal
strips is provided by graphics adapters and graphics APIs.

The advantages of triangle strips generalize directly to the volu-
metric case. Therefore, tetrahedral strips are an attractive represen-
tation of unstructured meshes; in particular for graphics hardware
with support for scan conversion of tetrahedral primitives. Accord-
ing to [9] this kind of hardware architecture could dramatically ac-
celerate unstructured volume rendering. Unfortunately, it has not
been built yet; thus, it was not possible to efficiently use tetrahe-
dral strips for hardware-supported unstructured volume rendering
so far. However, modern graphics adapters provide a flexible pro-
grammable graphics pipeline offering the possibility to extend the
functionality of the graphics card beyond the standard pipeline and
allowing for advanced shading and visualization algorithms. In this
work we introduce the first system to exploit tetrahedral strips based
on programmable graphics hardware.

IEEE Symposium on Volume Visualization and Graphics 2004

0-7803-8781-3/04/$20.00 ©2004 IEEE
October 11-12, Austin, Texas, USA

71

The key idea is to extend the classical surface strips by a small
amount of neighbor information which is not only required for ren-
dering the tetrahedra in correct visibility order but also allows for
various pre- and post-processing steps requiring the connectivity
between tetrahedra. In other words, our data structure is universal
and can store sequential as well as general strips.

By encoding tetrahedral strips in textures and transferring them
to the local memory of the graphics adapter, we can perform
hardware-based ray casting directly with the texture-encoded strips.
Our solution is similar to [16], but overcomes their huge memory
overhead with the compact strip representation allowing for un-
structured data sets of significantly larger sizes.

Before presenting our strip data structure in Section 3, we discuss
previous work in Section 2. Section 4 describes the generation of
tetrahedral strips, which is crucial for a compact representation of
a tetrahedral mesh in texture memory. Implementation issues of
our ray casting approach for the tetrahedral strips are discussed in
Section 5, while results are presented in Section 6.

2 RELATED WORK

Representations based on triangular or polygonal strips are well
known and, therefore, widely supported by graphics hardware,
graphics APIs like OpenGL and DirectX, and graphics libraries.
Since the effectiveness of this data structure for encoding a large
polygonal mesh heavily depends on the stripification, research has
been focused on optimal algorithms for this purpose. An optimal
stripification for the rendering covers the given mesh with as few
strips and as few vertex replications as possible [4].

In general, the triangle strip encoding—posed as a problem of
converting a given triangle mesh into the minimal set of triangle
strips covering the mesh—is NP-complete. Thus, in the literature
several proposals exist that rely on heuristics to find sub-optimal
solutions.

One core idea is to build the sequence of triangles by extending
an existing strip always choosing the adjacent triangle with the least
number of neighbors as next triangle. This should minimize the
number of strips with length one. It has first been presented in [1]
and is now commonly known as the SGI greedy heuristic tomesh.
The STRIPE [4] system supports arbitrary polygonal meshes apply-
ing a global and a local approach. The global approach (“patchifi-
cation”), tries to find large rectangular regions consisting only of
quadrilaterals, which are triangulated sequentially along each row
or column. For the remaining polygons the strips are created on the
fly during the triangulation applying several heuristics. The pro-
duced triangle strips do not take into account hardware optimiza-
tions.

One of the most efficient stripification systems particularly
optimized for performance is the Fast Triangle Strip Generator
(FTSG) [17], which creates triangle strips based on the construc-
tion of a spanning tree in the dual graph of the triangulation. It
achieves an encoding quality comparable with or better than that
of STRIPE. The algorithm presented in [13] is designed for trian-
gulated irregular networks (TIN). It works by creating a spanning
tree of the dual graph, and then traversing the tree in a modified
depth-first fashion.

Many of these algorithms are nowadays available as tools,
e.g., [1] or the nVidia NVTriStrip tools [2], which can generate
strips from arbitrary geometry, stitch together strips using degen-
erate triangles, and optimize them with respect to vertex buffering
and post T&L vertex caches.

Moreover, the need for more compact representations has mo-
tivated research on mesh compression. Some compression algo-
rithms [15, 8, 11] work by encoding the processing sequence of
triangles, using an additional command string. Roughly speaking
this can be considered as a general triangle strip, where the con-

nection of the next vertex with the previously extracted triangles is
not fixed. All those methods lack arbitrary access to individual tri-
angles. Some of these methods have been extended to be used in
tetrahedral meshes [7, 14], however they have not been proposed
for directly rendering the data sets. In fact, it is always necessary to
reconstruct the complete 3D object previous to rendering.

One of the few publications about the problem of generating
tetrahedral strips and tetrahedral fans is [9]. King et al. propose
a hardware architecture for tetrahedral meshes encoded as strings
and fans, which are rendered with the projected tetrahedra algo-
rithm [12]. Ray casting for off-the-shelf programmable graphics
hardware has been introduced recently [16] based on the ray prop-
agation approach published in [6]. This approach suffers from a
significant memory overhead since excessive data replication is re-
quired to meet the limited fragment shader capabilities of the ATI
9700 graphics card, which was targeted by their implementation.

