
Atlas-Aware Laplacian Smoothing

Peter G. Sibley∗

Brown University
Gabriel Taubin†

Brown University

(a) (b) (c) (d) (e)

Figure 1: (a) A 256×256 texture map with chart boundaries of the mesh shown in orange. (b)A charted horse model with 97K faces. (c)
Close up of the original textured model. (d) 125 iterations of atlas-aware Laplacian smoothing withλ = 0.75. (e) 125 iterations of standard
Laplacian smoothing. Notice the boundary artifacts along the seams.

1 Introduction

We consider an image, a result of sampling over a finite two di-
mensional regular grid a vector valued function of two variables.
There is a wealth of work in both theory and application of image
processing operations. Our approach is to map into the parameter
space then perform image processing operations there. Laplacian
smoothing is the building block for defining linear filters, which can
be described in terms of polynomials of the Laplacian operator. We
focus on extending basic Laplacian smoothing to continuous vector
valued functions irregularly sampled on multi-chart parameterized
surfaces. Our goal is to efficiently perform Laplacian smoothing
with out introducing seam artifacts. We present an algorithm for
Laplacian smoothing over a texture atlas which takes into account
the discontinuities imposed by the charts. Our general approach is
based on the finite volume method, and the graph Laplacian used in
geometric signal processing.

In image processing, the Laplacian of an image is obtained by
convolving the image with the following 3×3 kernel:

L =





0 1 0
1 −4 1
0 1 0



 . (1)

To perform Laplacian smoothing repeatedly sum the image and its
Laplacian:In = In−1+(λL)∗ In−1 for someλ ∈ (0,1). This corre-
sponds to evolving the diffusion equation:∂ I

∂ t = λ∆I. The simplic-
ity and efficiency of this technique relies on the regular structure of
the image.

Similar techniques have been applied for smoothing or denois-
ing of large irregular polygonal meshes such as those created from
isosurfaces of volumetric data. In geometric signal processing, the
Laplacian operator for signals defined on vertices of a graph is de-
fined as follows. Leti⋆ denote the 1-ring of the vertexi. The
Laplacian operator is defined for a graph signalx with values in
Euclidean space as

∆xi = ∑
j∈i⋆

wi j (x j− xi) , (2)

where edge weightswi j are non-negative and sum to one over the
vertex star. Laplacian smoothing is thenxn = xn−1 +λ∆xn−1.

∗e-mail: pgs@cs.brown.edu
†e-mail: taubin@brown.edu

[Taubin 1995] develops the notion of Fourier analysis on mesh
signals using the Laplacian as defined above. Several authors ex-
panded that work to include non-linear filters. More recently, [Gu
et al. 2002; Sander et al. 2003] introduce geometry images and
multi-chart variants, which are an alternate regular representation
of a mesh with vertex positions packed into an image, and they ap-
ply compression techniques to the resulting models. This approach
allows textures, normal maps, and geometry to be treated uniformly.

One interpretation of the Laplacian is an operator that diffuses
information over all points in a domain. The finite volume method
is a standard approach to construct approximate solutions of hy-
perbolic conservation laws [Versteeg and Malalasekera 1995]. The
basic idea is to split to domain into small cells and enforce conser-
vation by prescribing fluxes at the walls of each cell.

2 Algorithm

We first classify pixel of the texture as INTERIOR, SEAM or UN-
USED, depending on whether or not the pixel is inside a chart, on a
boundary of a chart or outside all charts. Fig. 2c shows two edges
that correspond to a seam, and in orange the pixels that would be
classified as SEAM pixels. Classifying pixels and storing seam ad-
jacency information is performed once as a preprocessing step. For
seam pixels we have to propagate or diffuse signal values across
the seam. We evaluate the Laplacian in a two phase manner first
pushing information out from the seam pixels across the seam bor-
der scaling the signal to be proportional to the cell interface length.
Second, for interior pixels we evaluate the Laplacian using the reg-
ular 4-neighborhood structure, which does not need to be stored
explicitly.

Consider a single seam, which corresponds to two separate edges
of two charts. We have two tasks: determining the graph weights
and determining the neighborhood structure of these irregularly
shaped cells(Fig. 2b). For a cell with perimeter ofg, and a side
with lengthgi, the weight for that interface isgi/g. To determine
the neighborhood structure, we use the fact that the seam and cell-
wall intersections partition the two sides of the seam. We param-
eterize these intersections of the two edges with{ti} and{s j} for
ti,s j ∈ [0,1], ti < ti+1,s j < s j+1. Cellsk andl on opposite sides of
the seam are neighbors if the corresponding interval[tk, tk+1] and
[sl ,sl+1] overlap. Using this criteria implies that the two edges of
the seam are of the same length in the texture domain, in practice
this is not always the case, so one of the edges of the seam is scaled.

