
Vector Wavelet Thresholding for Vector Field Denoising

Michel A. Westenberg∗ Thomas Ertl†

Institute for Visualization and Interactive Systems, University of Stuttgart
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ABSTRACT

Noise reduction is an important preprocessing step for many visual-
ization techniques that make use of feature extraction. We propose
a method for denoising 2-D vector fields that are corrupted by addi-
tive noise. The method is based on the vector wavelet transform
and wavelet coefficient thresholding. We compare our wavelet-
based denoising method with Gaussian filtering, and test the effect
of these methods on the signal-to-noise ratio (SNR) of the vector
fields before and after denoising. We also study the effect on rele-
vant details for visualization, such as vortex measures. The results
show that for low SNR, Gaussian filtering with large kernels has
a somewhat higher performance than the wavelet-based method in
terms of SNR. For larger SNR, the wavelet-based method outper-
forms Gaussian filtering. This is mostly due to the fact that Gaus-
sian filtering tends to remove small details, which are preserved by
the wavelet-based method.

CR Categories: I.4.3 [Image Processing and Computer Vi-
sion]: Enhancement—Filtering; G.1.2 [Numerical Analysis]:
Approximation—Wavelets and fractals
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1 INTRODUCTION

Data acquired by physical measurements are often corrupted by
noise. The goal of denoising is to suppress the noise while retain-
ing the relevant details. A commonly used denoising method is to
smooth the data by Gaussian filtering. However, this does not only
affect the noise, but also may destroy detailed features in the data.

About one decade ago, Donoho introduced a nonlinear signal
denoising technique based on wavelet thresholding [3]. Since then,
much work has been done in this area, and many wavelet-based
denoising methods have been proposed for scalar data. The purpose
of this paper is to report on work in progress on denoising 2-D
vector data by thresholding wavelet coefficients that are obtained
by a so-called vector wavelet transform [7]. This is an extension
of the scalar wavelet transform that deals with vector data. It is
important to note that the vector wavelet transform isnot just a
component-wise scalar wavelet transform.

2 VECTOR WAVELETS

Vector wavelet transforms are based on so-called multiwavelets,
which consist of multiple scaling functions and wavelet functions
rather than a single pair [7]. In principle, multiwavelets can be
used directly to construct a vector wavelet transform, however, it
turns out that the performance for signal processing applications is
poor [4]. The source of the problem is the fact that constant input
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signals (all vectors point in the same direction) are not preserved
when performing a reconstruction from wavelet approximation co-
efficients only. Intuitively, one would expect a constant signal, how-
ever, most multiwavelets introduce an oscillatory distortion. This is
rather disturbing, as most denoising and compression schemes tend
to preserve the approximation coefficients and discard detail coeffi-
cients. One possible solution to this problem was proposed, and it
involves appropriate multiwavelet design criteria for vector data [4].

We refer the readers to the papers [6] and [7] for details of the
vector wavelet transform. It is relatively straightforward to extend
the pyramid algorithm of Mallat to compute the vector wavelet
transform. The extension to 2-D is done in the standard way by
applying the 1-D transform to the rows and columns. The wavelet
transform forM levels then results in approximation coefficientscM

and three sets of detail coefficientsd j,1, d j,2, andd j,3, j = 1, . . . ,M.
Note that these coefficients are now vectors and not scalars.

3 WAVELET -BASED DENOISING

We assume that the noise isadditive, and has a normal distribution
with zero mean and varianceσ2

n . Wavelet-based denoising meth-
ods then work in three steps. (1) Compute anM-level wavelet
transform. (2) Modify the detail coefficientsd j,1, d j,2, andd j,3,
j = 1, . . . ,M, by hard or soft thresholding. Both methods set the
coefficients below the thresholdT to zero. Soft thresholding ad-
ditionally reduces the amplitude of the other coefficients byT, a
procedure also called shrinkage. The approximation coefficients
cM are not modified. (3) Compute the inverse wavelet transform.

