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ABSTRACT

Splitting a volumetric object is a useful operation in volume vi-
sualization and volume animation, but is not widely supported by
existing systems for volume-based modeling and rendering. In this
paper, we present an investigation into two main algorithmic ap-
proaches, namely explicit and implicit splitting, for modeling and
rendering splitting actions in the context of both volume visual-
ization and volume animation. We consider a generalized notion
based on scalar fields, which encompasses discrete specifications
(e.g., volume data sets) as well as procedural specifications (e.g.,
hypertextures) of volumetric objects. We examine the correctness,
effectiveness, efficiency and deficiencies of each approach in spec-
ifying and controlling a spatial and temporal specification of split-
ting. We propose methods for implementing these approaches and
for overcoming their deficiencies. We demonstrate the use of these
approaches with examples of medical visualization, volume anima-
tion and special effects.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.3.8 [Computer Graphics]:
Applications.

Keywords: volume graphics, volume animation, volume visu-
alization, spatial transfer function, constructive volume geometry,
volumetric scene graph, volume partition, volume splitting, fire ef-
fect, explosion effect.

1 INTRODUCTION

Volumetric splitting is used in both scientific visualization and vol-
ume graphics. Splitting is the process of dividing a volume into
two or more components. Such a process can be governed by data-
independent geometric rules, such as when splitting a volume into
halves to visualize the interior [4], or by data dependent logical
rules, such as when segmenting a volume into different semantic
components [18]. Once split, different transformations and render-
ing algorithms can be applied to each component of the split.

In scientific visualization, splitting can be used to convey more
meaningful information, enabling users to browse parts of a volume
that are normally occluded and to see both the focus and context
(f+C) of the region of a volume that is of interest. Combined with
more logical data partitioning (such as segmentation or “semantic
layers” [18]), new visual representations can be created which high-
light important areas of investigation. In volumetric manipulation
and animation, splitting is used to designate different parts of the
volume for spatial transformation over time. It can be used to cre-
ate more intuitive motion in visualization, such as opening the chest
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of a virtual patient, or to create special effects in volume animation
including explosion effects and fusion or merging actions.

Two sets of examples of splitting are shown in Figure 1. Images
(a) and (b) show two logical splits based on semantic contents of the
data models. While (a) is a special effect produced for film A.I., (b)
is modeled and rendered using volume graphics techniques, which
will be part of the focus of this paper. Image (c) shows a partition-
ing of the visible man data set in volume animation [4], where the
splitting could be more dynamic and vibrant. As image (c) simu-
lates an explosion, its realism could be improved significantly by
increasing the number of splits, from currently 4 to a large number,
for example, 128 as in (d). However, such an increment challenges
both modeling and rendering of these splits. This provides us with
another motivation to deliver more sophisticated methods for spec-
ifying, controlling and rendering spatial and temporal splitting of
scalar fields in volume graphics and to examine the scalability of
splitting actions.

(a) a special effect in film A.I.,
Warner Bros., 2001

(b) a similar image that may aid
medical visualization

(c) 4 splits (d) 128 splits (frame numbers 3 and 15)

Figure 1: Two example scenarios where splitting can be deployed in
volume visualization and volume animation.

In this paper, we discuss the various approaches to the splitting of
a volume and show the different applications of splitting, including
for improved volume visualization, volume animation and special
effects. After a brief review of the related work in Section 2, we
will outline, in Section 3, the concepts of, and general approaches,
to splitting in volume graphics. In Sections 4 and 5, we will present
two main approaches to the specification of splitting, namely ex-
plicit splitting, where the volume is explicitly carved into a number
of pieces before rendering, or implicit splitting, where the “carve”
is defined functionally in the modeling stage but only realized in
the rendering stage and the volume is never actually partitioned. In
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Section 6, we will present a few example applications, including
logical splits in volume visualization, manipulation of segmented
volume data sets, and special effects in volume animation. This
will be followed by our concluding remarks in Section 7.

2 RELATED WORK

In [18], a volume visualization technique was presented to
“browse” volume data. Different tools were created to “split” the
data and then render the splits using different rendering functions.
While the work focused on an interactive visualization process,
the splitting implemented treated individual voxels independently,
which leads to some deficiencies in the quality of rendering.

