
Abstract
Live Range Visibility Constraints for Adaptive Terrain Visualization

Xiaohong Bao∗

University of California, Irvine
Renato Pajarola†

University of California, Irvine
Michael Shafae‡

University of California, Irvine

1 Introduction

Although there is a remarkable pace in the advance of computa-
tional resources and storage for real-time visualization the immen-
sity of the input data continues to outstrip any advances. The task
for interactively visualizing such a massive terrain is to render a
triangulated mesh using a view-dependent error tolerance, thus in-
telligently and perceptually managing the scene’s geometric com-
plexity. At any particular instance in time (i.e. displayed frame),
this level-of-detail(LOD) terrain surface consists of a mesh com-
posed of hundreds of thousands of dynamically selected triangles.
The triangles are selected using the current time-step’s view param-
eters and the view-dependent error tolerance. Massive terrain data
easily exceeds main memory storage capacity such that out-of-core
rendering must be performed. This further complicates the triangle
selection and terrain rendering owing to tertiary storage’s relatively
poor performance.

The proposed algorithm, SMART, in this paper dramatically im-
proves the previous state-of-the-art by introducing the paradigm
of a vertexlive range. Each vertex has an associated live range.
An a priori judgment can be made of what vertices need to be re-
called from tertiary storage using a live range check. Using this live
range, per-vertex LOD selection and culling costs are dramatically
reduced. Moreover, this reduction in LOD and culling costs directly
reduces the amount of out-of-core I/O.

Consider a continuous fly-over of a massive terrain data. Arbitrarily
choosing between any two consecutive frames, there exists a signif-
icantly large spatial coincidence. By using a vertex live range, our
method exploits this fact and generates an updated view-dependent
LOD terrain representation by touching only those vertices that
have changed between frames. Furthermore, our method does not
maintain any sorting data structure, neither accesses the vertex it-
self, usually it is costly from out-of-core, if the vertex status is con-
stant. SMART minimizes the per-vertex LOD and view culling tests
to such a large degree that it is competitive to cluster-based LOD se-
lection, however, offering at the same time fine-grain LOD vertex
selection to generate smoother view with minimal number of nec-
essary triangles.

2 Vertex Live Range

Our goal is to avoid the repetitive cost and only perform LOD and
view culling computation for the few vertices that are indeed can-
didates for updating the LOD-mesh for a given viewpoint. Ideally,
when we check a vertex’s status, we want to know not only its status
at the current moment. We would also like to know when its cur-
rent status will possibly change, no matter how the view-dependent
parameters will vary. This time period is called thelive rangeof a
vertex. To compute a vertex’s live range, we define for each ver-
tex asafe-distance. No matter how the view point moves, a vertex
status keeps constant if the view point is within its safe-distance.
Only if the viewpoint invalidates the safe-distance to a vertex does
its visibility status possibly change.

∗e-mail: xbao@ics.uci.edu
†e-mail: pajarola@acm.org
‡e-mail: mshafae@ics.uci.edu

Among the multiresolution terrain models reviewed in [Pajarola
2002], we use the triangle bin-tree definition [Duchaineau et al.
1997; Lindstrom and Pascucci 2001] here. In this context, mesh
refinement is performed by recursively splitting a triangle at the
midpoint of its longest edge which defines a binary hierarchy on
the triangles. See [Duchaineau et al. 1997; Lindstrom and Pascucci
2001] for more implementation details.

2.1 τ -safe-distance

r

v

Pt

Pt+1

d1

Pt+2

d
v

t

t

v

d2

spheret

Figure 1: The concept ofτ -sphere of a vertexv and itsτ -safe-distance
dτ

v(t), given the view point moves fromPt, throughPt+1, to Pt+2. At
Pt+1, dτ

v(t) − d1 ≥ 0, vertexv remains visible. But atPt+2, dτ
v(t) −

d1 − d2 < 0 causes re-evaluation of theτ -safe-distancedτ
v at timet + 2.

The τ -safe-distancedτ
v(t) measures the degree of freedom of un-

constrained movements the viewpointP can enjoy before the LOD
status of a vertexv is potentially affected. Theτ -safe-distance
dτ

v(t) is initialized when a vertex visibility is computed at the first
time and is then estimated atd̄τ

v(t + δt) = dτ
v(t) −∑δt

i=1
di with

di = |Pt+i − Pt+i−1|. Only when the sign of̄dτ
v(t) changes, the

actualdτ
v(t) is re-evaluated. This conservative check guarantees

that all high risk vertices are being found. Theτ -safe-distance is
defined as:

dτ
v(t) = rτ

v − |Pt − v| (1)

whererτ
v = α

τ
δv + rv is the radius ofv’s τ -sphere. Hereα is a

constant respect to the view volume,δv is the saturated object space
error ofv andrv is the radius ofv’s bounding sphere.

2.2 culling-safe-distance

Ni

Pi
v

rv

di
v

bounding sphere

A bounding plane
of the view volume

plane normal pointing to
outside of the view volume

Figure 2: The concept of a vertex’ bounding sphere and its culling-safe-
distancedc

v(t) = mini(rv − di
v). The view frustum planePi can move by

dc
v(t) without changing vertexv’s culling status.

