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Figure 1: Top view of the streamline clusters on the whole brain.
Streamlines within the same cluster share the same color. From
the picture, the cingulum bundles can be easily identified in two
clusters. Neural fibers along the corpus callosum are clustered into
coherent bundles. Some of the U-fibers also form clusters.

Introduction

DTI tractography methods generate streamlines that correlate with
the orientations of the neural fibers in the white matter. Researchers
studying neuroanatomy label white matter with fiber tracts com-
prised of groups of neural axons running in proximity to one an-
other. These tracts provide a useful abstraction of the white matter
structures; they can be used for identification and quantification of
neural fibers. However, due to variation across subjects in white
matter, labeling these fiber tracts by hand can be time-consuming
and error-prone. Taking advantage of the proximity property, we
cany automatically cluster the fiber tracts from the path set gener-
ated from a brain DTI data set. The task becomes more challenging
when we cluster the paths over the entire brain instead of a region
of interest since no human input of the tract information will be im-
plied. We present our experiments in unsupervised clustering of a
dense set of fiber paths generated from a whole brain DTI data set.

Related Work

Ding et al. [1] proposed DTI fiber classification and quantification.
They defined a corresponding segment ratio and employed that ratio
together with the mean distance over the corresponding segments
to delineate the similarity between two streamlines. The similar
streamlines whose seeding points are near the original streamline

Figure 2: Side view of the same fiber bundles as in Fig. 1. Internal
capsule is clustered into several coherent bundles.

seeding point are grouped into a bundle.
Corougeet al. [2] proposed a clustering algorithm that propa-

gate the cluster to the neighboring fibers. They also employed three
distance measures based on the point sets on the pair of streamlines.

We used a similar clustering algorithm on a dense set of paths
over the whole brain. Early results showed that a lack of paths
within a tract or spurious paths between tracts can lead to possi-
ble false classifications. We propose strategies in setting seeding
points, path constraints, culling distance and setting distance met-
rics to minimize the misclassifications.

Method
Generating paths

The head of a normal volunteer was imaged in a Siemens Sym-
phony 1.5T scanner. Three slice packets were acquired sagittally
and interleaved to acquire a data volume of128 × 128 × 90 with a
voxel size of1.7 × 1.7 × 1.7 mm. The Siemens MDDW protocol
was used, with three b values (0, 500, 1000) in 12 directions.

We put seeding points on a regular grid every0.85 mm with
small jittering. When the seeding distance is below1.3 mm, dou-
bling the number of the seeding points results in an almost constant
increase in the number of paths. This indicates that our sampling of
the paths in the white matter is sufficiently dense to avoid missing
links between paths in the same tracts.

We used the streamtube algorithm [3] to generate streamlines
from these seed points. The integration stops when the linear



Figure 3: Two potential cases of fiber tract misclassifications using
simple clustering schemes. On the left picture, fiber tracts A and B
are linked together by short path s, which stops inside an incoherent
white matter region. On the right, fiber tracts C and D are clustered
together because they are close for a large portion of their length.
We design our path culling process and distance metric to avoid
misclassifications in these cases.

Figure 4: Preprocessing of the streamlines for clustering. On the
left, a dense path set representing all regions of linear anisotropy
without constraint. On the right, the path set after culling the paths
that have low average linear anisotropy, that are too similar, and that
do not project into the gray matter.

anisotropy value is below 0.15, the streamline transcends the data
boundary, or the signal-to-noise ratio provided by T2-weighted im-
age is below a certain threshold. The initial path set is shown in
Fig. 4 left. Since some of the paths might cause artificial link-
ing as shown in Fig. 3 left, we set a threshold on the average lin-
ear anisotropy along the path in order to remove paths that are in
ambiguous regions. We also remove the paths that are too simi-
lar. Some paths stop within ambiguous regions in the white matter.
They can be considered spurious paths and might cause artificial
linking between anatomically unrelated tracts. We cull again to re-
move those paths that do not project into the gray matter. The paths
after the culling process are shown in Fig. 4 right.

Clustering streamlines

We used agglomerative hierarchical clustering methods [4] to clus-
ter the streamlines. The general algorithm starts withn singleton
clusters and forms the sequence by successively merging clusters.
The algorithm works as follows:

1. Given a set ofn singleton clusters.
2. Merge the two nearest clusters
3. Repeat 2. until the specified number of clusters are generated.
If we set the specified number of clusters to1, we produce a

dendrogram. To determine the “nearest” cluster, we have to define
the distance between two paths using the following equation:
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wheres parameterizes the arc length of the longer trajectory, and
dist(s) is the shortest distance from locations of the shorter trajec-
tory to the longer trajectory.Tl ensures that we label two trajecto-
ries as different if they differ significantly over any portion of the
arc length. This property creates a discriminating distance between
the two tracts in Fig. 3 right.

The minimum distance between any two paths from two clusters
is used for the distance between these clusters, the method is called
the nearest-neighbor cluster algorithm, or minimum algorithm.

Results

Figure 4 shows the streamlines before clustering. The left picture
shows the path set without the endpoints constraint. There are about
1, 1000 paths, many of which are short paths that stop within the
ambiguous white matter regions, which could potentially create ar-
tificial links between fiber bundles. The right picture shows the
6, 000 paths after the culling process. Fiber bundles in Fig. 1 and
Fig. 2 are clustered on this path set. There are600 bundles; we only
visualize around 100 bundles that contain 10 or more paths.

From the top view of our model (Fig. 1), the two cingulum bun-
dle tracts are clearly indicated as two clusters; the corpus callosum
form several bundles that run into the outer brain without much di-
vergence within the bundles. Groups of U fibers also form distinct
bundles. From the side view (Fig. 2), the internal capsule is clus-
tered into several bundles that are coherent along the pathways.

Conclusion

We present a clustering process for the fiber paths from a whole
brain DTI data set. We propose a path culling process and a simi-
larity metric for the clustering algorithm to avoid misclassifications.
The results show that in most places, paths are grouped together in
coherent bundles.
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