3 TETRAHEDRAL STRIPS

In order to compactly store the data of a tetrahedral mesh in a way
that allows for direct rendering by the GPU, we need to extend the
classical tetrahedral strips, which consist only of the indices of ver-
tices, with information about the connectivity between the tetrahe-
dra. The overhead introduced by this data should be minimized in
order to maintain the advantages of tetrahedral strips. Moreover,
access to the four neighbors of each tetrahedron should be provided
in constant time for efficient processing and rendering. In this sec-
tion, we present our scheme for storing the neighbor information for
each tetrahedron in the strips. The presentation is based on the usual
convention that the i-th face is opposite to vertex vi (i ∈ {0,1,2,3}).

We introduce the structure with the example in Figure 2(a),
which shows three adjacent tetrahedral strips defined by eleven ver-
tices. The tables in Figure 2(b) next to the image of the strip show
the organization of the strips as different lists, containing the in-
dices of the vertices and the neighbors related to them. Specifically,
four different lists (one per face) are required for the neighbor in-
formation. They are denoted by N0, N1, N2, and N3 respectively.
We place the neighbor information for each tetrahedron below the
first vertex index in the strip; thus, for tetrahedron {4,3,8,6}, which
is marked with bold lines, the neighbors are shown below vertex 4.

An entry in the neighbor list consists of two indices: the index
of the strip of the neighbor tetrahedron and the position of its first
vertex within the strip. For clarity, the index positions are shown
on the top. Giving an example, the neighbor of our tetrahedron
{4,3,8,6} at face 0 is {3,8,6,7} and is encoded as (2,3) since 3 is
the third vertex of strip 2. Tetrahedron {4,3,8,6} itself has the index
(2,2). Note that we reference strips and tetrahedra beginning with 1
in order to avoid special handling for non-existing neighbors. They
can simply be represented by (0,0).

In order to describe how the same information can be stored
more compactly, we first consider the special case of sequential
strips, without swap operations introduced by replicated vertices.
An example of a sequential strip is strip 2 in Figure 2(b). For the
neighbor information we can distinguish three different cases:

Face neighbors in the same strip: Every tetrahedron in a sequen-
tial strip, except for the first and the last tetrahedron, has at
least two neighbors in the same strip. The neighbor at face
0 (N0) is the next tetrahedron in the strip, and the neighbor
at face 3 (N3) is the previous tetrahedron; e.g., for {4,3,8,6}
the N0 neighbor is labeled with (2,3), and the N3 neighbor is
denoted by (2,1). We call these neighbors “implicit neigh-
bors” since the connectivity is determined by the ordering of
tetrahedra in a strip.

Face neighbors linking to a different strip: The adjacent tetra-
hedron associated with face 1 (N1) and face 2 (N2), e.g., (1,3)

72

1

2

3

4

5

6

7

7

7

6

6

3

4

4

1

1

8

8

9

10
11

strip 1

strip 2

strip 3

(a)

2,2 2,3 1,6 -- -- --

0,0 1,3 3,5 -- -- --

1,1 3,3 0,0 -- -- --

3,1 2,1 2,2 -- -- --

1 4 3 8 6 7

3,2 3,3 0,0 -- 2,3 -- -- --

2,1 0,0 3,5 -- 0,0 -- -- --

0,0 0,0 2,2 -- 0,0 -- -- --

0,0 3,1 3,2 -- 3,3 -- -- --

1 2 3 4 5 6 3 7

1 2 3 4 5 6 7 8 9

1,2 1,3 0,0 -- 0,0 -- -- --

2,1 0,0 0,0 1,6 -- 2,3 -- -- --

0,0 0,0 2,2 0,0 -- 0,0 -- -- --

0,0 1,1 1,2 1,3 -- 1,4 -- -- --

1 9 4 8 10 6 11 8 7

1,4

(b)

-- 1 1 0 -- 0 -- --

-- 2,1 0,0 3,5 0,0 0,0 2,3 --

0,0 0,0 0,0 2,2 3,3 0,0 -- --

-- 0 1 1 -- 0 -- --

1 2 3 4 5 6 3 7

-- 1 1 0 -- --

-- 0,0 1,3 3,5 1,6 --

3,1 1,1 3,3 0,0 -- --

-- 0 1 1 -- --

1 4 3 8 6 7

-- 1 1 1 0 -- 0 -- --

-- 2,1 0,0 0,0 1,6 0,0 2,3 0,0 --

0,0 0,0 0,0 2,2 0,0 1,4 0,0 -- --

-- 0 1 1 1 -- 0 -- --

1 9 4 8 10 6 11 8 7

position
indices

N0

N1

N2

N3

1 2 3 4 5 6 7 8 9

N0

N1

N2

N3

vertex
indices

vertex
indices

N0

N1

N2

N3

vertex
indices

(c)

Figure 2: Example for generalized tetrahedral strips. The mesh is shown in (a), followed by the layout for the adjacency information (b), and
our improved layout (c).

and (3,3), usually is a tetrahedron in a different strip. There-
fore, they must still be stored as explicit indices and are called
“explicit neighbors.”

Linking the ends of the strip: The first tetrahedron in the strip
may be connected to a different strip by means of the N3
neighborhood. In our example, {1,4,3,8} in strip 2 has the
N3 neighbor (3,1). Similarly, the last tetrahedron in the strip
may be linked to a different strip by means of N0. (See (1,6)
in tetrahedron {3,8,6,7} of strip 2.)

Taking advantage of the implicit neighbors, the structure pre-
sented in Figure 2(b) can be condensed as depicted in Figure 2(c).
Note that we shift the neighbor information by one slot and place
it below the second vertex of each tetrahedron. For example tetra-
hedron {4,3,8,6} in strip 2 has its neighbors below vertex 3 in this
scheme.