Rather than store this adjacency information in a graph, we
merge the two partitions then for every interval[ui,ui+1] we com-
pute the pixel locations(i, j) on either side and the interface length

a. b.

c. d.
Figure 2: (a) A model with adjacent charts, light blue denotes the
seam. (b) A 5×5 area in the texture map that shows two texture
space triangles that correspond to adjacent triangles on the model.
The two light blue edges correspond to the single seam on the
model. (c) The pixels in orange denote classified as SEAM pixels.
(d) The seam edge in texture space partitioned, shown with vertical
bars, intomicro-edges.

wi j. We refer to these asmicro-edges(Fig. 2d). For the other in-
terfaces of a seam cell, we use the regular neighborhood structure,
using weights proportional to the length of the interface. Both the
micro-edges and the other seam cell interfaces are stored in a flat
array of pixel correspondences and weights. The arrays for each
seam are concatenated into an arrayM. After this preprocessing we
have a bufferd that classifies the pixels, andM.

To perform a single step of Laplacian smoothing we proceed in
two phases the first evaluates the Laplacian for the seam cells by
pushing the data across the interfaces described byM. We use
wSum as an accumulator of weights.b is our intermediate image
buffer. First we define a function, FLOWACROSSINTERFACEto up-
date the value of pixeli by pulling the value of pixelj.
FLOWACROSSINTERFACE(i, j,w,wSum,b, t)
1 b[i]← b[i]+w∗ t[j]
2 wSum[i]← wSum[i]+w
3 return wSum,b
We define a function PHASEONE which smooths the seam pixels.
PHASEONE(M,b, t,λ)

1 wSum← 0
2 P← NIL
3 for each (i, j,w) in M
4 do (wSum,b)← FLOWACROSSINTERFACE(i, j,w,wSum,b, t)
5 (wSum,b)← FLOWACROSSINTERFACE(j, i,w,wSum,b, t)
6 P← P∪ i∪ j
7 for each i in P
8 do b[i]← b[i]/wSum[i]∗λ +(1.0−λ)∗ t[i]
9

10 return b
PHASETWO (d,b, t,λ)
1 for i← 1 to LENGTH(t)
2 do if d[i] = INT ERIOR
3 then c← (1−λ)∗ t[i]
4 for j in NEIGHBORS(i)
5 do
6 c← c+λ/4∗ t[j]
7 b[i]← c
8 return b

Finally, we define LAPLACIAN SMOOTH for n steps; it simply
iterates the above functions.
LAPLACIAN SMOOTH(n, t,M,d,λ)
1 for step← 1 to n
2 do b← 0

3 b← PHASEONE(M,b, t,λ)
4 b← PHASETWO(d,b, t,λ)
5 t← b
6 return t

One iteration of Laplacian smoothing is linear in the number of
pixels. The only added space complexity is the classification buffer
and arrayM, which is on the order of the number of seam pixels.

3 Results

We implemented the above algorithm in Java, and tested it on tex-
tured VRML models. The run time of regular Laplacian smoothing
is comparable to the run time of the atlas-aware Laplacian smooth-
ing. For the model shown in Fig. 1 with a 256× 256 texture and
97K faces, 125 iterations of regular Laplacian smoothing took 11
seconds and atlas-aware Laplacian smoothing required 18 seconds.

Figure 3: (top left) Original texture. (top right) Original model.
(bottom left) Atlas-aware Laplacian smoothed with parametersλ =
0.25,n = 15 . (bottom right) Regular Laplacian smoothed texture
using the same parameters. Notice the artifact at the hip.

4 Conclusions and Future Work

We are working on several improvements. The primary improve-
ment is to take into account the distortion of the parameterization
by using information from the first fundamental form, this would
more accurately model diffusion on the surface while still operat-
ing in the parameter domain. Optimizing and moving the algorithm
onto the GPU is another avenue of future work. The micro-edge
data structure could be used for other PDE simulations over param-
eterized surfaces, where one must handle chart discontinuities.

References
GU, X., GORTLER, S.,AND HOPPE, H. 2002. Geometry Images.

ACM Transactions on Graphics 21, 3 (July), 355–361. Siggraph
2002, Conference Proceedings.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J.,AND
HOPPE, H. 2003. Multi-chart geometry images. InProceedings
of the Eurographics/ACM SIGGRAPH symposium on Geometry
processing, Eurographics Association, 146–155.

TAUBIN , G. 1995. A signal processing approach to fair surface
design. InSiggraph’95 Conference Proceedings, 351–358.

VERSTEEG, H., AND MALALASEKERA , W. 1995.An Introduction
to Computational Fluid Dynamics: The Finite Volume Method.
Prentice-Hall.

