
Interactive Transfer Function Control for Monte Carlo Volume Rendering

Balázs Csébfalvi∗

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

(a) (b) (c) (d)

Figure 1: Monte Carlo volume rendering with (b, d) and without (a, c) transfer function parameter tuning.

ABSTRACT

Although Monte Carlo Volume Rendering (MCVR) is an efficient
point-based technique for generating simulated X-ray images from
large CT data, its practical application in medical imaging systems
is limited by the relatively expensive preprocessing. The quality of
images is strongly influenced by the transfer function, which maps
a data value onto a sampling probability. An appropriate transfer
function concentrates the point samples onto the region of inter-
est. Since it is data dependent, a fine parameter tuning is necessary.
However, the costly preprocessing has to be repeated whenever the
transfer function parameters are modified. In this paper a new pre-
processing algorithm is proposed for MCVR, which allows for an
interactive transfer function control in the rendering phase, provid-
ing a visual feedback in a couple of seconds. In order to rapidly re-
compute point samples according to the modified transfer function,
an efficient hybrid sampling strategy is applied, which combines
the advantages of the probabilistic Monte Carlo sampling and the
deterministic quasi-Monte Carlo sampling.

CR Categories: G.3 [Probability and Statistics]: Proba-
bilistic Algorithms; I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-dimensional Graphics and Realism

Keywords: Monte Carlo volume rendering, importance sampling,
progressive refinement.

1 INTRODUCTION

Since radiologist are well trained in interpreting gray-scale X-ray
like images, in 3D medical imaging systems an X-ray volume-
rendering tool is usually included. A simulated X-ray image can
be generated by simply integrating the density function along the

∗e-mail: cseb@iit.bme.hu http://www.iit.bme.hu/˜cseb/

viewing rays. This approach often results in images of low contrast.
Nevertheless, image quality can be improved by mapping the orig-
inal data values onto intensities by an appropriately chosen transfer
function, and integrating the reconstructed intensity function rather
than the original density function. Figure 1 shows X-ray images
generated by MCVR with (b, d) and without (a, c) transfer function
parameter tuning.

Although several methods have been proposed for fast X-ray ren-
dering, most of them do not support interactive transfer function
control. Usually high frame rates are achieved by a computation-
ally expensive preprocessing, which transforms the intensity func-
tion into the frequency domain by calculating Fourier or wavelet
coefficients. Such a preprocessing assumes fixed intensity values at
voxel locations. Therefore, whenever the transfer function parame-
ters are modified, the costly preprocessing has to be repeated.

Our recently published Monte Carlo volume-rendering method
also suffers from this limitation. Therefore, in this paper, a new
preprocessing strategy optimized for interactive transfer function
control is proposed for MCVR. It will be shown that 4M point sam-
ples, which guarantee a reasonably good image quality, can be re-
computed according to the new transfer function parameters in a
couple of seconds regardless of the original volume resolution.

In Section 2 the previous work related to X-ray volume render-
ing is discussed. In Section 3 and in Section 4 the Monte Carlo
and quasi-Monte Carlo volume-rendering methods are reviewed re-
spectively. Hybrid sampling is introduced in Section 5, and in Sec-
tion 6 it is described how to exploit it for fast recomputation of point
samples. In Section 7 the implementation results are reported, and
finally in Section 8 the contribution of this paper is summarized.

2 PREVIOUS WORK

The practical applicability of recent X-ray rendering techniques in
medical imaging systems can be analyzed from different aspects.
On one hand, as the size of the volumetric data sets acquired by
modern CT or MRI scanning devices drastically increases, the com-
plexity of the applied display algorithm is getting more and more
important. On the other hand, the display algorithm is required to
be flexible, so it has to support interactive control of the rendering

IEEE Symposium on Volume Visualization and Graphics 2004

0-7803-8781-3/04/$20.00 ©2004 IEEE
October 11-12, Austin, Texas, USA

33

parameters. These requirements are usually contradictive in prac-
tice.