Many methods have been proposed to select a good thresholdT,
a number of which are contained in the WaveLab software [1]. In
this paper, we use a method called BayesShrink [2], which com-
putes a data-driven estimate ofT for each set of detail coefficients
independently. As the original method deals only with scalar data,
we made adaptations such that it can deal with vector data. In our
method, the threshold selection is based on the vector magnitude,
and our soft thresholding extension shrinks the vector magnitudes.
This means that thresholding does not affect the direction of the
vectors, but only their lengths.

4 RESULTS

We conducted a series of experiments in which noise of known
standard deviation was added to a slice (490×490) of a hurricane
data set. The resulting noisy vector fields had signal-to-noise ratios
(SNR) of{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. The SNR is ex-
pressed in dB and computed from the standard deviationsσ (data)
andσn (noise) as

SNR= 20log10
σ

σn
.

We applied our wavelet-based denoising method to the noisy
vector fields, using the biorthogonal OBSA 7-5 multiwavelets [4],
with filter lengths 7 and 5 for the low-pass and high-pass filter,
respectively. The depth of the wavelet decomposition was set to
three. We also performed filtering with Gaussian kernels of various
widths. The width of the Gaussian kernel is described by its width
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Figure 1: Performance of wavelet-based denoising (OBSA) and Gaus-
sian filtering (FWHM).

in pixels at half of the maximum of the height of the Gaussian, a
measure called Full Width at Half Maximum (FWHM). For exam-
ple, for FWHM= 5, the total kernel width from−3σ to 3σ is 13
pixels.

Figure 1 shows the output SNR plotted against the input SNR.
The plot shows that Gaussian filtering with large kernels performs
slightly better than the wavelet-based method for very low SNRs.
For an SNR between 15 and 20 dB, both methods show similar per-
formance. For larger SNRs, the Gaussian filtering method smooths
to strongly, and for SNRs above 30 dB, the output SNR is actually
lower than the input SNR. The wavelet-based method does not have
this problem, and the output SNR is in the worst case equal to the
input SNR. We also performed the experiment (results not included)
with the OBSA 5-3 wavelet, and its performance is similar to the
performance of the OBSA 7-5 wavelet. However, the performance
for low SNR is worse, which can be explained by the fact that the
OBSA 5-3 wavelet is not as smooth as the OBSA 7-5 wavelet.

Figure 2 shows color-encoded (blue to red)λ2 values [5] in the
range[0.05,1.0] for some of the generated noisy vector field input
data sets, the best results obtained by Gaussian filtering, and the re-
sults of wavelet-based denoising. These images confirm that for low
SNR, Gaussian filtering produces a somewhat better result. For the
high SNR input (almost noise free), Gaussian filtering misses de-
tails, especially in the areas with fine detail. An example of loss of
detail is shown in Fig. 3, in which a small vertical structure is visible
in the original data (Fig. 3(a)), which is lost by Gaussian filtering
(Fig. 3(b)), but retained by our wavelet-based method (Fig. 3(c)).

5 DISCUSSION

We have proposed a denoising method for 2-D vector fields that are
corrupted by additive noise. The method is an extension of scalar
wavelet-based denoising techniques to vector data, and makes use
of a vector wavelet transform. Currently, we are working on an ex-
tension to vectors with three components. This is challenging, since
most research has focussed on multiwavelet design for vectors of
only two components. This extension would open up the possibil-
ity of denoising 3-D vector fields, and could result in a promising
denoising method for diffusion-tensor MRI volumetric data.
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Figure 2: All images show color-encoded λ2 values in a selected
range. Top row: input data with increasing SNR from left to right.
The second and third row show denoised versions of these input data
sets. Second row: Gaussian filtering with the filter with the best
performance. Third row: wavelet-based denoising.
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Figure 3: Detail images of a larger coherent feature in the data,
selected from the larger structures in the upper left quadrants of the
images in the third column of Fig. 2. (a) Original data. (b) Gaussian
filtering. (c) Wavelet-based denoising. Note how the small vertical
structure on the left disappears with Gaussian filtering.
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