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ABSTRACT

We present two distance field representations which can preserve
sharp features in original geometric models: the offset distance
field (ODF) and the unified distance field (UDF). The ODF is sam-
pled on a special curvilinear grid named an offset grid. The sample
points of the ODF are not on a regular grid and they can float in the
cells of a regular base grid. The ODF can naturally adapt to curva-
ture variations in the original mesh and can preserve sharp features.
We describe an energy minimization approach to convert geometric
models to ODFs. The UDF integrates multiple distance field rep-
resentations into one data structure. By adaptively using different
representations for different parts of a shape, the UDF can provide
high fidelity surface representation with compact storage and fast
rendering speed.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types;

Keywords: Distance fields, Sampling, Irregular grids, Feature Pre-
serving, Volume Sculpting

1 INTRODUCTION

Distance fields are an important volume representation for surfaces.
Usually, the distance field is a scalar field sampled on a regular 3D
grid. Each voxel specifies the minimum distance to a surface. If the
surface represents a closed shape, this distance is usually signed
to distinguish between the interior and exterior of the shape. Dis-
tance fields have important applications in constructive solid mod-
eling [12], morphing [2], etc.

However, as noticed before [6, 7, 8], surfaces reconstructed from
distance fields often lack sharp edges or corners indicated in the
original models. Recently, there has been some notable research
to tackle this problem [3, 6, 7, 8]. These methods usually achieve
high quality surface reconstruction by adaptive sampling and by
using extra information stored with the distances. For simplicity,
all these methods sample the distance field on a regular or adaptive
rectangular grid.

Converting a geometric model into a distance field is a sampling
problem. The sampling pattern can be regular or irregular. Com-
pared with regular sampling, irregular sampling provides more flex-
ibility. It is possible to accurately align feature points with sam-
ple points in an irregular sampling grid. In this paper, we investi-
gate sampling distance fields on a special irregular sampling pattern
called an offset grid. The sample points in the offset grid are no
longer on a regular grid and they can have a small offset to their
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corresponding regular grid points. Thus, the offset grid is actually
a relatively regular curvilinear grid because each sample is only al-
lowed to float in its correspondent regular grid cell. The offset grid
strikes the middle ground between a regular pattern and a totally
irregular pattern, and thus, it is a kind of semiregular pattern. We
name our representation the “offset distance field” (ODF).

The ODF has the following advantages:
First, the offset grid can naturally adapt to curvature variations
in the original mesh. Because the sample points of the ODF can
float in the cells of a regular grid, we can align the sample points
with the sharp corners and edges in the data. Thus, a high fidelity
surface with sharp features can be reconstructed from the ODF.
Second, the semiregular structure of the ODF keeps most of the
simplicity of a regular grid. We can still use a 3D array to store
the ODF and Marching Cubes can still be applied for surface
reconstruction (see Section 3.3). The CSG operations, such
as volume sculpting on the ODF, are still intuitive and easy to
implement (see Section 7.1).
Third, compared with other methods [6, 7, 8], the ODF shifts
some expensive computations from the rendering stage to the
construction stage. After carefully encoding sharp features into
the ODF at preprocessing, our method does not need to explicitly
identify and process these features at the rendering and manipu-
lation stages. For many applications, such as volume sculpting,
fast reconstruction and manipulation of a distance field is more
desirable than fast construction.

With the ODF, we now have several distance field representa-
tions [6, 7, 8] which make different tradeoffs between quality of the
surface reconstructed and storage size of the distance field. When
converting any model into a distance field representation, different
parts of the model may have different levels of complexity. Some
part is smooth while another part may have feature points and
edges. Thus, it may be desirable to develop a mixed distance
field representation which uses different distance representations
for different parts of the model. Motivated by this, we propose
the unified distance field (UDF) which can seamlessly integrate
various distance field representations into one data structure. For
each sample point in the UDF, in addition to the signed minimum
distance, we also optionally store one of the following three sets of
information: (a) the directed distances in x, y, and z direction; (b)
the position of a feature point; (c) the position of this sample point.