Classical volume-rendering methods can be classified according
to the order of data processing. Object-order methods process the
volume voxel by voxel projecting them onto the screen. In contrast,
image-order methods generate an image pixel by pixel casting a
ray from the view point through the center of each pixel, and re-
sampling the volume along the viewing rays.

Image-order volume rendering can be accelerated by decompos-
ing the input volume into a hierarchical structure of voxel blocks in
order to skip the empty regions [3]. Nevertheless, the most impor-
tant advantage of the image-order approach, is that the evaluation
of the rays can be terminated if the accumulated opacity has already
reached a predefined threshold. Early ray termination [8], however,
cannot be exploited using alternative visualization models, like X-
ray volume rendering or Maximum Intensity Projection (MIP).

Applying the object-order approach for X-ray rendering, the
voxels are projected as splats onto the screen, approximating the
projection of the reconstruction kernel [17]. The contributions
of these splats are accumulated in a high-precision accumulation
buffer. Splatting is suitable for rendering sparse data sets, and by
using a hierarchical decomposition of the volume, it supports pro-
gressive refinement [7]. For example, combining splatting with the
hierarchical wavelet transform [9, 4], the data can be visualized at
different levels of detail.

A common drawback of the classical image-order and object-
order methods is that a volume of size N3 can be rendered in O(N3)
time. This is obvious for the object-order methods, since they tra-
verse all the voxels. An image-order technique provides a similar
image quality if the image resolution is at least N2 and the number
of samples along the viewing rays is at least N. Otherwise the orig-
inal data is downsampled, so a voxel missed by the viewing rays
can cause an arbitrarily high error in the projection. Therefore the
complexity of image-order methods is considered to be O(N3) as
well.

Performing volume rendering in the frequency domain, the time
complexity of X-ray projection can be reduced to O(N2 logN)
[10, 14]. In a preprocessing of time complexity O(N3 logN) the
discrete Fourier transform of the volume is calculated. In the ren-
dering phase, this frequency domain representation is resampled
along a plane, which is perpendicular to the viewing direction and
passes through the origin. According to the Fourier projection-slice
theorem, the inverse Fourier transform of this resampled slice is
equivalent to the projection of the volume. Thus, assuming that
the image resolution is N2, a simulated X-ray image can be ob-
tained in O(N2 logN) time. Fourier Volume Rendering (FVR) can
be combined with the wavelet transform in order to enable progres-
sive refinement [9, 4, 15]. Nevertheless, the Fourier projection-slice
theorem is valid only for parallel projection, therefore FVR cannot
be used for rendering perspective views.

The time complexity of X-ray projection can be further reduced
by using Monte Carlo Volume Rendering (MCVR) [2]. According
to this approach, a normalized reconstruction of the intensity func-
tion is used as a probability density function to generate a point
cloud of random samples. Projecting this point cloud onto the
screen an X-ray image of the volume can be obtained. Using quasi-
Monte Carlo integration the accuracy of this method can be deter-
ministically controlled. (Q)MCVR benefits from the fact, that the
intensity integrals are finally quantized, and therefore they do not
need to be evaluated at an accuracy, which is significantly higher
than the accuracy of the quantization. Due to the controlled pre-
cision progressive integration, the evaluation is terminated if the
required error level has already been reached. The number of point
samples, which is necessary to keep the average pixel error below
the level of quantization error, depends only on the number of pixels
regardless of the number of voxels. In this sense the time complex-

ity as well as the storage complexity of (Q)MCVR is O(N2). Here
it is assumed that the image resolution is proportional to N2 but
it is fixed in advance. Thus, whenever the image resolution is in-
creased, the preprocessing of complexity O(N3) has to be repeated
to achieve the same pixel accuracy. In contrast, using FVR, a slice
can be resampled at a higher resolution without repeating the pre-
processing of complexity O(N3 logN).

