
 

Abstract 
We present a novel scheme to interactively visualize time-varying 
scalar fields defined on a structured grid. The underlying ap-
proach is to maximize the use of current graphics hardware by 
using 3D texture mapping. This approach commonly suffers from 
an expensive voxelization of each time-step as well as from large 
size of the voxel array approximating each step. 

Hence, in our scheme, instead of explicitly voxelizing each 
scalar field, we directly store each time-step as a three dimen-
sional texture in its native form. We create the function that warps 
a voxel grid into the given structured grid. At rendering time, we 
reconstruct the function at each pixel using hardware-based tri-
linear interpolation. The resulting coordinates allow us to com-
pute the scalar value at this pixel using a second texture lookup. 

For fixed grids, the function remains constant across time-steps 
and only the scalar field table needs to be re-loaded as a texture. 
Our new approach achieves excellent performance with relatively 
low texture memory requirements and low approximation error. 

 
Figure 2: An 8x4 structured grid is shown in green in 
the Euclidean domain. The R3 grid is shown in gray. 
Red samples are centers of interior voxels, blue samples 
that of boundary voxels, and unmarked samples that of 
exterior voxels. 

1 INTRODUCTION 
A common representation for volumetric data in the form of 3D 
scalar fields is the structured grid. The structured grid is topologi-
cally a uniform, Cartesian grid, but is geometrically warped into 
R3, a Euclidean space, for visualization. For example, curvilinear 
grids specify a warped position for each data point and assume 
some interpolation function for locations between the data points. 
Although structured grids may be rendered using customized ray 
tracing and cell projection techniques as well as using resampling, 
it is quite common to discard much of the structure by tetrahedral-
izing the grid cells and rendering as an unstructured grid. This is 
exemplified by the fact that many papers describing unstructured 

grid rendering actually use test data that originated as structured 
grids (such as NASA’s blunt fin and delta wing models). 

Resampling the scalar data at each time-step into a regular R3 

volume not only dramatically increases the total volume size and 
the processing time, but also potentially introduces unnecessary 
resampling artifacts. We propose a novel approach that still 
combines regular sampling with 3D texture-based volume 
rendering, but with an important difference from standard resam-
pling approaches – we do not resample the scalar field. Our 
approach leverages the regular topological structure of the grid to 
provide a natural mapping to graphics hardware. We realize that 
the structured data in fact lies on a rectilinear lattice in some 
warped space, just not in R3 (see Figure 2 for a 2D example). Let 
us denote this space by triple <s, t, r>. The scalar value is sampled 
on a lattice: at regular intervals in s, t, and r. Indeed, a structured 
grid is often specified by a three dimensional array of scalar 
values along with an unwarping function, or a table, that specifies 
the R3 location of each lattice point. Thus the time varying scalar 
data may be directly stored as a 3D texture in that warped space – 
call it the grid texture. Of course, this texture is not regular in R3 
and hence may not be directly rendered as textured slices. Instead, 
we use a regular R3 grid to sample the inverse of the structured 
grid’s unwarping function. The resulting warping texture effec-
tively serves as a voxel-based parameterization of R3. Now we 
can find the scalar value at any point in R3, denoted by <u, v, w>, 
by first looking up the warp texture (s, t, r) = W(u, v, w) to find its 
3D warped coordinate, and then looking up the scalar value from 
the grid texture: S(s, t, r).  

This indirect texturing approach has some inherent advantages 
over a standard resampling algorithm. First, for Eulerian grids, 
which have a constant warping function over all time steps, we 
create a single warping texture, W, to describe the parameteriza-
tion of space, and re-use it for all the time-varying scalar values. 
Second, the scalar data itself remains as compact as in its original 
form, and thus requires minimal bandwidth to load to texture 
memory and a minimal footprint to store there. Third, the warping 
texture often requires less resolution to maintain good quality 
rendering than does a direct resampling of the scalar texture. This 
is due to the fact that warping functions are often largely smooth 
and well-approximated by the tri-linear interpolation performed 
on the hardware. Scalars tend to have higher frequency content 
and many discontinuities. Furthermore, by avoiding directly 
resampling the scalar field, we eliminate one resampling of this 
data, delaying its resampling to the stage of rendering individual 
pixels. Any error induced by sampling the warping function has 
the effect of distorting the data in space rather than changing the 
actual scalar values portrayed. Our technique is thus effective not 
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Figure 1: 10 time steps of the KDphrd data set, rendered with a 128x64x64 warp texture. The structured grid is 192x192x64. 



 

only to reduce the data size for time-varying scalar fields, but also 
for static scalar fields as compared to direct resampling. 

2 WARP TEXTURE GENERATION 
The essential data component for our rendering algorithm is the 
warp texture, W, a voxel-based approximation to the inverse of 
the structured grid’s unwarping function, Wi. Thus, each value in 
the warp texture describes a mapping back into the grid (scalar) 
texture domain and may be applied as texture coordinates to look 
up interpolated values from the original scalar data. 