For most tetrahedra, only the N1 and N2 neighbors are encoded
explicitly, while N0 and N3 are replaced by two flags indicating
whether the current tetrahedron has implicit (value 1) or explicit
(value 0) N0 and N3 neighbors. For value 0, it is still necessary to
encode the neighbor explicitly. Fortunately, in sequential strips this
happens only at the first and the last tetrahedron of the strip. In
order to consider these explicit N0 and N3 neighbors without any
overhead in our structure, we utilize the otherwise unused N1 and
N2 entries of the next and previous tetrahedron respectively. Since
we shifted neighbor information by one slot, we have a spare slot at
the beginning of the strip and two spare slots at the end of the strip.
Thus, we can store the explicit N0 neighbor in the N1 neighbor of
the next slot and the explicit N3 neighbor in the N2 neighbor of the
previous slot as indicated by the arrows in Figure 2(c).

In generalized strips, vertex replication is allowed in order to
change the face along which the strip is continued. This enables
the construction of longer strips. For example in order to continue
strip 3 in Figure 2(a) after {3,4,5,6} with {5,6,3,7}, vertex 3 has
to be replicated. Consequently, {3,4,5,6} is encoded twice in the
same strip: as {3,4,5,6} and {4,5,6,3}. However, the neighbor in-

formation is only considered for the first one, below vertex 3 (see
Figure 2(b)) and the second one is called “virtual tetrahedron.”

Because of these virtual tetrahedra, N0 and N3 neighbors now
become explicit even for a tetrahedron within the strip. Luckily,
we do not need the N1 and N2 neighbor of virtual tetrahedra, which
are automatically used for storing the now explicit N0 and N3 by
the scheme already described. As an example, the N3 neighbor for
tetrahedron {5,6,3,7} is encoded at N2 below vertex 5.

4 STRIP GENERATION

The size of a tetrahedral mesh encoded as tetrahedral strip heavi-
ly depends on the quality of the stripification algorithm. Despite
the extensive literature on the stripification of polygonal meshes,
there seems to be hardly any work on the stripification of tetrahedral
meshes except from [9]. They propose a greedy algorithm, using
four different heuristics in order to determine the next tetrahedron
for the strip.

Our approach is also based on a greedy algorithm that particu-
larly tries to avoid isolated tetrahedra since they generate an over-
head of three indices. It exploits the same data structure for creat-
ing sequential and generalized strips: For each tetrahedron we store
the adjacent tetrahedra by their faces along with a flag indicating
whether a tetrahedron has already been visited by the stripification.
Each strip is first constructed in one direction until no following
tetrahedron can be found; after that construction is continued back-
ward starting from the beginning of the strip.

We employ various heuristics in order to determine the next tetra-
hedron in the current strip and the first tetrahedron for a new strip.
In order to select the starting tetrahedra for the next strip, we em-
ploy four queues (queuei, i ∈ [1,4]) which store tetrahedra with i
unvisited neighbors. Starting points are always selected from the
non-empty queue with the smallest index, which has turned out as
the strategy leading to fewest isolated tetrahedra. Moreover, we
found that filling the queues only with neighbors of already visited
tetrahedra leads to more correlated strips, significantly increasing

73

the average strip length. Only if no unvisited neighbor exists, an
arbitrary unvisited tetrahedron is selected.

In order to find the longest strip starting from a certain tetrahe-
dron, we consider all possible starting combinations. Thus, up to 24
different vertex permutations are analyzed in case of four unvisited
neighbors. Since for a tetrahedron with only one unvisited neigh-
bor, the permutation can be freely chosen, in this case we instead
consider all permutation of the neighbor. For further increase of the
strip length, we can consider not only one starting point but a set
of starting points. The stripification is executed in parallel on all
starting points, selecting the longest resulting strip.

During the generation of each strip, we apply different heuristics
in order to decide which tetrahedron to add next:

Sequential strips: Choose the next tetrahedron that generates a se-
quential strip.

Generalized strips: Choose the tetrahedron with the fewest un-
visited neighbors and in case of ambiguities select the tetra-
hedron which introduces fewest replicated vertices.

We also experimented with a hybrid strategy that primarily se-
lects the next tetrahedron in sequential order and follows the strat-
egy for general strips in case the former is not possible. However,
the results were always inferior to the generalized strips strategy.

5 RAYCASTING TETRAHEDRAL STRIPS

With the tetrahedral strip data structure presented in Section 3 we
now have a compact representation which can be used to efficiently
transfer tetrahedral meshes of reasonable size to the graphics card
and apply rendering algorithms that run completely on the GPU
without CPU interference. We adopt a ray casting algorithm for
fragment shading hardware first presented in [16]. The basic idea
is a ray propagation approach similar to [6] which is evaluated by
the graphics processing unit. Starting from its first intersection with
the mesh, each view ray is propagated front to back from cell to cell
until the whole mesh has been traversed. A traversal step includes
the computation of the exit point for the current cell, the determina-
tion of the scalar value at the exit point, the computation of the ray
integral within the current cell, the accumulation of the color and
opacity contribution, and the determination of the next cell from
neighbor information.