Recently one of the most popular volume-rendering techniques
is 3D texture mapping [1, 16]. Although the complexity of this tech-
nique is O(N3), due to the hardware supported implementation, it
significantly decreases the constants in the “O notation”. The adap-
tation of this method to X-ray volume rendering requires a highly
accurate accumulation buffer, therefore it can be implemented only
on expensive graphics cards supporting floating-point precision and
pixel shading. The most important drawback of 3D texture map-
ping, however, is that the local texture memory, where the volume
data has to be loaded into is limited. Although large data sets can be
decomposed into blocks, swapping these blocks between the main
memory and the local texture memory might drastically reduce the
performance. Therefore 3D texture mapping is mainly used to in-
teractively render data sets of moderate size.

Apart from the complexity, flexibility is also an important aspect
in practical medical applications. Unfortunately, recent X-ray ren-
dering techniques of complexity lower than O(N3), do not support
interactive transfer function control. For example, using FVR, the
Fourier transform of the intensity function has to be recalculated
whenever the user changes the transfer function, which can non-
linearly map the original densities onto intensity values. (Q)MCVR
has a similar limitation, since the point-cloud also has to be recom-
puted according to the modified transfer function, which directly
determines the distribution of the samples.

Taking the above mentioned aspects into account, in this paper,
the original (Q)MCVR method is improved in order to support in-
teractive transfer function control. It will be shown that a fast re-
computation of the point samples can be done in O(N2) time, so
the costly preprocessing does not have to be repeated whenever the
image resolution is increased or the transfer function is changed.

3 MONTE CARLO VOLUME RENDERING

Monte Carlo Volume Rendering (MCVR) is a point-based tech-
nique for producing simulated X-ray images from large CT data [2].
In a preprocessing step a point cloud of random samples is gener-
ated by using a normalized reconstruction of the intensity function
as a probability density function. In the rendering phase, this point
cloud is projected onto the image plane, and to each pixel an in-
tensity value is assigned, which is proportional to the number of
samples projected onto the corresponding pixel area.

MCVR gives an unbiased estimation of the projected intensity
function. The image quality is characterized by the standard de-
viation of the estimation. It has been shown [2] that the average
standard deviation of all the pixels can be reduced below the level
of quantization error if the following condition is fulfilled:

M > (
1

WH
−

1
W 2H2) ·W 2H2B2L2 ≈WHB2L2, (1)

where M is the number of random point samples, W and H are
the width and height of the image respectively, B is the average
luminance taken from interval [0,1], and L is the number of quanti-
zation levels. Thus M has to be proportional to the to the number of
pixels, but it does not depend on the number of voxels. Therefore
the time complexity as well as the storage complexity of MCVR
is a linear function of the number of pixels. As a consequence, if
the volume size is N3 then an X-ray projection of resolution N2

can be generated by MCVR in O(N2) time using O(N2) storage
(M = O(WH) = O(N2)).

34

4 QUASI-MONTE CARLO VOLUME RENDERING

The convergence can be accelerated by applying quasi-Monte Carlo
(QMC) integration [6], which is formally equivalent to Monte Carlo
(MC) integration but it transforms a low-discrepancy deterministic
sequence into the required distribution rather than uniformly dis-
tributed pseudo-random numbers. For example, 3D Halton points
[5] defined in the unit cube can be used as a low-discrepancy quasi-
random sequence. The kth point in this 3D Halton sequence is cal-
culated as hk = [H5

k ,H3
k ,H2

k], where Hb
k denotes the kth number

in a 1D Halton sequence of base b (see the definition in the Ap-
pendix). Each sample xk = [xk,yk,zk] in the point cloud is gener-
ated by transforming the corresponding Halton point hk according
to the following equations:

H2
k =

∫ zk

0

∫ ∫

p(x,y,z)dxdydz, (2)

H3
k =

∫ yk

0

∫

p(x,y|zk)dxdy,

H5
k =

∫ xk

0
p(x|yk,zk)dx,

where

p(x,y,z) =
g([x,y,z])

∫ ∫ ∫

g([x,y,z])dxdydz
,

p(x,y|zk) =
p(x,y,zk)

∫ ∫

p(x,y,zk)dxdy
,

p(x|yk,zk) =
p(x,yk,zk)

∫

p(x,yk,zk)dx
,

and g(x) is a continuous reconstruction of the discrete intensity
function g(xi, j,k). Such a transformation of a 3D Halton sequence
is analogous to the MC importance sampling, since it concentrates
more samples into the regions of higher intensity.