The generation of the warp texture is primarily a sampling 
process. The warp texture is defined to cover the bounding box of 
the structured grid unwarped into the R3 domain. (We refer to the 
cells of a regular rectilinear R3 grid also as voxels.) Given some 
R3 grid resolution, a voxel may be classified as interior, boundary, 
or exterior, according to their relationship with the warped cells of 
the structured grid, as shown in Figure 2. 

To compute the values of W at the centers of the interior vox-
els, we perform a point location query of each voxel sample (its 
center) within the cells of the structured grid. Such a query should 
report which cell, if any, contains the sample location, and where 
the sample is within that cell (i.e. its <s,t,r> coordinate). If there is 
such a cell, then the voxel is an interior voxel, and the matching 
grid coordinates are stored at that voxel (such as the red samples 
in Figure 2). At the centers of these interior voxels, the warping 
error is effectively zero. 

 
Figure 3: Three cases of boundary matching (in 2D). 
The blue boundary voxels are computed using extrapo-
lation so as to match the warping function at the yellow 
points along the structured grid boundary. 

For boundary voxels, we assign the warping value using an 
extrapolation process. This extrapolation ensures an exact warp at 
some place along the boundary of the structured grid, as shown in 
Figure 3. These boundary voxels are mapped to somewhere 
outside the valid [0,1] domain of the structured grid, and at 
rendering time all pixels which map outside the domain are 
rendered as transparent black. 
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Figure 4: It is possible for a voxel to be both above and 
below the structured grid (mapped into R3), resulting in 
extraneous grid being generated. This problem is 
avoided using a stencil texture. 

In general, it is not always possible to assign consistent warp-
ing values everywhere outside the domain. As illustrated in 
Figure 4, it is possible for some voxels outside the domain in the 
positive direction to neighbor voxels outside the domain in the 
negative direction. Trilinear interpolation in this case would 
generate values within the domain for pixels within these voxels. 
We employ a 3D stencil texture to eliminate such ambiguities. 
This approach suffices so long as the warping texture resolution is 

high enough to allow at least one exterior voxel between nearby 
boundaries. 

3 ERROR COMPUTATION 
Apart from numerical errors, the main source of error in our 
technique is the approximate reconstruction of the warp-function 
from the samples at voxel centers. In order to measure this error, 
we compute the difference of the interpolant from the actual warp 
function at each point of R3. Since, in general, we only know the 
samples of the unwarp function at the structured grid lattice 
points, it is sufficient to find the error at locations that these 
lattice points map to in R3. For each such point, pg, we are given 
its mapping into R3, pe. We then evaluate the warping texture at 
W(pe) using tri-linear interpolation of neighboring voxel centers. 
The error incurred at pg, hence, is |W(pe) – pg|. We can then 
compute statistics such as the maximum, or root mean square 
error over all grid sample points. 

4 TIME-VARYING PLAYBACK 
By design, managing the playback of multiple time steps is 
straightforward using our rendering algorithm. Because structured 
grids adaptively sample R3, the grid resolution is often small 
enough that we can fit many time steps in video memory. In this 
case, we just load all the time steps for the desired sequence and 
advance through them by rebinding only the scalar grid texture 
each frame (or every k frames, to slow down playback speed with 
respect to some faster camera motion).  

If the desired time steps are too large to fit in video memory at 
once, we can still swap textures once per time step and the frame 
rate may be limited by the memory bandwidth to the graphics 
card. We can also employ some (possibly lossy) texture compres-
sion scheme.  

5 IMPLEMENTATION 
We have implemented the warp texture generation algorithm as 
well as the rendering algorithm on a Linux PC equipped with 1.6 
GHz AMD Athlon CPU, 1 GB RAM, and an NVIDIA GeforceFX 
5800 Ultra with 128 MB VRAM. 3D texture-based volume 
rendering is performed with viewport-aligned slicing. A custom 
fragment program uses the R3 location as an index into the warp 
and stencil texture. The results of the warp texture lookups are 
scaled and biased, then used to perform the scalar texture lookup. 
The scalar texture, which has been quantized to one byte per 
scalar, is then used to index a final transfer function texture, 
which maps the scalar value to RGBA according to a user-
specified transfer function. If the stencil value equals 0, or the 
scalar texture coordinates are out of range, the fragment is instead 
colored as transparent black. For all our tests the texture sizes are 
small enough that the rendering remains highly interactive (over 
15 fps). Playbacks of time-steps are similarly interactive. 

6 CONCLUSIONS 
We have discussed a new 3D texture-based algorithm for visuali-
zation of time-varying structured grids. By factoring a static 
warping function out from the time-varying scalar data, we 
eliminate the need to resample the scalar data for each time step 
and maintain a relatively low space requirement for storing and 
transmitting the data. 
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