The UDF has the following advantages:
Adaptiveness: the UDF can select the best representations for
different parts of a shape. We only store extra information when
it is really necessary. For example, if accurate intersection points
on edges that show sign changes can be reconstructed from the
minimum distance, then we do not need to store these intersection
points explicitly. If a surface can be reconstructed accurately
from the intersection points in a cell, then we do not need to store
an extra feature point in this cell. Similarly, if the mesh can be
reconstructed accurately from the intersection points and an extra
feature point, then we do not need to use the ODF. Therefore, the
UDF is an accurate and compact representation.
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Accuracy: Unlike other methods [7, 8], we explicitly store the
position of some feature points along with the distance values when
we convert a geometric model to a distance field. The positions
of these feature points are thus more accurate than reconstructed
positions in other methods because they are derived directly from
the original geometry.
Efficiency: During rendering and manipulation stage, we do not
need to reconstruct feature points which are already stored in the
distance field representation. Thus, rendering and manipulation
speed of the UDF is faster.

The primary contributions of this paper are:

• We introduce the ODF as an extension to the conventional
distance field sampled on a regular grid. We demonstrate that
the ODF provides more accuracy and flexibility, keeps most of
the simplicity of a regular grid distance field, and can preserve
sharp features in the original model.

• We describe an energy minimization approach to convert a tri-
angle mesh to an ODF. The energy function we use consists
of three terms: a distance energy which measures the fidelity
of the conversion, a regularity energy and an orthogonal en-
ergy which measure the quality of the ODF grid. Several user
specified parameters allow the tradeoff between fidelity of the
reconstructed surface and quality of the ODF grid.

• We introduce the UDF to integrate multiple distance field
representations into one data structure. We demonstrate that
the UDF can provide high fidelity surface representation with
compact storage size and can better preserve features and can
be rendered and manipulated more efficiently.

This paper is organized as following. After a brief introduction
to the related work in Section 2, we introduce the ODF in Section 3.
Then, we present the energy function in Section 4 and our optimiza-
tion method in Section 5. The UDF and its related data structure,
construction, and surface reconstruction methods are presented in
Section 6. We explore the applications of the ODF and UDF in vol-
ume sculpting in Section 7. Finally, we present our experimental
results in Section 8 and conclude in Section 9.

2 RELATED WORK

Distance fields have been studied extensively. Various methods ex-
ist to convert geometric models into distance volumes [1, 4, 17].
However, as mentioned before, the reconstructed surface from these
distance fields lacks the sharp features indicated in the original
models.

One solution is to use supersampling or adaptive sampling to
preserve fine details to any user required precision. Frisken et al.
[3] presented adaptive distance fields which can dramatically re-
duce volume storage size while preserve details compared with the
supersampling method.

Kobbelt et al. [8] proposed an enhanced distance field which
stores directed distances in x, y, and z direction with each voxel.
They used an Extended Marching Cubes algorithm to detect those
grid cells containing sharp features and then additional sample
points lying on the feature are computed and inserted into the mesh.
By this way, they can reconstruct triangle meshes at a much im-
proved quality compared with conventional methods.

Huang et al. [6] introduced the complete distance field which
stores the original triangle mesh with the distance volume. How-
ever, their method needs auxiliary data structures and the compu-
tational and storage costs of their method are substantial. Their
method is good for high end graphics where accuracy is very im-
portant. Otherwise, storing both distance fields representation and
original triangle meshes is an overkill for most applications.

Ju et al. [7] further stored normals along with the exact intersec-
tion points for edges which show sign changes in a distance field.
They use these normals to define a quadratic error function for each
cell. They then generate a vertex positioned at the minimizer of the
quadratic function. By this way, they avoid the needs to explicitly
identify and process “features”. By using dual methods, the gen-
erated polygonal meshes also have higher quality. One disadvan-
tage to this method is that they need normals which dramatically
increase the total storage space.

3 OFFSET DISTANCE FIELD

3.1 Definition

We introduce a structured irregular grid, called an offset grid. The
offset grid is based on our previous work on O-buffer (or offset
buffer) [13, 14]. The offset grid is generated by connecting samples
stored in a uniform O-buffer. From another point of view, the offset
grid is formed by placing a sample point in each cell of a regular
grid. These sample points are then connected to form a structured
curvilinear grid. Therefore, the offset grid is a more regular curvi-
linear grid because each sample cannot leave its corresponding cell
in the regular grid. The Offset Distance Field is defined as any dis-
tance field sampled on an offset grid. Typically, the distance field
is defined everywhere as an Euclidean distance field. In order to
simplify the presentation, we use the following terms: grid points
as the points on a regular grid; sample points as the points on an
offset grid; feature edges as the edges whose adjacent faces enclose
a dihedral angle less than a threshold; feature points as the joint
points of more than two feature edges.