Theoretically, Quasi-Monte Carlo Volume Rendering (QMCVR)
ensures a deterministic O(M−2/3) error bound, while MCVR has
just a probabilistic O(M−1/2) error bound [13, 11]. In practice
MCVR needs approximately twice as many samples to reach the
same error level as QMCVR does. On the other hand QMC prepro-
cessing is significantly slower than MC preprocessing, since ana-
lytical integration is necessary to evaluate Equation 2.

5 HYBRID SAMPLING

Since the advantages of MC and QMC sample generation are com-
plementary, their combination seems to be fruitful. Therefore, in
this section, a hybrid resampling strategy is introduced.

Assume that the original voxel densities f (xi, j,k) defined on a
regular grid are transformed by an appropriate transfer function
t(f (xi, j,k)) = g(xi, j,k). A continuous reconstruction of the trans-
formed discrete density function g(xi, j,k) is obtained by a simple
convolution:

g(x) = ∑
i, j,k

g(xi, j,k) ·h(x−xi, j,k), (3)

where h(x) is the reconstruction kernel. According to the MCVR
approach, a pixel intensity Ii, j is estimated from M samples [12]:

Ii, j =
∫

Vi, j

g(x)dx =
∫

V
g(x)vi, j(x)dx (4)

≈
1
M

M

∑
k=1

g(xk)vi, j(xk)

p(xk)
,

where V denotes the entire volume, Vi, j is a subdomain which is
projected onto the area of pixel (i, j), p(xk) is the probability den-
sity of sample xk, and the visibility function is defined as follows:

vi, j(x) =
{

1 if x ∈Vi, j
0 otherwise.

(5)

In order to reduce the variance of the estimation, the probabil-
ity density function p(x) has to be proportional at least to the view
independent term of the integrand, that is the transformed density
function g(x). Therefore, using the original MCVR approach, point
samples are generated in two steps. In the first step a voxel loca-
tion is selected with a probability proportional to the transformed
density of the corresponding voxel. In the second step, the normal-
ized reconstruction kernel h′(x) = h(x)/

∫

h(y)dy is used as a local
probability density function to generate a random translation vector,
which is then added to the voxel location selected in the first step.
This two-tiered approach guarantees that p(x) is really proportional
to g(x).

In order to incorporate advantages of MC and QMC sampling,
the first step of MC sampling is slightly modified. Instead of trans-
forming uniformly distributed pseudo-random numbers, a deter-
ministic low-discrepancy Halton sequence [5] is transformed into
the required discrete distribution. A voxel location vi(k) is selected
if H2

k > G(vi−1) and H2
k ≤ G(vi), where H2

k is the kth element of a
Halton sequence of base 2, and function G(vi) is defined as:

G(vi) =
1

∑n g(vn)

i

∑
j=1

g(v j). (6)

According to our practical experience (see Section 7), such a hy-
brid sampling provides almost the same convergence speed as QMC
sampling does (for some data sets hybrid sampling even overtakes
QMC sampling) and its preprocessing cost is similar to that of the
pure MCVR. Nevertheless, hybrid preprocessing of large data sets
can still take several minutes.

Figure 2: MCVR pipeline optimized for interactive transfer function
control.

6 FAST SAMPLE GENERATION

In this section, MCVR is optimized for an efficient recomputation
of sample points. The original MCVR pipeline is modified in the
following way (see Figure 2). In the first step, which is a prepro-
cessing, the voxels are sorted by their density values and stored in
an appropriate data structure. In the second step, this data struc-
ture is used to rapidly recompute the sample points according to
the current transfer function parameters. In the third step, the point
cloud is rendered, and based on the visual feedback the user decides
whether the transfer function needs to be further modified.

35

Figure 3: Bucket sorting of the voxel IDs according to the corre-
sponding density values.