The traversal is implemented in multiple passes. In each traver-
sal pass, one polygon is rasterized that covers the projected area of
the mesh’s boundary. Since each pixel of the polygon represents
one view ray, a fragment program can compute the necessary oper-
ations per view ray based on the mesh data accessed from texture
maps. Intermediate information about the traversal state—current
cell index, position of the last intersection, scalar value at the last in-
tersection, and color/opacity accumulated so far—is exchanged be-
tween passes via hardware-accelerated p-buffers, which are bound
as texture maps for the next traversal pass.

Unfortunately, implementing this approach with our tetrahedral
strip data structure generates more restrictive requirements for the
graphics hardware. In particular, additional fragment program oper-
ations are needed for retrieving the required mesh information and
computing properties which are not included in the tetrahedral strip
data structure. Since this cannot be mapped to the 64 instruction
slots of the ATI Radeon 9700 chip family employed in [16] without
applying multi-passing for each traversal step, our implementation
was performed on an nVidia GeForceFX graphics adapter. At the
time of the implementation this was the only available hardware
supporting long fragment programs with up to 1024 instructions in
one pass.

5.1 Mesh Data Encoding

Several two-dimensional floating-point texture maps are utilized to
store the tetrahedral mesh in the local memory of the graphics card
at full precision. Since there is no power-of-two restriction for the
size of floating-point textures on the nVidia card, we can adapt the
size of all textures to the requirements of the data set, making the
most effective use of the available texture memory. In particular,
different sizes are possible for the textures storing vertices, normals,
connectivity, etc. Table 1 provides an overview of the required tex-
tures. Note that in all mesh textures we initialize the texel at posi-
tion (0,0) with zero in order to avoid special handling for tetrahedra
with no neighbors and to allow for ray termination, which is han-
dled by an active cell of “0”.

The minimal texture set for the tetrahedral strip consists of an
RGBA texture for the vertex list and an RGB texture map for the
connectivity encoded in the strip. The vertex list texture stores the
coordinates vk and the scalar value sk of each vertex k in sequential
order according to their indices.

The RGB connectivity texture stores one-to-one the encoded
strings of the tetrahedra strips that were generated as described in
Section 4. Each texel in this texture represents one tetrahedron in-
cluding virtual tetrahedra generated for the general strips. The three
overhead vertices for each strip are also represented by texels in this
map. One entry in this texture contains vt,0, which is the 16 bit two-
component texture coordinate of the first vertex of the correspond-
ing tetrahedron pointing into the vertex list texture. Additionaly
there are two sets of 16 bit texture coordinates Nt,1 and Nt,2 into the
connectivity texture referring to the entries of the N1 and N2 neigh-
bors respectively. The information whether the tetrahedron has im-
plicit N0 and N3 neighbors is stored as the most significant bit of the
u and v component of N1 respectively and has to be removed prior
to writing the index of the next cell into the traversal buffer. Ac-
cessing and removing this information from the texture coordinate
can efficiently be achieved by only one fragment program instruc-
tion each. Note that the GeForceFX only supports two-dimensional
texture maps with sizes up to 40962; thus, only 12 bits of each
texture coordinate are actually required, leaving four spare bits per
component for encoding supplementary information. Even extend-
ing the texture dimension to 215, which is sufficient for one billion
tetrahedra, would still allow us to use one bit for additional data.

Our strip generation typically creates a large number of strips
with varying lengths. In order to access consecutive entries of the
strip by applying a signed offset to the u component of the texture
coordinate pointing to the first vertex, the strips are laid out along
the rows of the texture map, prohibiting wrapping within the strip.

Table 1: Summary of the textures described in the main text.

tex. coords texture data
mesh data

u v r g b α

tetstrip t vt,0 Nt,1 Nt,2 —
vertices k vk sk
normal idx (opt.) t nt,0 nt,1 nt,2 nt,3
face normals (opt.) j n j o j
scalar data (opt.) t gt ĝt

texture data (bits)
traversal data channel

0-7 8-15 16-23 24-31

current cell R t
intersection G λ s(e+λr)
acc. color B r g
acc. color/opacity A b α

74

To avoid unnecessary unused space in the connectivity texture, we
apply a simple but effective greedy layout algorithm: We process
all strips sorted by descending length, starting with the longest, and
assign it to the texture line with the smallest but sufficient number
of free slots. For fast computation of this slot, we utilize a free
space list with one entry for each texture row. This list is sorted by
ascending free slots after the placement of each strip. Texels in the
texture map are filled in left-to-right order.

The connectivity texture and the vertex list texture provide all
mesh data required for the ray casting computations. The plane
equation for the tetrahedral faces, used in the computation of the
exit points, can be computed from the vertex positions. The scalar
value at the exit point can be interpolated from the scalar values at
the vertices using barycentric interpolation where the interpolation
weights are given as normalized distances from the opposite face:

s(x) =
3

∑
i=0

wisi with wi =
ni · (x−v3−i)

ni · (vi −v3−i)
(1)

However, since long fragment programs result in reduced frame
rates, we trade space for performance by optionally defining three
additional texture maps if enough texture memory is available. The
computation of the plane equation for the tetrahedral faces is re-
placed by the lookup in a floating-point texture storing the normal
components n j and the offset o j of the plane equation in RGBA.
In order to allow for sharing faces between adjacent tetrahedra we
use an indirect addressing scheme. A normal index map with the
same layout as the connectivity texture stores for each tetrahedron
the four texture coordinates nt,0...3 for the face parameters in the
face texture. In each of these texture coordinates the most signifi-
cant bit of the u coordinate indicates whether the normal vector has
to be flipped in order to achieve an outward facing normal. The
interpolation of the scalar value at the exit point can be accelerated
exploiting Equation (2),

s(x) = gt ·(x−x0)+s(x0) = gt ·x−gt ·x0 +s(x0) = gt ·x+ ĝt (2)

which states that the interpolation for an arbitrary point inside the
tetrahedron can be computed by a dot product between the coor-
dinates of that point and the gradient gt of the tetrahedron plus a
constant ĝt . We optionally store these parameters in a gradient tex-
ture map with the same layout as the connectivity texture. The gra-
dients are also employed to perform the lighting when ray casting
isosurfaces.