As splitting can facilitate a “focus + context” view of the oc-
cluded regions in data sets, a number of researchers have pre-
viously employed this concept in visualization. These include
works on volume deformation [14], distortion viewing [3], linked
volumes [8], magnification lens [15], two-level rendering [13],
hardware-accelerated volume rendering [22], and application in
cardiac visualization [5].

Splitting is in fact a kind of deformation, where the restriction on
continuity is deliberately lifted. Hence, many deformation methods
existing in computer graphics (e.g., [1, 12, 19]) may also be relevant
to this work in a more general context. The recent introduction of
spatial transfer functions in volume modeling and rendering was
an attempt to build a bridge between the deformation concepts in
surface graphics and volume graphics [4].

3 CONCEPTS AND APPROACHES

Consider a volumetric representation of an object that is specified
as a set of scalar fields, F1(p),F2(p), . . . ,Fk(p), that define the ge-
ometrical and physical properties of the object at every point p in
three-dimensional space E

3. Such a representation scheme encom-
passes both procedural specifications of scalar fields such as solid
and hyper-textures, and discrete specifications such as volume data
sets. An object defined with such a scheme is referred to as a spatial
object, which is essentially a tuple, o = (A0,A1, . . . ,Ak), of attribute

fields defined in E
3. We usually make attribute field A0 an opacity

field which in essence defines the visible geometry of a spatial ob-
ject.

The action of splitting a spatial object in volume graphics
spatially and temporally can thus be defined as follows:

Definition. Consider an arbitrary spatial object o and a set
of purposely constructed component objects s1,s2,s3, . . . ,sn.
The action of splitting is a series of transformation func-
tions Ti,t applied to si, i = 1,2, . . . ,n, over a period of time
t = 0,1, . . . ,tmax, such that, at t = 0, the union of all trans-
formed objects si(i = 1,2, . . . ,n) is equal to o. In other words,

o = (T1,0(s1),T2,0(s2), . . . ,Tn,0(sn)).

Note that it is the possible for Ti,t to turn an object into an invisible
object by either transforming its geometry into a point of zero size,
or transforming its opacity to fully transparent. In either case, an
invisible object has a zero sum of opacity over its volume V , that is,∫
V A0(p)d p = 0 where A0 is assumed to be the opacity field of the

object.
Figure 2 illustrates an action of splitting of a spatial object. With

the above abstraction, the modeling of splitting a spatial object be-
comes primarily two inter-related tasks, namely, the specification
of a set of component objects S = {si|i = 1,2, . . . ,n} and that
of a set of transformation functions T = {Ti,t |i = 1,2, . . . ,n;t =
0,1, . . . ,tmax}.

The union operation is another critical element in the validity
of a splitting scheme. In this work, we adopt a generalized union

Figure 2: An action of splitting a spatial object.

operator based on [6], that is,

(s1,s2, . . . ,sn = (

MAX(A1,0,A2,0, . . . ,An,0),

SELECT(< A1,0,A1,1 >,< A2,0,A2,1 >,. . . ,< An,0,An,1) >,

. . . ,

SELECT(< A1,0,A1,k >,< A2,0,A2,k >,. . . ,< An,0,An,k) > )

where Ai,0 is the opacity field of the ith spatial object, and Ai, j is

its jth attribute field. Field operator MAX is a pointwise extension
of scalar operation max(a1,a2, . . . ,an) that returns the maximum
value among (a1,a2, . . . ,an). Similarly, SELECT is an extension of
scalar operation select(< a1,b1 >,< a2,b2 >,. . . ,< an,bn >) that
returns the value of bi if ai = max(a1,a2, . . . ,an) (when there are
more than one maximum value, the smallest i is chosen).

Other union operators can also be considered. However, by
adopting one operator enables us to maintain the consistency of our
discussions throughout the paper, while focusing on the specifica-
tion of sets S and T .

There are perhaps many schemes for specifying S and T . It is,
however, necessary for any scheme to address the following techni-
cal issues.

• Explicit or implicit splitting. We may choose to explicitly split
a spatial object o into a component set S . As long as the
union of S is the same as o at t = 0, the original object o
needs not to be featured in the action of splitting, unless for
a specifically desired effect. Alternatively, we may create a
component set S where each element si is mapped onto part
of o using a spatial transfer function. In this case, it is nec-
essary to maintain the original object o, which is partitioned
implicitly, as a “ghost” object in the action of splitting.