In the first step, the voxels are sorted based on the histogram of
the data set. In a medical CT data the density values are usually
stored in 8 or 12 bits, therefore only 256 or 4096 different density
levels can be distinguished in a volume. Let us denote the number
of density levels by L. During the preprocessing, an array of L voxel
lists is allocated, which is referred to as histogram[L]. An array
element histogram[d] contains a reference to a voxel array, which
stores 4-byte IDs of voxels having the same density value d (see
Figure 3). The ID of a voxel is determined from the corresponding
voxel indices i, j, and k as: ID = k ·X ·Y + j ·X + i, where X , Y , and
Z denote the volume dimensions.

In the second step, based on the current transfer function parame-
ters, it can be easily determined how many samples to take from the
voxel arrays of different densities. Using the following algorithm
the point samples can be rapidly recomputed:

FastSampleGeneration(int m, double TF[]) {
double sum = 0.0;
for(int l = 0; l < L; l++)
sum += TF[l] * histogram[l].size;

long M = ((long)1 << m) - 1;
double integral = 0.0; long iMin = 0;
for(l = 0; l < L; l++) {
long size = histogram[l].size;
integral += TF[l] * size;
long iMax = integral / sum * M;
for(long i = iMin; i < iMax; i++) {
long j = size * (i - iMin) / (iMax - iMin);
long voxelID = histogram[l][j];
Vector vector = voxelLocation(voxelID);
vector += randomTranslation();
pointList[Halton(i, m)] = vector;

}
iMin = iMax

}
}

First of all ∑n g(vn) is calculated in variable sum (see Equa-
tion 6) taking the current transfer function parameters into account.
The transfer function is evaluated at each density level and passed as
an array (TF[L]) to the sample generator routine. Term ∑i

j=1 g(v j)

is represented by variable integral assuming that voxels v1, v2,
. . . ,vn are sorted according to their density values. In the second
for loop, for each density level l the number of samples to be taken
from the voxel array of density l is determined, which is iMax -
iMin. Here it is assumed that the M number of all the samples can
be expressed as 2m − 1, where m is a positive integer. In this case
the ordering of a Halton sequence of base 2 is 1/2m, 2/2m, . . . ,
(2m −1)/2m. By transforming this ordered Halton sequence rather

than the original one the implementation of the sample generation is
significantly simplified. However, in the final pointList, the order
of the point samples has to correspond to the original order of the
Halton sequence. Therefore routine Halton(i, m) is called, which
mirrors the lower m bits of index i resulting in the correct permu-
tation. The right order of the samples is important because of the
smooth progressive refinement in the rendering phase.

Having a voxel ID selected, the corresponding sample point has
to be generated. First the voxel location is calculated from the voxel
ID in the following way: z = ID div (X ·Y), y = (ID mod (X ·Y))
div X , x = ID mod X . Here it is assumed that the 3D indices of
a voxel are identical to the voxel coordinates. If it is not the case,
the final point cloud is appropriately scaled taking the real voxel
coordinates into account. Routine voxelLocation returns the loca-
tion of a deterministically selected voxel as a vector. To this vector
a random translation is then added, which is generated by using
the normalized reconstruction kernel as a local probability density
function. Since in this algorithm random sampling is combined
with a deterministic sampling, it results in a mixture of the MCVR
and QMCVR methods, which is referred to as Hybrid Monte Carlo
Volume Rendering (HMCVR) in the further discussion.

Note that the time complexity of this hybrid sampling is pro-
portional to the M number of samples and does not depend on the
number of voxels. In order to guarantee that the average pixel error
is under the level of quantization error, M has to be proportional to
the number of pixels, which is assumed to be N2 [2]. In this sense
the complexity of algorithm FastSampleGeneration is O(N2). In
contrast, using the original MCVR or QMCVR methods, the point
sampling is built into the preprocessing, which traverses all the vox-
els, therefore its complexity is O(N3). Furthermore, the time and
storage complexity of MCVR and QMCVR is O(N2) with a certain
assumption. It is assumed that the number of pixels is proportional
to N2 but it is not modified in the rendering phase. Thus for a
high quality zooming a greater number of point samples has to be
generated to guarantee the same pixel accuracy. It is also true for
HMCVR, but in this case, the samples can be recomputed in O(N2)
time rather than in O(N3) time. So the time complexity of HMCVR
is O(N2) even if the image resolution is allowed to be changed in
the rendering phase.