5.2 Ray Traversal

As mentioned before, the traversal of the view rays through the
tetrahedral mesh is implemented as a multi-pass rendering of a quad
with the same pixel coverage as the projection of the mesh, apply-
ing an appropriate fragment program. After each traversal pass in-
termediate results are written into a floating-point p-buffer which
can be loaded as a texture map for the consecutive passes. Usu-
ally we have to apply ping-pong rendering with two p-buffers since
concurrent read/write operations are not allowed according to the
specification of the WGL draw buffer extension. However, we can
avoid the implied overhead of continuous texture bind operations
by binding the current render target simultaneously as texture map,
which is an undocumented feature of the GeForceFX card. For
comparison, a variant of our system without this workaround has
also been implemented using the front and back color buffer of a
floating-point p-buffer as ping-pong targets. This is necessary since
the employed ray termination mechanism requires to share depth
values between the rendering targets, which in OpenGL can only
be achieved in this way. In DirectX9, color surfaces and depth sur-
faces are created and bound independently.

Based on this traversal data structure, the GPU-based multi-pass
algorithm is performed as presented in Figure 3. We start with
an initialization rendering pass that determines the first hit of each
view ray with the boundary of the mesh. This is achieved by render-
ing the list of boundary triangles with the index of the correspond-
ing tetrahedron specified as additional texture coordinate. The mesh
coordinates are also specified as texture coordinates, resulting in the
interpolation of the actual intersection point position for each pixel.

In the structure of the traversal buffer presented in Table 1, we
had to deal with the restriction of the GeForceFX, which only sup-
ports a single 4-component 32 bit floating-point output target. How-
ever, seven parameters are required for the traversal algorithm con-
sisting of the texture coordinate t pointing to the current cell, the
ray parameter λ representing the position of the last intersection,
the corresponding scalar value and the accumulated color/opacity
as RGBA value. In order to fit those into 128 bits, we employ the
16 bit floating-point format defined by the NV fragment program

extension that also provides the necessary operations for packing
and unpacking two 16 bit floating-point or unsigned short values
into one 32 bit float. Note that we exploit the same operations for
unpacking the two unsigned short components of the texture coor-
dinates encoded in the mesh textures. However, this requires a care-
ful assembly of the connectivity texture map since the GeForceFX
uses different endianess than the CPU. In an implementation for the
GeForce6 chip series we could have avoided the limited precision
for the traversal parameters by exploiting multiple render targets.
However, even with the 16 bit precision we never experienced vi-
sual artifacts during our tests.

The current cell index and intersection parameters are written
into the traversal p-buffer. Based on these values, several traversal
passes are performed for computing the ray traversal. The traversal
stops if no more pixels are set during the rendering. This is detected
by an occlusion query (NV occlusion query) eventually issued
with the traversal rendering. In order to avoid the rasterization of
fragments for completed view rays special termination passes are
used which modify the depth value of fragments with a current cell
index of “0”; thus, fragments are potentially discarded by an early
depth-test.

// Phase I - Traversal
for (max number of peels)
{

activeViewRayCount = drawFirstHit();

if (activeViewRayCount == 0)
break;

while (activeViewRayCount > threshold)
{

pass++;

if (pass % terminationPassFrequency == 0)
drawTermination();

if (pass % occlusionPassFrequency == 0)
activeViewRayCount = drawTraversalWithOcc();

else
drawTraversal();

}
}

// Phase II - Final pass into frame buffer
drawFinalPass();

Figure 3: Traversal algorithm for the GPU-based ray casting.

75

5.3 Non-Convex Tetrahedral Meshes

As illustrated in Figure 4 the ray propagation from cell to cell is
only correct for convex tetrahedral meshes. In non-convex meshes,
view rays that have already left the mesh may re-enter the mesh.
This situation cannot be handled by the GPU-based ray caster pre-
sented so far. In [16] this has been addressed by a convexification
process that fills the area between the boundary of the mesh and its
convex hull with virtual tetrahedra, which require special handling
by the fragment program. Moreover, the computation of this con-
vexification is an expensive pre-process that might generate many
additional tetrahedra.

Our implementation provides intrinsic support for non-convex
tetrahedral meshes without the need for computationally expensive
preprocessing by applying a technique similar to depth peeling [5].
The basic idea is to perform several traversal cycles as described
in Section 5.2. In the first cycle, we traverse all view rays, start-
ing from the first intersection with the mesh boundary, which cor-
respond to the red rays in Figure 4. The following cycles restart
the traversal from the second (blue), third (green), etc. intersection
of the view rays with the mesh boundary. Note that since we al-
ways use the same traversal buffer for each cycle without clearing,
the accumulated color/opacity from the previous cycle is correctly
blended with the new cells.