• Logical or semantic partitioning. An action of splitting in-
volves partitioning the geometry of a spatial object o and
moving partitioned component si independently away from
others. The logical components of an object o may mean
different properties of the object, such as (i) the bounding
volume of o (e.g., in direct volume rendering [16]), (ii) all
points of a specific iso-value or having met a specific func-
tional specification G(p) = 0, p ∈ o (e.g., in iso-surface [17]
and interval volume extraction [20]), (iii) all non-transparent
points in o (e.g., in constructive volume geometry (CVG) [6]),
(iv) the base geometry, or the soft region of o (e.g., in hyper-
textures [21].
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We organize our approaches to the specification of S and T into
the following two sections, focusing on explicit and implicit split-
ting respectively. Within each section, we will address other tech-
nical issues wherever appropriate.

4 EXPLICIT SPLITTING

A straightforward approach to splitting a spatial object o is to di-
vide o into a set of independent component objects, S = {si|i =
1,2, . . . ,n}, that is,

o = (s1,s2, . . . ,sn).

With a transformation set T where all functions at t = 0 are unit
transformations, i.e., Ti,0(si) = si, i = 1,2, . . . ,n, we have completed
the specification of sets S and T that meet the definition given
in Section 3. However, unlike surface or solid objects that have a
homogeneous interior, the construction of the component set S is
not as straightforward as one would expect. We discuss this issue by
considering discrete spatial objects and procedural spatial objects
separately in the following two subsections.

4.1 Discrete Spatial Objects

Objects defined upon discrete volume data sets are spatial objects.
Typically, the basic geometry of such an object is bounded by a
cuboid in E

3, within which attribute values are specified at a finite
number of voxels that are commonly organized into a 3D grid. An
interpolation function is normally used to transform a set of discrete
data points to a continuous scalar field.

A simple way to split such a volume is to divide the voxels into a
set of non-overlapping cuboids. For example, this method was used
to create an animation of visible man in [4], where the body was
divided up into about 26 different sized cuboids based upon the vol-
umetric skeleton determined [11] and the distance field associated
with each bone of the skeleton. Figure 3(a) illustrates this approach
with a low resolution data set of 12x12x12 voxels, which is pur-
posely constructed to make individual voxels identifiable. The data
set contains three interconnected layers of non-zero voxels, shown
in blue, green and red respectively.

Although geometrical splitting is useful in many applications,
logical splitting, based on the semantic partitions in a volume, can
offer intuitive visualization which highlights important areas of in-
vestigation. To achieve a logical splitting, one can explicitly con-
struct separate objects for individual semantic partitions, and apply
appropriate spatial transformations to them. For example, with the
simple data set shown in Figure 3, we can construct three separate
objects, each specifies a segment based on voxel values. This al-
lows us to manipulate three segments independently as shown in
Figure 3(b).

(a) a geometrical splitting (b) a logical splitting

Figure 3: Splitting a volume of 12x12x12 voxels by partitioning the
original data set explicitly into two components which are re-jointed
together using a volume scene graph.

One imperative problem is that simply distributing voxels among
different components, s1,s2, . . . ,sn, is not sufficient to satisfy the
definition in Section 3 in terms of the equivalence condition. As
illustrated in Figures 4(a) the regions between component objects,
which was defined and (b), in the original object, o, become unde-
fined in (s1,s2, . . . ,sn). Figures 4(d) and (e) shows the splitting
of a purposely constructed data set of 11x11x11 voxels into two ob-
jects, of 6x11x11 and 5x11x11 voxels respectively. As the original
data set contains one middle y-z slice (the 6th slice, shown in red)
that has different voxel values from the rest of the volume. The tran-
sition volume between the 6th and 7th slices have been lost during
the splitting.

Hence, it is necessary to replicate an interpolation region along
the boundary of division among all relevant component objects.
Figure 4(c) shows a simple scheme suitable for volume data sets
defined with tri-linear interpolation, and Figure 4(f) shows a correct
splitting along the 6th slice. For logical splitting based on semantic
partitions, a similar duplication scheme according to the interpola-
tion method can also ensure the correctness of splitting actions.