(a)

(b)

Figure 1: (a) A distance field sampled on a regular grid. (b) A dis-
tance field sampled on an offset grid. The dotted lines show the
underlying regular grid.

Figure 1a shows a distance field sampled on a regular grid. Fig-
ure 1b shows an ODF where the distance field is sampled on an
offset grid. From the figure we can see that the grid of an ODF
can naturally adapt to curvature variations in the original mesh, and
thus preserve the fine details in the data.

The ODF can also be used to capture the sharp features in the
original data. Figure 2 shows two scenarios of using the ODF to
preserve sharp features. For any feature point, we can choose either
aligning a sample point in the ODF with this feature point (see Fig-
ure 2b) or align an edge of the ODF with it (see Figure 2c) so the
feature point can be reconstructed easily at the rendering stage by
the Marching Cubes algorithm.

We make a few comments on the motivation behind the ODF.
The irregular volumetric grids can be divided into structured grids
(i.e., curvilinear grids) and unstructured grids (i.e., tetrahedral
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(a) (b) (c)

Figure 2: (a) A sharp feature point of a geometric model; (b) Aligning
a sample point of an ODF with the feature point; (c) Aligning an edge
of an ODF with the feature point.

meshes). The tetrahedral meshes provide better flexibility and
adaptiveness. However, sampling a distance field on a tetrahedral
mesh has some disadvantages: First, for unstructured grids, the con-
nectivity information has to be stored explicitly. This will greatly
increase the storage requirement [11]. Second, for CSG operations,
quickly locating the corresponding cell for a given sample point is
critically important. However, this task is not trivial for tetrahe-
dral meshes. The offset grid is a structured grid. Thus, we do not
need to store the connectivity information. As a special constrained
curvilinear grid, locating a cell in the ODF for a sample point is
relatively straightforward and easy. Thus, the offset grid achieves a
fine balance between a regular grid and a totally irregular grid.

3.2 Data Structure

We can use the same data structure as a conventional distance vol-
ume to store an ODF, which is just a 3D array of samples. For each
sample, we store the position of this sample point and the minimum
distance to a shape from this sample point. This data structure can
be improved in two ways: First, for most voxels which are not close
to the shape, their offset is simply zero. Thus, we can use a flag to
identify if this is a regular voxel or an offset voxel for quick pro-
cessing. Second, if storage space is a big concern, the position of a
sample point can be recorded as an offset to its nearest regular grid
point and this offset can be quantized for compact representation.

3.3 Rendering of ODFs

Distance fields can be either directly rendered by ray casting or
can be first converted into another representation such as triangle
meshes [9] or points [6], which can then be rendered by projection
or splatting, respectively. Ray casting can generate high quality
images but high rendering speed is often unattainable in practice.
A triangle mesh is the most popular primitive and considerable re-
search has been conducted to extract triangle meshes from volume
data [4, 9, 15, 19]. There are two major approaches: cube-based
methods [4, 9] and deformable methods [15, 19].

Marching Cubes is the most famous cube-based method [9]. The
original Marching Cubes algorithm has been further extended to
solve the ambiguity cases [10] and to extract surfaces from mul-
tiresolution volume representations [7, 16, 18]. The SurfaceNets
method [4] can be considered as a dual method of Marching Cubes.
Instead of generating vertices on cell edges, the SurfaceNets algo-
rithm generates one representative vertex inside each cell. Then,
these representative vertices are connected to form a surface ac-
cording to the sign changes on cell edges.

In this paper, we use the cube-based algorithms as the surface
reconstruction method for ODFs. Even though the cell of the ODF
is no longer a cube (it is actually a hexahedral cell), the March-
ing Cubes (or its dual method, the SurfaceNets) algorithm can still

be directly used to render ODFs as long as these cells are not in
bad shape (see Section 5.2). The algorithm structure is identical
to the original Marching Cubes method. Every cell of the ODF is
processed separately and a surface patch is generated for cells with
sign changes. For each edge which shows a sign change, we use
linear interpolation to compute an intersection point. After that, the
intersection points in a cell are connected into triangles using the
lookup table of Marching Cubes.