Peel 2
Peel 1

Peel 3

Figure 4: With our GPU-based ray casting implementation view rays
are only traversed until they first leave the mesh, which is a problem
for non-convex tetrahedral meshes. Extracting the second, third,
etc. layer of front faces by depth peeling allows us to find reentries
of view rays.

In order to restart the ray traversal, the extraction of the second,
third, etc. layer of boundary faces is required. This is achieved with
a two-way depth-test implemented in a fragment program. With
enabled back face culling only front-facing triangles from the list
of boundary faces are extracted, and only the primitives closest to
the viewer pass the regular GL LESS depth-test. In addition to that,
a fragment program compares the depth value of all fragments with
the depth values of the previous layer of boundary faces provided by
a texture map. Fragments with a depth value less or equal than the
depth value in the texture map are discarded, effectively “peeling-
off” the previous layer of boundary polygons. Enhancing the ray
caster with respect to this technique only requires to read back the
depth values after the first-hit rendering, and providing them in a
texture map to the first-hit fragment program extended by the addi-
tional depth-test (see Figure 5 for an example). Note that a similar
idea has been developed parallel to ours in [3]. They report that a
bias for the depth test may be required in order to prevent self occlu-
sion. However, according to our experiences this is not necessary
for the GeForceFX.

5.4 Ray Casting Fragment Program

We implemented the fragment programs for the first-hit and the
traversal computations with nVidia’s high-level shading language
Cg [10]. With the instruction set of Cg the implementation is
straightforward. We will therefore not present particular code here.
We refer to [16] for more detailed information.

Figure 5: Volume rendering of the Super Pheonix (spx) data set
employing our depth peeling technique. The data set is courtesy of
Bruno Notrosso (Electricité de France).

Fragment program sizes are influenced by the optical model and
range from 176 to 213 instructions for the space-optimized imple-
mentation and from 152 to 167 with the performance-optimized im-
plementation. The more expensive isosurface program mainly re-
sults from the additional lighting computation requiring a lookup in
the gradient texture, the normalization of the gradient, and the dot
product with the view ray direction. The overhead for the on-the-fly
computation of the gradient imposes an even larger overhead.

Note that the 1024 instructions supported by the GeForceFX chip
enabled us to perform multiple traversal steps in the same fragment
program by implementing the traversal in a static loop, which can
be unrolled by the Cg compiler. Using these long fragment pro-
grams has the advantage of reducing the expensive read/write oper-
ations to and from the traversal buffer, therefore, resulting in better
performance. Exploiting the full instruction limit of the graphics
adapter, we were able to perform 5-6 traversal steps per pass in the
case of the fragment programs for optimal data set size and one
more traversal step for the program set with the minimized instruc-
tion numbers.

6 RESULTS

We tested our implementation on an Intel Pentium 4 2.80 GHz
processor with 2 GB memory, and an nVidia GeForce 6800 GT
graphics board running at 350 MHz with a memory clock rate of
1000 MHz. Our stripification code was tested on various data sets
with sizes ranging from 1715 to 148995 tetrahedra.

6.1 Encoding

Table 2 shows our results for generating sequential and general
strips. Note that in the table only one line is presented for the
Sphere and the Ell data set since they share the same original con-
nectivity as both correspond to a uniform 323 grid which has been
decomposed into five tetrahedra per cell. In the sequential case our
stripification algorithm shows encoding results with average strip
length around 4.3 tetrahedra. The number of isolated tetrahedra
ranges from 6% to 8%. However, if we select the starting points

76

Table 2: Results for the sequential (Seq) and generalized (Gen) stripification.

n strips av length max length % isolated % compression
data set n tetra n ver

Seq Gen Seq Gen Seq Gen Seq Gen Seq Gen

Cube 1715 512 436 205 3.93 8.36 34 143 6.06 3.32 66.10 59.87
Fighter 70125 13832 16169 7274 4.34 9.64 281 2249 7.56 3.15 63.44 59.20
Spx 103488 37320 24009 11161 4.31 9.27 281 2235 8.06 3.38 63.60 59.46
Heatsink 121668 23576 27855 12503 4.37 9.73 198 2505 7.86 2.79 63.26 56.53
Sphere/Ell 148955 32768 34319 15201 4.34 9.80 154 1037 7.95 2.84 63.42 57.58

randomly, the average strip length decreases by 1% and the number
of generated strips by 3%. The overall compression rate varied be-
tween 63% and 66%. According to Equation (3) we will never get
below 3/8 ≈ 37% the size of the original connectivity information:

3(t +3n)

8t
=

3
8

+
9
8

t
n

(3)

Our sequential stripification scheme for a mesh with t tetrahedra
decomposed into n strips requires 3(t +3n) indices; one vertex and
two neighbors per tetrahedron and three vertices overhead for each
strip. In contrast, (4 + 4)t indices for vertices and neighbors are
required when storing the tetrahedra in a plain list. For an improve-
ment with respect to a tetrahedra list the average strip length t/n
has to be larger than 9/5 = 1.8, which was easily achieved for the
tested data sets.