(a) (b) (c)

(d) (e) (f)

Figure 4: Splitting a volume of 12x12x12 voxels by partitioning the
original data set explicitly into two components which are re-jointed
together using a volume scene graph.

4.2 Procedural Spatial Objects

Procedurally defined spatial objects do not suffer from the problem
associated with volume data sets. We can easily construct the pro-
cedural specifications of n component objects, the union of which
at t = 0 is equivalent to the original object. Once it is split, arbitrary
spatial transformations can be applied to its components indepen-
dently.

However, this simple approach cannot be applied to some com-
mon but complex spatial objects such as hypertexture objects. A
hypertexture [21] is a spatial object defined upon a object density
function, D(x), which is a 3D distance field – a type of scalar fields
commonly used in volume graphics [23, 2, 24]. For every point p in
three-dimensional space E

3 (or a bounded domain), D(p) indicates
whether or not p resides in a “soft” boundary region of an object.
If p is in the soft region, D(p) gives a distance from p to a surface
representing the core of the object; and if p is not in the region,
D(p) indicates if p is inside the core, or outside the entire object,
that is, the union of the soft region and the core. Combined with a
noise function DN(p), a turbulence function DT (p), a bias function

DB(v), and a gain function DG(v), where p ∈ E
3 and v ∈ R, we
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have a hypertexture function:

H(p) = Θ(D(p),DN(p),DT (p),DB(D(p)),DG(D(p))).

From H(p), with appropriate opacity and colour transfer functions,
we can obtain a spatial object:

o = (A0(H(p)),A1(H(p)), . . . ,Ak(H(p))).

Using the strategy of explicit splitting, we can construct a hype-
texture to be partitioned by defining its n components separately
using separate object density functions, D1(p),D2(p), . . . ,Dn(p),
or in a more general form, using separate hypertexture func-
tions, H1(p),H2(p), . . . ,Hn(p). In Figure 5, (a) shows four sep-
arate soft regions defined by a similar density function placed
at different locations, and (b) shows four fire objects built from
D1(p),D2(p),D3(p),D4(p) by applying appropriate hypertexture
functions and transfer functions.

(a) Di(p), t > 0

(c) union, t = 0 (b) si, i = 1,2,3,4, t > 0

(d) union after, t = 0 (e) union first, t = 0

Figure 5: A hypertexture of a fire is specified with four separate
soft regions, and a splitting action is defined as the reverse of a
merging action. (a) Di(p), i = 1,2,3,4, at t = 12, (b) si, i = 1,2,3,4,
at t = 12, (c) max(Di(p)|i = 1,2,3,4), (d) Applying a union operation
to si, i = 1,2,3,4, at t = 0, (e) Applying a max operation to Di(p), i =
1,2,3,4, at t = 0, prior to the application of hypertexture and transfer
functions.

Let us define the original object o as the union of its pre-
partitioned components (s1,s2, . . . ,sn). This may seem to be a
fudge, but it satisfies the definition in Section 3, and in principle,
it uses the exactly the same approach as employed for Figures 3.
The only feeling of inadequacy is that we did not actually start
with a single D(x) as a reference, though there was nothing to pre-
vent us to do so. In fact, we will base our discussions on a single
D(x) when discussing implicit splitting methods for hypertextures
in Section 5.2. Nevertheless, for explicit splitting of hypertexture
objects such as fires, this predefined reference is unnecessary and
does not bring in any extra technical issue. Hence, we focus our
discussions on an original object defined as the union of a set of
components.

Consider a set of overlapped density functions,
D1(p),D2(p), . . . ,Dn(p) at t = 0 (Figure 5(c)). We can sim-
ply treat them as individual soft regions, then apply appropriate

hypertexture functions and transfer functions to create individual
fires, and finally use the union operator given in Section 3 to
construct a composite object as shown in Figure 5(d).

Alternatively, we may first combine the set of density
functions, for example, using a MAX field operator over
D1(p),D2(p), . . . ,Dn(p) as they are in effect a set of scalar fields.
We can then apply a single set of hypertexture functions and trans-
fer functions to the combined density function (Figure 5(e)).