Similar to the definition of theτ -safe-distancedτ
v , culling-safe-

distancedc
v(t) = mini(rv − di

v) defines a conservative safe dis-
tance the view point can move before the culling status of vertexv
is re-evaluated. Vertexτ -safe-distance is similarly computed along
the nested bounding sphere hierarchy. For instance, if the bounding
sphere of a vertex is in the view frustum, we set theτ -safe-distance

of each of its descendants equal to itsrv without any further accu-
rate computation.

2.3 Dynamic Vertex Selection

We define thelive rangeof a vertexv as

Lv = ft +
min (|dτ

v(t)|, |dc
v(t)|)

Smin
(2)

whereft is the frame number at timet, andSmin is the minimal
speed the view point moves (per frame). Assume the positions of
the viewpoint at timet−1 andt arePt−1 andPt respectively , then
ft is updated as follows:

ft = ft−1 + b |Pt − Pt−1|
Smin

c. (3)

The live rangeLv of v defines the period thatv’s visibility status
is constant.Lv is updated only whenv’s status is updated.ft is
calculated once for each frame.v’s visibility status will not change
at the momentt if ft < Lv; otherwiseLv needs to be re-evaluated.
HereLv andft are both integers.

Even though we define aSmin, the low bound of speed here, the
user’s navigation speed can be less thanSmin without violating the
algorithm correctness. In that case the less the actual speed is than
Smin, the more conservative the vertexLv test will be.

The algorithm works as follows: we check each vertex in a depth-
first traversal of the triangle bin-tree hierarchy. If the vertex live
range is valid, the vertex status is constant and accessing the vertex
itself is unnecessary. Otherwise the vertex status is re-evaluated.
Given the return vertex status with respect to both LOD and culling,
the traversal recursively subdivides triangles if necessary and gen-
erates the triangle-strip rendering primitive along the way as de-
scribed in [Lindstrom and Pascucci 2001].

3 Results

We present the results of our algorithm and compare them with
SOAR1. The terrain data set is made up of8193 × 8193 eleva-
tion grid. The data file on disk is organized with the technique of
interleaved quadtree indexing used in SOAR, occupying 2GB disk
space.

Figure 3 demonstrates the effectiveness of our algorithm. When the
screen error tolerance is one pixel, SMART performs less than 10%
of the vertex visibility computations that the basic SOAR engine
does for most frames. Even in the worst case this reduction ratio is
about 20%. This number shows that during the mesh computation,
not only the 90% expensive visibility computations are avoided,
but possible out-of-core vertex accessing for these vertices is also
avoided. This leads to great improvement in the final rendering
performance.
Figure 4 presents SMART speedup over SOAR with different
frame-to-frame incoherence. The average frame-to-frame incoher-
ence is measured by the average percentage of changed triangles
between consecutive frames. When the incoherence is 5.29%, in
which the view point moves at around 20 km per second, the over-
all speedup and pure mesh computation speedup are more than 7
over SOAR. The process of pure mesh computation is the whole
visualization process except OpenGL calls, which includes vertex
visibility status computation and final triangle strip construction.
They reach 8 and more when the frame-to-frame incoherence de-
clines to 1.36%, due to much less floating number computations
for updating vertex visibility status. The speedup is reduced to 6

1The source code of SOAR and the data set used in this
paper are offered by Peter Lindstrom and Valerio Pascucci at
http://www.cc.gatech.edu/gvu/people/peter.lindstrom.

ratio of vertex visibility computations

0.00

0.05

0.10

0.15

0.20

0.25

100 1300 2500 3700 4900 6100 7300 8500 9700 10900 12100 13300

frame number

Figure 3:Compared to the technique in SOAR, the ratio of necessary ver-
tex accesses and visibility computations with SMART along the flying route
when the screen space error tolerance is 1 pixel and frame-to-frame incoher-
ence is 0.61%.

when the incoherence is 0.61%. In this case good data locality is
preserved with the data layout technique in SOAR, reducing the
number of page faults, thus improving the out-of-core data access
efficiency for SOAR.

Average Speedup of SMART vs. Frame Incoherence
Assuming Speed of SOAR is 1

0

2

4

6

8

10

12

0.61% 1.36% 5.29%

frame-to-frame incoherence

av
er

ag
e

sp
ee

du
p

overall mesh computation

Figure 4: Overall and pure mesh computation speedup with SMART for
different frame-to-frame incoherence when the screen space error tolerance
is 2 pixels.

References
CIGNONI, P., GANOVELLI , F., GOBBETTI, E., MARTON, F., PONCHIO,

F., AND SCOPIGNO, R. 2003. BDAM - batched dynamic adaptive
meshes for high performance terrain visualization. InProceedings EU-
ROGRAPHICS 2003, 505–514. also in Computer Graphics Forum 22(3).

DUCHAINEAU , M., WOLINSKY, M., SIGETI, D. E., MILLER , M. C.,
ALDRICH, C., AND M INEEV-WEINSTEIN, M. B. 1997. Roaming ter-
rain: Real-time optimally adapting meshes. InProceedings IEEE Visu-
alization 97, 81–88.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail rendering using
cached geometry. InProceedings IEEE Visualization 2002, Computer
Society Press, 259–266.

L INDSTROM, P., AND PASCUCCI, V. 2001. Visualization of large terrains
made easy. InProceedings IEEE Visualization 2001, Computer Society
Press, 363–370.

PAJAROLA, R. 2002. Overview of quadtree-based terrain triangulation
and visualization. Tech. Rep. UCI-ICS-02-01, Information & Computer
Science, University of California Irvine.