4 DEFINITION OF THE ENERGY FUNCTION

We need to consider the following requirements when we develop
algorithms to convert geometric models into ODFs:
First, the fidelity of the conversion. Given a triangular mesh and its
corresponding ODF, we can measure the error between the original
mesh and the reconstructed mesh from its ODF. The smaller the er-
ror, the better the conversion. Also, the sharp features in the data
should be faithfully reconstructed from the ODF.
Second, the quality of the offset grid. The quality of the offset grid
will affect the aspect ratios of the triangles generated. We want to
avoid slivery/thin triangles. The more regular the grid is, the better
aspect ratios the final triangles will have. As a volume representa-
tion, a bad quality grid will affect the precision of some parts of the
volume. This may degrade the performance of CSG operations.

In order to satisfy the competing desires of these two criteria,
we define an energy function and cast the conversion problem into
an optimization problem of minimizing this energy function. Our
approach is inspired by the method used by Hoppe et al. [5] for
mesh optimization . Let the original triangle mesh be Mo(V,T ),
where V = v1,v2, ...,vm,vi ∈ R3 is a set of vertex positions and
T is the triangle list. Its corresponding ODF is O(G, D), where
G = g1,g2, ...,gn,gi ∈ R3 is a set of sample points and D is the cor-
responding set of minimum distances. Let the mesh reconstructed
from the ODF be Mr. The energy function is:

E(Mo,O) = λdEdist(Mo,Mr)+λsEspring(O)+λoEortho(O) (1)

The first term corresponds to the fidelity of the conversion, and the
last two terms correspond to the quality of the offset grid. The
distance energy Edist equals the sum of squared distances between
the original mesh Mo and the mesh reconstructed from the ODF Mr.
The distance energy can be computed as:

Edist(Mo,Mr) = min(∑d2(vi,Mr),∑d2(gi,Mo)) (2)

The grid quality for structured grids consists of regularity and
orthogonality. To guarantee the regularity of the grid, a spring with
the rest length of l is placed on each edge of the mesh. The potential
energy is:

Espring(O) = ∑(|gi −gk|− l)2
, (3)

where gi and gk are any two adjacent sample points. The spring en-
ergy measures the equi-distribution of sample points and penalizes
samples which get too far or too close. The rest length of the spring
equals the unit length of the ODF’s underlying regular grid.

However, we notice that just preventing any two sample points
from getting too close and too far cannot guarantee good results
because the cell still can get deformed very much without even
changing the spring energy. Thus, we add the third term, the or-
thogonality energy. We can think that samples are linked by a rigid
structure and rods which are free to extend and those adjacent ones
are connected by torsion springs. The orthogonality energy can be
computed as:

Eortho(O) = ∑(|ei.e j|)
2 (4)

where vectors ei and e j are any two adjacent edges which should be
perpendicular to each other if the grid is regular. The orthogonality
energy penalizes cells which get deformed.
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The user-specified parameters λd , λs, and λo provide a control-
lable trade-off between fidelity of conversion and quality of the off-
set grid. For example, a larger λd indicates that a high fidelity con-
version is preferred over a high quality grid. Large λs and λo can
avoid concave and other badly shaped cells in the ODF.

5 MINIMIZATION OF THE ENERGY FUNCTION

We use a regular grid distance field as a starting point for an op-
timization process. During the optimization, we vary the position
of sample points and try to reduce the total energy. In principal,
we can iterate until some formal convergence criterion is met. In
practice, we often perform a fixed number of iterations. Like many
optimization problems in computer graphics, there is no guarantee
of finding a global minimum. Our goal is to find heuristic methods
which can work in practice with a wide variety of data sets.

5.1 General Solution

We describe some general methods to minimize the energy
function. We first compute the energy for each cell of the initial
regular grid. For those cells whose energies are beyond a threshold,
the vertices of these cells are tagged as candidates to move.

Random Move and Simulated Annealing: For any candidate
sample point, we randomly move it to a new point and compute the
energy function. If the energy is reduced, accept it. If not, we try
again. If a large number of trials fails to reduce the energy function,
we terminate the iteration. This is a brute-force method. However,
it is found that even this simple strategy of random descent can
generate good results [5]. Simulated annealing refines the random
descent approach by accepting some moves which increase the
energy. Simulated annealing can overcome local minimum and
achieve global optimization. However, it is very slow and we have
not seen much of its application in computer graphics.

