
Compression, Segmentation, and Modeling of Large-Scale Filamentary
Volumetric Data

Bruce H. McCormick
∗

Purna Doddapaneni David Mayerich Zeki Melek

John Keyser
Texas A&M University, Computer Science Department

ABSTRACT

We describe a method for processing large amounts of volumetric
data collected from a Knife Edge Scanning Microscope (KESM).
The neuronal data that we acquire consists of thin, branching struc-
tures extending over very large regions that prior volumetric rep-
resentations have difficulty dealing with efficiently. Since the full
volume data set can be extremely large, on-the-fly processing of the
data is necessary.
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1 INTRODUCTION

We present a method for processing large amounts of volumetric
data collected from a Knife Edge Scanning Microscope (KESM),
making it useful for subsequent visualization and analysis. This
new technique in microscopy allows data to be collected at rates
far exceeding those previously possible. Our goal is to scan, recon-
struct, and visualize stained brain tissue at a neuronal level of detail.
We present the reconstruction pipeline, from data acquisition to the
generation of threads representing neuronal processes.

2 KNIFE EDGE SCANNING M ICROSCOPE (KESM)

The Knife Edge Scanning Microscope (KESM) is a unique instru-
ment developed at Texas A&M for the collection of volumetric data
from brain tissue embedded in plastic [2]. The KESM uses knife-
edge scanning, where a diamond knife acts as both a cutting tool
and an optical element, which allows the tissue to be imaged while
it is cut. A line-scan camera is used to record a ”row” of pixels seen
through an objective, which is focused near the cutting edge of the
knife. As successive slices of tissue are taken, a volumetric data set
is formed from the ”stacks” of images. Note that the high precision
cutting technique produces all slices in registration - no additional
processing to achieve registration is needed. The KESM currently
is capable of imaging data at .25µm resolution in the image plane,
with successive slices being .5µm to 1.5µm in thickness. An en-
tire mouse brain scanned in this way would yield approximately
30 terabytes of raw volumetric data, at a rate of approximately one
terabyte a day. Note that the KESM is still in prototype form and
operation; while we have some scanned data volumes, we have not
yet attempted to capture data in the amount or at the sustained rate
that should eventually be possible.
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3 DATA COLLECTION

The full volume of the filamentary neuronal data set can be ex-
tremely large (in the terabytes). Due to this large size, it is not feasi-
ble to maintain an entire volumetric region in main memory at once.
Therefore, our reconstruction and visualization approaches must be
oriented toward representing, storing, and visualizing only the data
of interest. That is, we wish to perform a rough segmentation of
the data before visualization or further analysis. The neuronal data
that we acquire tends to have several distinguishing features. For
the samples we use (Nissl or Golgi stained neuronal tissue) the data
of interest tends to be sparse, taking up only a modest portion of the
overall volume. Segments of the neurons to be modeled have a very
long but thin (as opposed to blobby) structure. Real-world data also
tends to be noisy, with tiny, false ”specks” appearing throughout the
volume. Ideally, these artifacts must be identified and removed ei-
ther before processing, using image-based filtering techniques, or
after the data set has been established. Given a volume data set,
we define an Enhanced volume data set (EVDS) as follows: in
addition to the value assigned to every vertex (voxel) of the grid,
selected edges between vertices of the grid are given a Boolean
label. This enhancement alone can aid in topological analysis of
the relevant data [1]. Edge labeling is used to provide independent
information about whether two vertices sharing a common active
edge belong to the same underlying object. A number of data struc-
tures can be used to describe volumetric solids [3]. We have chosen
to adapt AABB-trees for our basic data structure, since they can
be generated incrementally, and maintain many of the hierarchical
benefits of other volumetric storage structures. An L-block (LB),
derived from an AABB structure, is defined as a 3-dimensional
iso-rectangular block of enhanced vertex information. Each LB in-
cludes both a header and a vertex array. The header defines both
the position of its least vertex as indexed within the uniform grid of
the raw data set, and its template. The vertex array contains the en-
hanced vertex information (voxel value(s) and edge labels) for all
voxels. LBs sharing an active edge are assumed to be connected.
We store connected LBs in a hierarchical data structure, similar to
an AABB-tree, that we refer to as an LB covering (LBC).