Comparing (d) and (e) in Figures 5, we can observe more vi-
brancy in (d), where the noise and turbulence of different objects
help create a more realistic fire. This additional dynamism is more
apparent in animation. The main advantage of applying the union
operation after hypertexture and transfer functions is the extra de-
gree of freedom in specifying noise, turbulence, bias and gain func-
tions which do not need to maintain the uniformity over the com-
bined soft region. This suits particularly well the dynamic and
stochastic nature of most hypertexture objects. The union opera-
tor used in this work places a strong emphasis on the opacity,
which helps effectively the visual integration of multiple fire ob-
jects. Hence, the second approach of combining density functions
prior to the application of hypertexture and transfer functions does
not bring in any extra benefit, while incurring an extra degree of
complexity in the implementation.

5 IMPLICIT SPLITTING

Given a spatial object o built upon either a discrete volume data or a
procedurally defined scalar field, we can split o implicitly by intro-
ducing a set of “mobile” component objects, S = {s1,s2, . . . ,sn},
each of which is mapped onto a portion of the original object. Such
a “mobile” object si can be defined using a spatial transfer object
ti, and a generic spatial transfer operator , as

si = (ti,o).

A spatial transfer object t, which is of a specific type of spatial ob-
jects, consists of three attribute fields, Ax(p),Ay(p),Az(p). Like in
conventional spatial objects, these attribute fields can be defined us-
ing mathematical, procedural and discrete specifications [7]. Hence
an object t defines a spatial mapping Ψ : E

3 → E
3 for every point

p in E
3. Given an arbitrary p in E

3, the three scalar fields,
Ax(p),Ay(p),Az(p) collectively define the coordinates of another
point q:

q = [qx,qy,qz] = [Ax(p),Ay(p),Az(p)] = Ψ(p).

Given an arbitrary scalar field A(p), we can transform it into a dif-
ferent field as

A′(p) = A(Ψ(p)),

and given an arbitrary spatial object o, we can transform it into a
different spatial object as

o′(p) = o(Ψ(p)) = (A0(Ψ(p)),A1(Ψ(p)), . . . ,Ak(Ψ(p))).

Hence, an evaluation of A′ (or o′) at p implies the evaluation of
A (or o) at q = Ψ(p). As the actual point q is transferred to p
during the evaluation, Ψ is in fact an backward mapping from p to
q. This definition is well suited for the sampling process in both
voxelization and ray-based direct volume rendering. It can be used
to map a component object si to parts of the original object o. It
can also be used to modify the geometrical shape and position of
the mapped partition of o, hence serving as a specification for a
transformation function Ti,t , which is essential to a splitting action.

In this section, we focus on the use of spatial transfer opera-
tions for specifying the implicit splitting of a spatial object. We
will discuss its use for specifying spatio-temporal transformation
functions, T = {Ti,t |i = 1,2, . . . ,n;t = 0,1, . . . ,tmax}, in Section 6.
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Similarly, we discuss the splitting using spatial transfer functions
by considering discrete and procedural spatial objects separately in
the following two subsections.

5.1 Discrete Spatial Objects

A spatial object built from one or more discrete volume data sets
can be split implicitly by defining one or more spatial transfer ob-
jects. For example, a simple cuboid split, similar to Figure 3, can
be achieved by a volume scene graph in vlib [26], which can be
represented algebraically as:

( (t1,o), (t2,o)),

where o is the original object built upon a 12x12x12 volume, and t1

and t2 are two “mobile” objects that spatially transform two parts
of o to achieve an opening effect. In fact, more conveniently, this
splitting action can be realized using just one spatial transfer object,
in the form of (t,o), where t defines a discontinuous transforma-
tion moving each half of o in a different direction. Figure 6 shows
two splitting actions applied to a discrete volume data set using dif-
ferent spatial transfer functions.

Figure 6: Two simple spatial transfer functions are applied to a CT
data set.

The use of spatial transfer functions does not suffer from the
problem of missing transition volume as discussed in 4.1. This is
because the entire data set of o is available to any spatial transfer
object t if they are coupled in a volume scene graph as (t,o),
even when t defines only a partial mapping of o. The problem
of missing a transition volume between slices, or missing data for
a slightly demanding interpolation scheme (i.e., other than nearest
neighbor) disappears naturally.