Gradient Search: For each point, we pick some discretized di-
rections and compute the gradients of the energy function along
these directions. Then, we move this point along the steepest de-
scent gradient direction. This is a kind of greedy algorithm and is
widely used in practice. In our case, we consider 6 discretized di-
rections (positive and negative x, y, and z directions) for any sample
point. For each direction, we can move the point along this direc-
tion at a small step. Then, we compute the energy function again for
the new position. The difference gives the gradient. We then move
this sample along the direction that can reduce the energy function
most. Good results can often be achieved by decreasing the step
size of the move after each round of iterations. In this paper, we use
the gradient search method to minimize the energy function.

5.2 Legal Move

Some moves of sample points may cause badly shaped cells. Two
kinds of shapes will cause problems and make Marching Cubes in-
appropriate for surface reconstruction: self-intersection cell (see
Figure 3a) and concave cell (see Figure 3b). We define the legal
move of a sample point as a move which does not cause any self-
intersection and concave cells in the ODF grid.

The structure of the offset grid can avoid any self-intersection
cell if a sample point is only allowed to float in its corresponding
cell of the underlying regular grid. Thus, we will focus on how to
avoid concave cells. Figure 3c illustrates our method. For a sample
point, we will not allow any moves which cause the penetration of
any sample a of the ODF through the plane passing through three
adjacent samples b, c, and d in the same cell.

a

b c

d
a

b c

d

(a)

a

b c

d

a

b c

d

(b)

a

b

c

d

(c)

Figure 3: (a) A self-intersection cell; (b) A concave cell; (c) A legal
cell.

5.3 Acceleration

In this section, we describe some heuristic acceleration methods
which can dramatically reduce the running time. First, we introduce
an approximate energy function computation method. After that,
we present Laplacian smoothing for inside voxels.

5.3.1 Energy Function Computation

During the iteration, we need to know in advance how the energy
function will be affected by moving the position of a sample point.
There are two different ways to compute the energy function: ex-
act evaluation and approximate evaluation. For exact evaluation,
after each move, we update the energy function for each cell. For
approximate evaluation, we use some faster heuristic method to es-
timate the energy and use the estimated energy to update the total
energy function after an accepted move. By this way, we can avoid
computing the exact energy function after each move.

Among the three terms of the energy function, the computation
of the spring and orthogonality energies are easy and straightfor-
ward. To evaluate the distance energy, it is necessary to compute
the sum of squared distances between the original mesh and the re-
constructed mesh. This is an expensive operation. We develop a
fast approximation method for the distance energy.

It has been demonstrated that if a surface is smooth, a distance
field can accurately represent this surface [6]. Thus, the error be-
tween the reconstructed surface and the original surface is mainly
caused by feature points and edges which have high curvature. For
each cell with feature points falling in or feature edges passing
through, we compute the minimum distances from each feature
point and feature edge in this cell to the vertices of the triangle
mesh reconstructed in this cell from the distance field using March-
ing Cubes. These vertices are on the cell edges which show sign
changes. The smaller the distance, the more likely the surface is
separated into smooth patches in each cell, and the smaller the real
distance energy. Thus, we approximate the distance energy by the
sum of squared minimum distances from all feature points or fea-
ture edges to the vertices of the reconstructed mesh.

5.3.2 Laplacian Smoothing for Inside Voxels

For the inside voxels whose adjacent cells contain no segment of the
shape, the energy function only contains regularity and orthogonal-
ity energy. Instead of using the gradient search, we can simply use
Laplacian smoothing to improve the grid quality. For each sample
point in an ODF, there are up to eight adjacent cells. Thus, the new
position of the sample point can be simply computed as the average
of the centers of these adjacent cells. This can greatly improve the
grid quality.
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6 UNIFIED DISTANCE FIELD

Besides the ODF, there are four other different distance field repre-
sentations: the conventional distance field which only stores min-
imum distances; the enhanced distance field [8] which stores di-
rected distances in x, y, and z direction; the Hermite distance field
[7] which stores exact intersection points and their normals for
edges with sign changes; the complete distance field [6] which
stores minimum distances and the original mesh. All these meth-
ods have their advantages and disadvantages. They make different
tradeoff between quality of the reconstructed mesh and space re-
quirement of the distance field representations. Some method may
be suitable for some situation. No one method can win in all situa-
tions.