4 DATA COMPRESSION

The memory needed to hold useful amounts of uncompressed neu-
ral data is exceedingly large. For example, the raw KESM data for
an entire mouse brain requires approximately 30 terabytes and must
be stored in real time. Volume data generated by serial sectioning
and scanning of a three-dimensional specimen can be compressed
in real time by incrementally generating the EVDS. We consider
vertices significant if they pass a simple thresholding test, and edges
are labeled active if and only if both of the adjacent vertices are
significant. Voxels that do not pass the thresholding stage are con-
sidered ”white space,” and it is assumed that they can be ignored
thereafter. The EVDS is partitioned into 2x2x2 cells. If any of the
voxels in a cell is valid, that cell is stored as a LB. The compres-



Figure 1: A portion of a slice from the BTS. A Nissl stain was used, so only cell bodies are stained. The section shown is only 500 pixels by 5500
pixels.

sion achieved will depend on the stain, the threshold used, and the
density of the data. To test, we have considered two specific sets of
the data, one consisting of mostly dendrites and the other mostly of
cell bodies. Because of the different types of data prevalent, these
should have different analysis statistics. For the first case we have
considered 90 sections, each of 250x230 resolution. And for the
second we have considered 100 sections, each of 500x500 resolu-
tion. Each voxel of the data set represents a volume of 0.37µm by
0.37µm by 0.5µm. The initial data requires approximately 5 MB
and 25 MB of storage space respectively. With realistic threshold
levels, we form 65,611 LBs and 50,218 LBs, requiring about 1.1
MB and 0.8 MB to store, yielding a compression factor of approx-
imately 4 and 31 respectively(i.e. compressing data to 20% and
3.2% respectively). Additional data compression is done by merg-
ing LBs where appropriate, which minimizes the header overhead.
Because LBs store all data in an iso-rectangular volume, expanding
an LB might require storing additional ”white” space along with
relevant data. We use a cost function based strictly on the relative
storage requirements for the merged and unmerged LBs. For our
test data sets, our merging strategy reduces the total number of LBs
twofold (28,938) and fourfold (10,684), requiring less than 0.4 MB
and 0.18 MB of storage respectively. Note that these strategies are
well suited for processing 3D microscopic data where data arrives
one ”section” at a time and each section must be processed in real
time. Due to the amount of data, it is not practical to store many
sectional images in memory at once. Merging LBs requires only
storage of the LBs that cover portions of the immediately preced-
ing section.

5 NOISE REDUCTION , DATA SEGMENTATION AND THREAD
GENERATION

Some image based filtering of the data is done before edge label-
ing to get rid of some of the scanning artifacts. After initial data
compression, the LBs are processed for noise reduction to improve
the quality of reconstruction. First, we remove large smear noise
that exists on single layers. Second, tiny disconnected LBs with no
active edges are removed, since they are unlikely to be a part of a
larger neuronal structure.

Taking advantage of the fact that neural data is both sparse and
clustered, our data is further combined into clusters, each expressed
as an LBC, and defined as groups of interconnecting LBs. If two
LBs border on each other and at least one of the voxels has an active
link to a voxel in the other LB, they are considered to be in the same
cluster. Since the voxels themselves are used to determine cluster
boundaries, this scheme effectively segments the data, i.e. it does
not group two pieces of data that should have been separate. If LBs
are clustered before merging, the space of LBs to be examined for
potential merging is reduced, thus speeding up the algorithm.

An expanded connectivity graph is formed by linking the over-
lapping dilated LBs. To identify the major threads, the graph needs
to be simplified using graph algorithms. The expanded connec-
tivity graph is simplified into a tree format by temporarily remov-
ing ”fine-scale” detail. The LB structure allows us to work with
packages, rather than the data contained within. A ”thread axis” is

constructed, around which a medial axis approximation can be ob-
tained. The medial axis representation can be iteratively refined to
match the LB representation using radius approximation by using
actual LB contents.

6 VISUALIZATION

Figure 2: Two visualizations from different sets, a) isosurfaces , b)
generated threads

Packing the data inside LBs allows us to display as bounding
boxes interactively. The data content is hidden for faster frame
rates, enabling the user to walk through the data easily. The in-
ternal data is displayed only for the very nearby LBs, or when the
viewpoint is not changing. The bounding box information is also
valuable in as a means of culling for faster raytracing of the vol-
ume data. The edge labeling and LBC structure is useful in group-
ing connected data together, and this connectivity information is
used in fast isosurface generation. LBs can be isosurfaced in paral-
lel, only exchanging information along boundary values when nec-
essary. Knowing connectivity information ensures that the inde-
pendently generated isosurfaces for each LB will match across LB
boundaries.

7 CONCLUSION

We presented a method for processing large amounts of volumetric
data collected from a Knife Edge Scanning Microscope (KESM)
for subsequent visualization and analysis. We have described our
current implementation of the pipeline from data acquisition until
partial thread generation. We have demonstrated that we can pro-
cess the data on-the-fly and do noise detection and compression us-
ing partially available data. LBC storage enables parallel execution
of thread generation.
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