Spatial transfer objects can also be used for logical splitting,
though directly defining such an object could be rather challeng-
ing. However, one approach is to use masking objects which can
be specified either procedurally or with masking volume data sets
commonly available in segmentation processes. For example, to
achieve the splitting shown in Figure 3(b), we can simply define
three masking objects, s1,s2,s3, each with an opacity field repre-
senting one of the semantic layers in o. The splitting action is thus
defined by a volume scene graph:

( (t1, (o,s1)), (t2, (o,s2)), (t3, (o,s3))),

where is an intersection operator.

5.2 Procedural Spatial Objects

With the support of a volume scene graph in software such as vlib,
the splitting of procedurally specified spatial objects demands much
less effort from the users. For example, using four simple spatial
transfer objects (or a combined one), we can easily split a fire as
shown in Figure 7.

(a) fire at t = 0 with the brute force method

(b) fire at t > 0 with the brute force method

Figure 7: A hypertexture of a fire is specified with a soft object,
and a splitting action is defined using spatial transfer functions that
partition the fire implicitly.

However, noticeably, the splits are far too “perfect” for amor-
phous objects such as a fire. It is hence desirable to maintain some
geometrical characteristics of the original soft region. Instead of
mapping each component object, si = (ti,o), to a quarter of the
spatial domain of o, we can map si to the entire o, while maintain
the size of the corresponding spatial transfer object ti. Note that it
is the size of ti that determines the size of si. This in effect facili-
tates a scaling transformation from o to si. Figure 8 shows a much
realistic set of fires at t > 0 in comparison with Figure 7.

(a) fire at t = 0 with a scaled mapping

(b) fire at t > 0 with a scaled mapping

Figure 8: Instead of mapping each component to a quarter of the
original o, each spatial transfer object t1 is mapped onto the entire
domain of o, while maintaining its quarterly spatial occupancy.

Recall our previous discussions on a reference object at t = 0
in 4.2, and we do have a desirable reference object as a single fire
in this case. Based on this reference object, the fire at t = 0 in
Figure 8 does not satisfy the equivalence condition as outlined in
Section 3.
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(a) fire at t = 0 with a resizable mapping

(b) fire at t > 0 with a resizable mapping

Figure 9: Each spatial transfer object t1 is mapped onto the entire
domain of o, and changes its spatial occupancy from the same as o

at t = 0 to its quarterly spatial occupancy at a specific t > 0.

The flexibility in the specification of spatial transfer objects can
again help resolve this problem. We can dynamically change the
size of each spatial transfer object, ti, as part of spatial and temporal
transformation Ti,t . At t = 0, ti not only maps si to the entire spatial
domain of o, but also occupies the exact same space as o. During
a splitting action over time, each spatial transfer object ti (hence si

as well) resize itself, gradually, to a desired size at a specific time
t > 0. Figure 9 shows a satisfactory transformation from t = 0 to
t > 0.

At t = 0, there are multiple component objects occupying the
same space. As the union operator used in this work is based on
the MAX field operator (see Section 3), this ensures that the union
of these component objects is equivalent to t. This is not always
guaranteed with other union operators used in the field of volume
graphics and implicit surface as many such operators do not satisfy
the identity law.

6 RESULTS

In this section, we describe the implementation of four reasonably
complex splitting actions, and report briefly our study on the scala-
bility of a complex splitting action. Our first case study is partially
inspired by the special effects in film AI as shown in Figure 1. We
combined the explicit splitting approach outlined in 4.1 with the im-
plicit approach outlined in 5.1 to achieve an animation that opens
the facial skin in a CT data set. Figure 10(a) shows some frames ex-
tracted from two animation sequences of the same splitting action.

With the explicit splitting approach, the CT data set is segmented
into two semantic layers, namely the bones and the rest of soft tis-
sues, which are represented by two separate spatial objects. The
opening of the facial skin is achieved using the implicit approach
as it is relatively easy to specify geometrical splitting using spatial
transfer objects once a logical splitting is defined. The specification
of this splitting can easily be extended to an object containing many
semantic layers.

Our second example is shown in Figure 10(b), where the bones
of a visible man’s foot is segmented and slips out the skin. Again,
we considered two semantic layers. Our third example, shown in
Figure 10(c), is simulation of fuel injection into the combustion
chamber. It involves two semantic layers. Fourth example is shown

Figure 11: Two semantic layers of a volume teapot model.

in Figure 11,where a teapot is segmented into three semantic layers,
namely exterior of the teapot, interior of the teapot and a lobster.
Each of these are represented by a spatial object.