Results for encoding general strips are also presented in Table 2.
They were generated considering the 24 different permutations of
the starting tetrahedra. In this case there is almost no difference in
the results if we consider the permutations over the first neighbor
of the starting tetrahedron. This is because with generalized strips
all the combinations are tested during the generation of the strip.
Almost all the starting tetrahedra were selected from the queue1.
In this case, the average length of the strip is around 9.4 tetrahedra
per strip, not including virtual tetrahedra, and the longest consists
of 2505 tetrahedra. However, the number of isolated tetrahedra is
always less than 3.4% of the input data, leading to an overall com-
pression between 56% and 60%.

Probably the most important advantage of our proposed data
structure is the low memory profile, which allows us to store large
data sets in the local memory of the graphics card. A maximum
supported data set size of roughly 500.000 tetrahedra was the most
severe limitation of the previous solution presented in [16]. With
respect to the maximum size of a mesh that can now be stored on
the graphics card we provide the memory consumption C of a tetra-
hedral mesh encoded in our strip data structure:

C = Ctni +Cvnv

ni = nt +3ns +nr = lsns

Ct size of an index in the tetstrip texture (= 96 bit)
Cv size of a vertex in the vertex list texture (= 128 bit)
ni number of indices in all strips
nv, nt number of vertices/tetrahedra in the data set
ns number of strips
nr number of vertex replications
ls average number of vertices in a strip

According to this formula we can estimate the upper bound for
a data set that can be processed: In an ideal encoding we only have
one sequential strip (ns = 1) without replicated vertices (nr = 0).
Provided the reasonable assumption (nv ≈ 1

6 nt) this gives a total

memory consumption (Ct + 1
6Cv) ≈ 117 bit per tetrahedron, ne-

glecting the constant term 3Ct , which can be justified for a large
number of tetrahedra. We compare this to the 256 MByte of mem-
ory available on the graphics card, of which at least 12 MByte are
consumed by a 1280× 1024 pixel framebuffer with 32 color bits
and 24 depth bits, a 400× 400 pixel p-buffer for the traversal with
128 bit floating-point color and 24 bit depth, and a two-dimensional
pre-integration texture. Under these assumptions even a commod-
ity off-the-shelf graphics adapter is capable of dealing with 17.5
million tetrahedra. Upcoming graphics card generations aim at
512 MByte as standard texture memory size, bringing 35.8 million
tetrahedra into reach.

6.2 Rendering

Table 3 presents the timings that our GPU-based ray caster achieved
for the images presented in this paper acquired for a 400 × 400
viewport. Sphere, Ell (volume), and Ell (iso) correspond to the
left, middle, and right image of Figure 1 respectively. Spx denotes
the data set in Figure 5 and was rendered with four depth peels.
Timings were recorded during an animation where the data set was
rotated about the x- and the y-axes with different angular velocity.
The table contains the average, minimum, and maximum framerate
for the animation. For all test cases interactive framerates of several
frames per second could be achieved.

Comparing the space-optimized and the performance-optimized
fragment program version, we experience almost twice the frame-
rate for the performance-optimized implementation due to a signif-
icant reduction of arithmetic instructions. Note that the number of
texture sampling instructions is almost identical since we can avoid
the lookup of the vertex coordinates in the performance-optimized
implementation. However, this performance increase comes along
with significant memory overhead (≈ 608 bit per tetrahedron in-
stead of 117 bit per tetrahedron). We consider this acceptable since
it still represents an improvement compared to the 1280 bit per
tetrahedron reported in [16] and allows for the handling of over 3
million tetrahedra. We also experimented with different variations
using only normal textures or only gradient textures. The perfor-
mance was slightly faster than with the space-optimized program,
but the increased number of texture lookup operations almost out-

Table 3: Framerates per second for the GPU-based ray caster employ-
ing either the space-optimized or the performance-optimized frag-
ment program.

space-opt. perf.-opt.
data set passes

avg min max avg min max

Sphere 108 4.0 3.5 4.7 6.4 4.4 7.5
Ell (volume) 129 2.7 2.2 3.1 4.3 2.9 5.1
Ell (iso) 128 2.9 2.2 3.4 4.8 3.2 5.7
Spx 346 2.7 2.2 3.2 4.0 3.3 4.7

77

weigh the saved arithmetic instructions.
Unfortunately, despite our optimization efforts documented in

Section 5, the performance of our ray casting implementation fi-
nally was not quite as we could expect given the results from [16]
for the ATI Radeon 9700 card. The GeForce 6800 should be sig-
nificantly faster than the last generation ATI chip. According to our
analysis this is mainly caused by the fact that the early depth-test
is significantly less effective on the nVidia card, which causes our
algorithm to continously perform ray computations for pixels that
are already fully computed. This analysis is based on two observa-
tions: First, employing texture kill instructions in the fragment pro-
gram instead of employing special ray termination passes we could
improve the framerate by up to 14%, although the texture kill in-
struction is known for disabling the early depth-test. Second, split-
ting the screen-sized rectangle used for traversal into several tiles
as suggested in [3], performing the ray termination test for each tile
individually, and completely avoiding the rendering of tiles con-
taining only finished rays leads to significantly higher framerates.
Theoretically, if the early depth-test prohibits further computation
on finished rays, the same or even lower performance should be ex-
pected for tile-based rendering. The timings in Table 3, therefore,
were acquired with the viewport split into 16× 16 tiles, which we
experienced as optimal with respect to the overhead introduced for
the tile handling.