Figure 4 shows some scenarios. Figure 4a demonstrates that if
there are no feature points or edges in a cell, the minimum distances
and the standard Marching Cubes method sometimes provide bet-
ter fidelity than a more sophisticated method such as the Dual Con-
touring method. In this case, it is hard to find a good position for a
sample point inside the cell which is used by the Dual Contouring
method. Figure 4b shows that if there are sharp corners or edges
in a cell, the Extended Marching Cubes and the Dual Contouring
method provide better reconstruction. However, the reconstructed
feature point is only an estimation of the real feature point of the
original mesh. Figure 4c shows that there are two feature points
in a cell of a regular grid. The ODF can align these feature points
with different edges of cells by adjusting the positions of the sample
points of the ODF.

(a) (b) (c)

Figure 4: (a) No feature point; (b) One feature point; (c) Two feature
points. The dotted lines show the ODF grid.

All these scenarios may appear simultaneously in one model.
Thus, it may be desirable to develop a mixed representation which
uses different distance representations for different parts of the
model. We propose the unified distance field (UDF) representa-
tion which integrates multiple distance field representations into
one data structure.

6.1 Data Structure

For each sample point, we store one of the following four sets of
information. Figure 5 illustrates these four sets in 2D.

• Dm: the minimum distance to the surface.

• (Dm,(Dx,Dy,Dz)): the minimum distance and the directed
distance in positive x, y, and z directions. The exact intersec-
tion points in the edges can be computed from these distances.

• (Dm,(Vx,Vy,Vz)): the minimum distance and the position of
one feature point inside this cell.

• (Dm,(Ox,Oy,Oz)), the minimum distance and the position of
this sample point. This sample point is only allowed to float

in its correspondent cell of a regular grid. In other words, it is
a sample point in the ODF.

Dm

(a)

Dm

Dx

Dy

(b)

Dm

(Vx,  Vy)

(c)

Dm

(Ox,  Oy)

(d)

Figure 5: Four sets of information: (a) Dm, which is the minimum
distance; (b) Dm and (Dx,Dy), which are the distances in positive x
and y direction; (c) Dm and (Vx,Vy), which is the position of a feature
point; (d) Dm and (Ox,Oy), which is the position of this sample point.

There are two features of this representation: First, we may
explicitly store a feature point in a cell. This is inspired by the
complete distance field (CDF) [6]. Unlike the CDF which stores
whole triangle meshes, we only store one feature point. This
makes our representation more compact and we believe that this is
good enough for most applications. Compared with the Extended
Marching Cubes method [8] and the Dual Contouring method [8],
our method provides more accuracy for the position of the feature
points by getting them directly from the original data and provides
more efficiency for rendering and manipulation of the distance field
by avoiding the expensive reconstruction of these feature points.
Second, we always store the minimum distance. The minimum dis-
tance plays a key role to integrate different representations. We will
demonstrate this in Section 6.3.

The implementation of this representation is straightforward. For
each sample point, we store a minimum distance and a pointer to
additional information. The additional information includes three
floating point numbers and a 2-bit flag. Based on this flag, these
three numbers can be interpreted as either the directed distances,
the position of a feature point, or the position of this sample point.
If only the minimum distance is stored, the pointer to additional
information is simply null.

6.2 Construction of UDFs

When we convert geometry models into UDFs, we need to decide
which one of the four sets of information to store in each sample
point. The principle is that we only store extra information when
necessary. We start from the minimum distance and then gradually
store directed distances, feature points, and the positions of samples
with the increase of the complexity of the shape. Even though
directed distances, feature points, and the positions of samples
require equal amount of memory, their underlying grid quality,
construction and reconstruction algorithms, and CSG operations
are different. The criteria to choose which information to store are

43



the fidelity of the representation, the regularity of the final grid, and
the simplicity of the construction and reconstruction algorithms.

The steps to convert a triangle mesh model to a UDF are:
First, we generate a regular grid distance field representation with
the minimum distance to the surface computed and stored in each
grid point. For each edge which shows a sign change, we first try
to reconstruct the intersection point by interpolating the minimum
distances stored on the two vertices of this edge. Then, we compute
the exact intersection point and compare the reconstructed point
and exact intersection point. If their difference is less than a thresh-
old, the information of the exact intersection point is abandoned.
Otherwise, we store the directed distances computed from the exact
intersection point.
Second, we detect the global feature points and the feature edges in
the original data and locate their corresponding cells in the distance
field. For cells with one feature point, we store the position of this
feature point. For a cell with a feature edge passing through, we
also store the position of one feature point along the feature edge
in this cell. This position is computed using Ju et al.’s method [7]
which finds the minimizer of a quadric function.
Third, we check the error of each cell between the original mesh
and the reconstructed mesh. For cells with errors beyond a thresh-
old, we can move the position of the samples to reduce the error
by using the method described in Section 5. If a legal move of a
sample can reduce the total energy, then we store the position of
this sample along with the minimum distance.