To examine the scalability of the approach presented, we at-
tempted a much more complex splitting action, which simulates an
explosion effect with both discrete volume objects (i.e., the visible
man data set) and procedural volume objects (i.e., fires). We utilize
a particle system to define the trajectories of the component objects.
For each component object si, we determine its motion path as:

xi,t = vi cos2(θi)

yi,t = vi sin(θi)t + 0.5gt2

zi,t = vi sin(θi)cos(θi)

where g is the gravity constant. vi is the velocity of each compo-
nent which is randomly chosen from [1,90] at the beginning. θi is
the initial angle of motion, which is again randomly chosen from
[30,89] degree.

For the splitting of the visible man data set, we employed the
implicit approach in 5.1 directly, with which each component is
mapped onto a portion of the original object using a spatial transfer
object. The fire components are specified using the explicit ap-
proach in 4.2, which gives more flexibility to associate each com-
ponent of the visible man with a fire component.

All components are combined into a volume scene graph, where
geometrical transformation is a function of time, and which is ren-
dered using vlib [26]. Figure 12(a) shows a purposely constructed
frame with two visible human data sets, one rendered as usual,
and the other split into 32 pieces which are spatially transfered,
and combined with hypertexture fire also split into 32 pieces. Fig-
ure 12(b) shows frames extracted from three separate sequences of
splitting the visible human data sets with 8, 32, and 128 splits re-
spectively.The timing shown in the figure indicates that the render-
ing time relates to the number of splits almost linearly.

Most of the images in this paper were rendered on a 128-node PC
cluster without any graphics hardware. Depending the complexity
of the volume scene graphs and image resolution, the majority of
the images, except the visible man animation, take between 1 - 30
seconds to render. For simple scene, the most time is in fact the
communication overhead in the parallel processing.

7 CONCLUSIONS

In this paper, we have presented a comprehensive study on a par-
ticular graphical operation, namely splitting, in the context of vol-
ume visualization, volume animation and special effects. We have
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(a) digitally splitting a CT head based on two semantic layers, namely bones and soft tissues.

(b) digitally extracting bones from a visible man’s foot.

(c) digitally opening a combustion chamber.

Figure 10: Three sets of frames selected from different example animation sequences.

described two main approaches to realize splitting actions in a vol-
ume graphics pipeline. We have introduced a definition of “correct”
splitting, which provides basic guidance to the evaluation of differ-
ent splitting methods as well as enables us to consider both objects
constructed from discrete volume data sets and those defined pro-
cedurally, often in a continuous and amorphous manner.

We have shown that splitting can be specified explicitly as well
as implicitly. The latter demands less effort from users in the spec-
ification process, and does not suffers from the issue of missing
boundary data as with the former in dealing with discrete data sets.
We have also shown that both explicit and implicit splitting can
effectively facilitate geometrical splitting as well as logical split-
ting. The integration of spatial transfer functions into volume scene
graphs allows us to specify complex splitting in a scalable man-
ner. We have also considered the splitting of hypertexture as an
example of complex volumetric objects. We have found operative
methods with both explicit and implicit approaches. To support our
findings, we have provided a set of high quality results which have

demonstrated the correctness, effectiveness, and scalability of the
approaches presented in this paper.
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(a) A split visible man and fire with the original visible man.

frame no.: 1 frame no.: 1 frame no.: 1
time: 3.252 sec time: 8.951 sec time: 36.290 sec

frame no.: 15 frame no.: 15 frame no.: 15
time: 4.871 sec time: 28.745 sec time: 162.600 sec

frame no.: 28 frame no.: 28 frame no.: 28
time: 7.631 sec time: 55.422 sec time: 403.727 sec

frame no.: 63 frame no.: 63 frame no.: 63
time: 13.246 sec time: 62.293 sec time: 534.018 sec

(b) from left to right: 8, 32 and 128 splits.

Figure 12: (a) Splitting the visible man data set with a fire hyper-
texture, together with the original visible man in the center. (b)
Scalability test with varying number of splits.
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