Texture bind operations turned out not to be the bottleneck for
our implementation, even if they are not avoided by simultaneously
binding the current render target as texture (see Section 5.2). The
difference was less than 2% and also the variation for performing
multiple traversal steps per rendering pass was below 8%. How-
ever, using multiple traversal steps per rendering pass has an effect
on the accumulated opacity, which triggers the early ray termina-
tion. Every time the opacity is written to the p-buffer it is quantized
to 16 bit whereas within multiple traversal steps in a single ren-
dering pass the opacity is always computed and stored with 32 bit
precision. This might lead to a slightly differnt number of overall
traversal step. However, a visual effect could not be noticed.

7 CONCLUSION

We have presented the first system to exploit tetrahedral strips as
volumetric primitives in off-the-shelf graphics hardware. It is based
on a new data structure which extends the classical tetrahedral strips
by compact neighbor information indispensable not only for vol-
ume rendering of unstructured meshes but a great variety of fil-
tering and mapping algorithms. Exploiting this data structure, our
approach encodes the strips into textures and renders them with the
help of a ray casting algorithm running solely on the graphics chip.
In contrast to previous approaches, the low memory requirements
of our texture encoded tetrahedral strips allow for the handling of
data sets with several millions of tetrahedra, intrinsicly supporting
non-convex meshes. Future work, concentrating on exploiting tex-
ture paging, might even result in support for data sets exceeding the
physical memory of the graphics card.

Universality is an important advantage of our strip data struc-
ture in the sense that it supports sequential as well as general strips.
It can therefore be used with virtually any stripification algorithm.
However, only few approaches for the generation of tetrahedral
strips exist and are mainly based on heuristics; thus, there is still
need for more research.

With respect to performance considerations, our approach seems
to be hampered by limitations of current graphics hardware, which
should be removed with upcoming graphics card generations.
Moreover, we expect our approach to fully benefit from the ad-
vanced performance of future graphics card generations, since the
data transfer bottleneck between the CPU and the GPU is com-
pletely removed.

ACKNOWLEDGEMENT

This work was partially supported by the Ministry of Science and
Technology of Spain under contract MCYT–FEDER TIC2001–
3694–C02 and by the Secretarı́a Xeral I+D of Galicia (Spain) under
contract PGIDIT03TIC10502PR.

REFERENCES

[1] K. Akeley, P. Haeberli, and D. Burns. The tomesh.c program. Tech-
nical report, Sillicon Graphics, 1990. available from SGI Developer’s
Toolbox CD.

[2] C. Beeson and J. Demer. Nvtristrip, library version. Software available
via Internet web site, http://developer.nvidia.com/, January 2002.

[3] Fabio F. Bernardon, Christian A. Pagot, Joao L. D. Comba, and Clau-
dio T. Silva. GPU-based Tiled Ray Casting using Depth Peeling. Tech-
nical report, SCI Institute, University of Utah, 2004.

[4] F. Evans, S. S. Skiena, and A. Varshney. Optimizing Triangle Strips
for Fast Rendering. Visualization, pages 319–326, 1996.

[5] Cass Everitt. Interactive Order-Independent Trans-
parency. Technical report, nVidia whitepaper available from
www.nvidia.com/object/Interactive Order Transparency.html, 2001.

[6] Michael P. Garrity. Raytracing Irregular Volume Data. In Proceedings
of the 1990 Workshop on Volume Visualization, pages 35–40. ACM
Press, 1990.

[7] S. Gumhold, S. Guthe, and W. Straßer. Tetrahedral Mesh Compres-
sion with the Cut–Border Machine. pages 51–58, 1999.

[8] S. Gumhold and W. Straßer. Real Time Compression of Triangle
Mesh Connectivity. In SIGGRAPH’98 Conference Proceedings, pages
133–140, 1998.

[9] Davis King, Craig M Wittenbrink, and Hans J. Wolters. An Architec-
ture for Interactive Tetrahedral Volume Rendering. In Klaus Mueller
and Arie Kaufman, editors, Proc. of the Intl. Workshop on Volume
Graphics 2001, pages 163–180. Springer-Verlag, 2001.

[10] nVidia. Cg language specification, 2002. Cg Language Specification,
available at http://developer.nvidia.com/cg.

[11] J. Rossignac. Edgebreaker: Connectivity Compression for Triangle
Meshes. IEEE Transactions on Visualization and Computer Graphics,
5(1):47–61, 1999.

[12] P. Shirley and A. Tuchman. Polygonal Approximation to Direct Scalar
Volume Rendering. In Proceedings San Diego Workshop on Volume
Visualization, Computer Graphics, volume 24, pages 63–70, 1990.

[13] B. Speckmann and J. Snoeyink. Easy triangle for TIN terrain mod-
els. In Canadian Conference on Computational Geomerty, pages 239–
244, 1997.

[14] A. Szymczak and J. Rossignac. Grow & Fold: Compression of Tetra-
hedral Meshes. In Proc. ACM Symp. on Solid Modeling and Applica-
tions, pages 54–64, 1999.

[15] C. Touma and C. Gotsman. Triangle Mesh Compression. GI98 Con-
ference Proceedings, pages 26–34, 1998.

[16] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl.
Hardware-Based Ray Casting for Tetrahedral Meshes. In Proc. IEEE
Visualization ’03, pages 333–340. IEEE, 2003.

[17] X. Xiang, M. Held, and J. S. B. Mitchell. Fast and effective stripifi-
cation of polygonal surface models. In ACM Sympos. Interactive 3D
Graphics, pages 71–78, 1999.

78

