

Code Checking and Visualization of an Architecture Design

Rong Xu1,2, Wawan Solihin2, and Zhiyong Huang1
1 School of Computing, National University of Singapore

2 novaCITYNETS Pte. Ltd., Singapore
Email: huangzy@comp.nus.edu.sg

1 Introduction

Computer graphics has be successfully applied to
architecture design. There is more demand to new
applications. One of them, to be addressed in this work, is
the code checking and visualization of the checking
results.

The architecture industries are facing more and more
regulations and codes of practice [7, 8]. Each year,
governments spend a huge amount of manpower into
building plan approval. This process can be greatly
improved if automatic checking and visualization tools are
provided.

Existing work includes [1, 2, 3, 5, 6]. The major
problem is that they depend on a specific data format, in
particular, lacking of the semantics for a more general
code checking. The results are not visualized in 3D
directly.

In this poster, we report a novel solution. The major
contribution is to define and use a general framework,
referred to as Code Checking Object Model (CCOM).
Algorithms are devised to extract the semantics
information such as the relationships and the behaviors of
the building elements from the CAD data in the standard
IFC format [4]. The extraction results of the semantics
information are represented in CCOM. For code checking,
the CCOM data are used directly for each rule. The
checking can be submitted via internet and the results will
be visualized in the web browser. Our solution has been
implemented in FORNAX, a product of NovaCITYNETS,
http://www.novacitynets.com.

2 CCOM

CCOM is a hierarchical object model: An object is either
a container or an element. A container contains both the
element and aggregation. An element is the basic
component consisting of the attribute list and geometry of
the building element. An aggregation represents the
semantics information using different data structures.
They are selected according to the nature of the semantics
information. For example, for a living room and windows,
the semantics is “belongs to” and tree is most suitable.

To extract the semantics information, more than one
CAD models are usually involved. For example, for the
code checking, a kitchen model has distinct characteristics
that are related to specific checking rules: it should have
higher fire rating than other space, independent smoke
control system, etc. Thus, all the related CAD models
need to be traversed and checked.

The typical semantics information includes spatial,
network, and design constraints. Spatial information in
CCOM describes the building object location relatives to
others. For example, a discharge stack in the sewerage
system is defined by series of connected pipes of the same
size and in vertical alignment. Network information
allows to finding connections and accessing path from one
location to another. For example, a group of rooms can be
networked by walking path or water pipes. Design
constraints define the constraints of a group of elements.
For example, a constraint may exist between the size of
the space and thickness of the wall.

Geometric operations are applied in the extraction
process. They are implemented in ACIS. For example, the
spatial operations of the objects include contain, intersect
and surround. Such information is useful when we need to
determine whether a certain service system can serve a
particular space. It is checked to see if the space contains
at least one of the terminals. For a building model, the
checking is often required against set of spaces that is
typically defined as zone. In this case, we need to derive
all the spaces of the zone from the CAD models and fuse
them together to form a zone before the spatial operations
like contain can be applied.

The checking results are visualized. OpenGL is used
in the implementation. The design components failed to
pass the code checking are highlighted in the 3D model
directly.

3 Results

First, we use a real clause. In the Code of Practice from
FSB, Chapter 29, clause 2.2.2, each space should be
within 38 meters from landing valves. The clause is
described as “The number and distribution of rising mains
shall be such that all parts of the floor not more than 24m
above the ground level is within 38m from landing valves.

The distance should be measured along a route suitable to
hose lines, including distance any up or down stairway.”
The process of code checking based on the CCOM is
summarized as follows:

Storey = Building.getAllStorey()
For each Storey

Space = Storey.getAllSpace()
LandingValve = Storey.getAllLandingValve()
For each Space

RemotePoint = Space.getRemotePoint()
For each LandingValve

TravelDistance =
Storey.computeTravelDistance(RemotePoint, Landing-
Valve)
If TravelDistance < 38m

Space passed code checking
Space code checking fail

The checking result is shown in Figure 1. The

highlighted space is failed because it is too far away from
a landing valve.

Figure 1. Visualization of the code checking result using
the Code of Practice from FSB, Chapter 29, clause 2.2.2

Note that in the example, only the CCOM objects

Building, Storey, and Space can hold and access the
semantics information. Four more examples of code
compliance checking and visualization results are shown
in Figure 2.

(a) Code compliance checking for the rule that each space

should be within 10 meters from at least one exit

(b) Code compliance checking for the rule that the

boundary wall height must be within 12m

(c) Code compliance checking for the rule that each

apartment has at least one connection to the water tank on
the roof

Figure 2. Examples of code compliance checking and

visualization of the results

References
[1] C. S. Han, J. Kunz and K. H. Law, Making Automated
Building Code Checking a Reality, Facility Management Journal,
September/October, 1997, pp. 22-28.
[2] C. S. Han, J. Kunz and K. H., Law, A Hybrid
Prescriptive/Performance Based Approach to Automated Building Code
Checking, ASCE J. Computing in Civil Engineering, 12(4):181-194,
1998.
[3] C. S. Han, J. C. Kunz and K. H. Law, Compliance Analysis
for Disabled Access, Advances in Digital Government Technology,
Human Factors, and Policy. William J. McIver, Jr. and Ahmed K.
Elmagarmid (eds) Boston Kluwer, 2002.
[4] International Alliance for Interoperability Industry
Foundation Classes, Specifications Volumes 1-4, Washington D. C.,
1997.
[5] G. Lau, K. H. Law, and G. Wiederhold, A Framework for
Regulation Comparison with Application to Accessibility Codes,
Proceedings of the National Conference on Digital Government Research
(dg.o2003), Boston, MA, May 18-21, 2003, pp. 251-254.
[6] R. F. Woodbury, A. L. Burrow, R. M. Drogemuller, S. Datta,
Code Checking by Representation Comparison, International Journal of
Design Computing, 3(1), 2000, pp. 73-89.
[7] California Building Code, California Building Standards
Commission, 1998, http://www.bsc.ca.gov/
[8] Singapore Code of Practice on Building Design, Building and
Construction Authority, http://www.bca.gov.sg/industry_programmes/
buildable_design/legislation/codepractice.html