6.3 Surface Reconstruction from UDFs

The surface reconstruction method for the UDF has the identical
framework as the Marching Cubes method or its dual, the Sur-
faceNets method. We process each cell one by one. For each cell
which shows a sign change, we reconstruct surfaces in this cell and
then connect them with surfaces reconstructed from adjacent cells.

The surface reconstruction method is:
First, for each edge which shows a sign change, check if the exact
intersection point is already stored as the directed distances. If yes,
we retrieve the intersection point. If not, we can always reconstruct
the intersection point by linear interpolation of the minimum dis-
tances stored in two vertices of the edge. In order to stitch multiple
representations together, the minimum distance is required for each
sample point. If one or two of the vertices of this edges are not on
the regular grid, compute the intersection point based on the mini-
mum distance and the position of these two samples.
Second, for each cell where no feature point is stored, triangulate
this cell using the Marching Cubes method.
Third, for cells with a feature point stored, we can use the Extended
Marching Cubes method [8]. We first generate a triangle fan using
this feature point as the center. Then, we check the neighboring
cells, if there are other feature points, connect them to form a fea-
ture edge by an edge flip process.

7 VOLUME SCULPTING WITH ODF AND UDF

Boolean operations on the distance field provide a natural, straight-
forward method for sculpting[12]. In this section, we use volume
sculpting to demonstrate the flexibility and accuracy of the ODF
and the UDF.

7.1 Volume Sculpting with ODF

Volume sculpting starts from reconstructing and resampling the
tool’s distance field on each sample point of the object’s distance
field. Then, Boolean operations are applied for the object’s dis-

tance value and tool’s distance value on each sample point. Finally,
surfaces are reconstructed from the resulting distance field.

Suppose the object to be sculpted is represented by an ODF. Usu-
ally, tools are less complicated than the objects. Thus, tools can be
represented as parametric functions, triangle meshes, or distance
fields sampled on regular grids. For each voxel in an ODF, comput-
ing its distance to a parametric surface or triangle mesh, or resam-
pling its distance in a regular grid distance field by trilinear interpo-
lation is straightforward (see Figure 6). Actually, this computation
and the following Boolean operations are the same for an ODF and
a regular grid distance field. The resulting ODF can then be ren-
dered by Marching Cubes. Thus, volume sculpting using ODFs is
still intuitive and easy to implement just like using a regular grid
distance field.

(a) (b) (c)

Figure 6: An ODF is sculpted by: (a) A parametric surface; (b) A
mesh; (c) A regular grid distance field. The dotted lines represent
the sculpting tools (e.g., a sphere, a triangle mesh, and a regular
grid distance field).

Some features may be created after the CSG operations even
when there is no such feature in both objects and tools. Then, we
need to use either Kobbelt et al.’s method [8] to compute the inter-
section of the two or three planes or use Ju et al.’s method [7] to
compute the point which minimizes a quadric error function . After
the feature point is computed, we can locally deform the cell so this
feature point can be either aligned with the sample point or the edge
of the cell.

7.2 Volume Sculpting with UDF

Volume sculpting with UDFs has the same framework as volume
sculpting with conventional distance fields or the ODFs. After the
Boolean operation, one of the two distance values (i.e., distances to
the object and the tool) is used as the new distance value for any
sample point in the UDF. For each cell, if the final distance values
of its eight vertices are from different sources, then a new surface is
generated in this cell. We need to detect if there is any sharp feature
point or edge created in the new surface. This can be done by using
Kobbelt et al.’s method [8]. If yes, we store its position in this cell.

8 EXPERIMENTAL RESULTS

All our experimental results have been generated on a Dell Dimen-
sion 8200 desktop with a 2.53GHz Pentium 4 CPU, 1.0GB of RAM,
and an Nvidia GeForce4 graphics board with 64MB memory. Our
implementation is not highly optimized for speed.