7 IMPLEMENTATION

HMCVR was implemented in C++ and tested on several medical
data sets on a 2GHz AMD Athlon XP 2600 PC with 1GB of RAM.
In Figure 4 the convergence of hybrid Monte Carlo sampling is
compared to that of MC and QMC sampling. The reference im-
ages for the RMS error calculation were generated by analytically
integrating the intensity function assuming trilinear reconstruction.
Note that, for some data sets, hybrid sampling results in even faster
convergence speed than QMC sampling does.

In order to get a visual feedback during interactive transfer func-
tion control, a preview of resolution 256× 256 is rendered. For
such an image resolution, a point cloud of 4M samples ensures a
reasonably good image quality (see Figure 1). This point cloud can
be interactively rendered at 5.32 frames/second on the test config-
uration using a pure software implementation. When the transfer
function parameters are modified, the point cloud is recomputed in
2.28 seconds.

Having the appropriate transfer function parameters set, a high-
quality simulated X-ray image is produced by taking a larger num-
ber of point samples according to the current transfer function. This
high-quality rendering can be performed either on-line or off-line.

In case of off-line rendering, the viewing direction is fixed in
advance. Therefore the point samples are immediately projected
onto the image plane by the sample generator routine without stor-
ing them in a buffer. Preprocessing and off-line rendering (includes

36

(a) MRI angiography data. (b) CT scan of a human head. (c) CT scan of a human body.

Figure 4: RMS errors of MCVR, QMCVR, and HMCVR for different test data sets.

(a) MRI angiography data. (b) CT scan of a human head. (c) CT scan of a human body.

Figure 5: High-quality X-ray projections generated from 16M samples.

data set MRI angio CT head CT body
number of voxels 8126464 10420224 7829520
preprocessing 3.36 sec 3.29 sec 3.87 sec
off-line rendering 4.61 sec 4.71 sec 5.04 sec

Table 1: Preprocessing and off-line rendering (includes resampling
and projection) times in case of 16M point samples.

sample generation and projection) times in case of 16M point sam-
ples are shown for different data sets in Table 1.

For on-line rendering, however, the point samples have to be
buffered in the main memory. In this case, interactivity can be
ensured by using progressive refinement. Point clouds containing
1M, 4M, and 16M samples were rendered at 21.28, 5.32, and 1.39
frames/second respectively.

Figure 5 shows high-quality simulated X-ray images of different
test data sets rendered by HMCVR. The transfer functions were fine
tuned for each single volume. For example, the MRI angiography
data set contains contrast agent in the blood vessels, therefore the
transfer function emphasizes the higher density regions. Such a
transfer function results in a similar visual appearance as that of a
Maximum Intensity Projection (MIP).

8 CONCLUSION

In this paper Monte Carlo Volume Rendering (MCVR) has been op-
timized for interactive transfer function control. It has been shown,

that after having the input volume of resolution N3 preprocessed
in O(N3) time, an X-ray projection can be recomputed according
to the new transfer function parameters in O(N2) time. Apart from
this practical improvement, this work has lead to an important theo-
retical contribution as well. The number of samples, which is neces-
sary to reduce the average pixel error below the level of quantization
error, is proportional to the number of pixels and does not depend
on the number of voxels. Assuming that the image resolution has
to be proportional to N2, the time complexity of MCVR is O(N2).
Nevertheless, using the original MCVR method, the image resolu-
tion is assumed to be fixed in advance. As a consequence, when-
ever the image resolution is increased, a greater number of samples
has to be recomputed in O(N3) time. In this paper a new hybrid
sampling algorithm has been proposed, which has time complex-
ity of O(N2). Therefore, similarly to Fourier Volume Rendering
(FVR), the computationally expensive preprocessing is performed
only once, even if the user increases the image resolution in the ren-
dering phase. However, FVR has preprocessing cost of O(N3 logN)
and rendering cost of O(N2 logN). In contrast, using Hybrid Monte
Carlo Volume Rendering (HMCVR), resampling and rendering can
be performed in O(N2) time after a preprocessing of complexity
O(N3).

37

ACKNOWLEDGEMENTS

This work has been supported by OTKA 42735, IKTA 00159/2002,
and the Postdoctoral Fellowship Program of the Hungarian Ministry
of Higher Education.

REFERENCES

[1] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In Pro-
ceedings of IEEE Symposium on Volume Visualization, pages 91–98,
1994.

[2] B. Csébfalvi and L. Szirmay-Kalos. Monte Carlo volume rendering.
In Proceedings of IEEE Visualization 2003, pages 449–456, 2003.

[3] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing.
In Proceedings of Workshop on Volume Visualization, pages 91–98,
1992.

[4] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring. Two meth-
ods for wavelet-based volume rendering. Computers and Graphics,
21(2):237–252, 1997.

[5] A. Keller. The fast calculation of form factors using low discrepancy
sequences. In Proceedings of Spring Conference on Computer Graph-
ics, pages 195–204, 1996.

[6] A. Keller. Quasi Monte Carlo Methods for Photorealistic Image Syn-
thesis. Ph.D. thesis, Shaker Verlag Aachen, 1998.

[7] D. Laur and P. Hanrahan. Hierarchical splatting: A progressive refine-
ment algorithm for volume rendering. Computer Graphics (Proceed-
ings of SIGGRAPH ’91), pages 285–288, 1991.

[8] M. Levoy. Volume rendering by adaptive refinement. The Visual Com-
puter, 6(1):2–7, 1990.

[9] L. Lippert and M. H. Gross. Fast wavelet based volume rendering by
accumulation of transparent texture maps. Computer Graphics Forum
(Proceedings of EUROGRAPHICS ‘95), pages 431–443, 1995.

[10] T. Malzbender. Fourier volume rendering. ACM Transactions on
Graphics, 12(3):233–250, 1993.

[11] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical
Recipes in C (Second Edition). Cambridge University Press, 1992.

[12] I. Sobol. A Primer for the Monte Carlo Method. CRC Press, 1994.
[13] L. Szirmay-Kalos and W. Purgathofer. Analysis of the quasi-Monte

Carlo integration of the rendering equation. In Proceedings of Winter
School of Computer Graphics, pages 281–288, 1999.

[14] T. Totsuka and M. Levoy. Frequency domain volume rendering. Com-
puter Graphics (Proceedings of SIGGRAPH ’93), pages 271–278,
1993. http://www-graphics.stanford.edu/papers/fvr/.

[15] M. A. Westenberg and J. B. T. M. Roerdink. Frequency domain vol-
ume rendering by the wavelet X-ray transform. IEEE Transactions on
Image Processing, 9(7):1249–1261, 2000.

[16] R. Westermann and T. Ertl. Efficiently using graphics hardware in
volume rendering applications. Computer Graphics (Proceedings of
SIGGRAPH ’98), pages 169–176, 1998.

[17] L. Westover. Footprint evaluation for volume rendering. Computer
Graphics (Proceedings of SIGGRAPH ’90), pages 144–153, 1990.

APPENDIX

Definition of a Halton sequence of base b: To construct the kth
sample, consider the digits of the base b representation of k in the
reverse order (that is k = a0 +ba1 +b2a2 +b3a3 + . . ., where each
a j ∈ {0,1, . . . ,b−1}) and define the following element of [0,1]:

Hb
k =

a0

b
+

a1

b2 +
a2

b3 +
a3

b4 + (7)

Definition of an n-dimensional Halton sequence: Chose n rel-
atively prime integers b1,b2, . . . ,bn (usually the first n primes,
b1 = 2,b2 = 3,b3 = 5, . . ., are chosen). The kth point in the Hal-
ton sequence is defined as hk = [Hbn

k ,Hbn−1
k , . . . ,Hb2

k ,Hb1
k].

38