First, we convert the FanDisk model into an ODF and a UDF
and demonstrate that the ODF and UDF can reserve sharp features
in the original model. The grid resolution for the distance fields
in this example is 65×65×65. All distances and errors are in grid
unit. All rendering times are in second. Figure 7a shows the original
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(a) (b)

(c) (d)

Figure 7: Fandisk surfaces: (a) Original surfaces; (b) Surfaces recon-
structed from a regular grid distance field; (c) Surfaces reconstructed
from an ODF; (d) Surfaces reconstructed from a UDF.

surface. Figure 7b shows the surface reconstructed from a regular
grid distance field. The aliasing around feature edges and corners is
obvious. Figure 7c shows the surface reconstructed from its ODF.
The ODF is generated from the FanDisk mesh using the method
presented in Section 5. Figure 8 shows surfaces reconstructed from
the ODF at different stages of iterations. We can see that the sur-
face fidelity is improved substantially and the sharp features can
be faithfully reconstructed from the ODF. Figure 7d shows the sur-
face reconstructed from the UDF. Directed distances are stored in
each cell if the distance between reconstructed intersection points
and the exact intersection points are greater than 0.1 grid units. We
compute the Hausdorff distance and the average distance between
these reconstructed surfaces and the original mesh. Table 1 shows
the construction time, reconstruction time, and the errors. From the
table, we can see that the UDF has the best overall fidelity perfor-
mance.

Table 1: Rendering times and the errors between reconstructed sur-
faces and the original surface.

Surfaces: Regular DF ODF UDF

Construction Time 11.8s 57.8s 12.5s

Reconstruction Time 1.319s 1.438s 1.533s

Maximum Distance Error 0.97 0.14 0.12

Average Distance Error 0.006 0.0022 0.0018

Table 2 shows the errors of the UDF using different thresholds to
store the directed distances. Among all 262, 144 cells, there are 15,
406 boundary cells which surfaces pass through, and 1,354 feature
cells which contain a feature edge or a feature corner. From the ta-

(a) (b)

(c) (d)

Figure 8: FanDisk surfaces reconstructed from: (a) A regular grid
distance field; (b) The ODF after 5 iterations; (c) The ODF after 10
iterations; (d) The ODF after 15 iterations.

ble we can see that if the error threshold is 0.1 grid units, there are
8,933 voxels which need to store directed distances. However, if the
error threshold is 0.2 grid units, only 151 voxels need to store di-
rected distances. Compared with Kobbelt et al.’s enhanced distance
field [8] which always stores directed distances, our representation
can save substantial memory and storage space with negligible ap-
proximation error.

Table 2: The errors of the UDF under different error thresholds.

Error Threshold: 0.1 0.2 0.3

Voxels with Features 1354 1354 1354

Voxels with Directed Distances 8933 151 80

Average Distance Error 0.0018 0.0022 0.00219

Maximum Distance Error 0.1224 0.1228 0.1228

Figure 9 shows volume sculpting with an ODF model. Figure
10 shows volume sculpting with a UDF model. The resolutions of
these two models are 128× 128× 128. These figures demonstrate
that the newly created features can be reconstructed from our rep-
resentations.

9 CONCLUSIONS AND FUTURE WORK

We presented two novel distance field representations which can
provide high fidelity surface representations. The ODF is an at-
tempt to sample distance fields on a irregular grid. We presented
a conversion method based on reducing an energy function which
balances several competing goals of the conversion, such as the
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Figure 9: Volume sculpting on an ODF.

Figure 10: Volume sculpting on a UDF.

overall fidelity, feature preservation, and the quality of the mesh.
We described several strategies to solve the optimization problem.
We proposed the UDF as a data structure to integrate multiple dis-
tance field representations. The UDF provides accurate surface rep-
resentation with compact storage size and fast rendering speed by
adaptively using different representations for different parts of the
model and by explicitly storing feature points. The UDF is easy to
implement and the ODF can be used to fine tune the grid for more
flexible and accurate representation. We demonstrated that the ODF
and UDF are useful for volume sculpting.

In the future, we plan to further extend both representations
to octree-based adaptive distance fields. We also want to investi-
gate how to perform generalized Boolean operations between two
ODFs, two UDFs, or one ODF and one UDF. There are a number
of applications that need to employ a generalized Boolean operator
(e.g., solid modeling over distance fields, management of range data
in 3D scanning). How to integrate and merge ODFs or UDFs and
still maintain an accurate representation of feature elements needs
further research.
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Semi-regular mesh extraction from volumes. Proceedings of IEEE

Visualization, pages 275–282, 2000.

46




