
Pixel-Exact Rendering of Spacetime Finite Element Solutions

Yuan Zhou∗ Michael Garland∗ Robert Haber†

Center for Process Simulation and Design
University of Illinois at Urbana–Champaign

Figure 1: Shock waves propagating through a partial 2-D cross-section of a solid rocket booster.

ABSTRACT

Computational simulation of time-varying physical processes is of
fundamental importance for many scientific and engineering appli-
cations. Most frequently, time-varying simulations are performed
over multiple spatial grids at discrete points in time. In this paper,
we investigate a new approach to time-varying simulation: space-
time discontinuous Galerkin finite element methods. The result of
this simulation method is a simplicial tessellation of spacetime with
per-element polynomial solutions for physical quantities such as
strain, stress, and velocity. To provide accurate visualizations of the
resulting solutions, we have developed a method for per-pixel eval-
uation of solution data on the GPU. We demonstrate the importance
of per-pixel rendering versus simple linear interpolation for produc-
ing high quality visualizations. We also show that our system can
accommodate reasonably large datasets—spacetime meshes con-
taining up to 20 million tetrahedra are not uncommon in this do-
main.

CR Categories: I.6.7 [Computing Methodologies]: Simula-
tion and Modeling—Simulation Support Systems; I.3.3 [Computer
Graphics]: Picture/Image Generation—Display algorithms

Keywords: pixel-exact visualization, pixel shaders, spacetime fi-
nite elements, discontinuous Galerkin methods

1 INTRODUCTION

Providing techniques for displaying time-varying data produced by
computational simulation of physical phenomena is a key problem
in the visualization area. Simulations across a very broad range
of applications—from fluid dynamics to quantum mechanics and
elastodynamics—are frequently performed via finite element meth-
ods. One particularly natural approach to visualizing the result has
always been to animate a series of constant-time snapshots of the
solution data.

Most visualization systems in use today render finite element
solutions using piecewise linear representations; height fields and
color fields are particularly common. However, the actual solu-
tions produced by finite element methods are frequently higher or-

∗Dept. of Computer Science, {yuanzhou,garland}@uiuc.edu
†Dept. of Theoretical and Applied Mechanics, r-haber@uiuc.edu

der functions. Rendering these solutions with piecewise linear ap-
proximations can seriously misrepresent the result of the simula-
tion.

We demonstrate that the capabilities of modern programmable
GPUs can support a substantial improvement in the visual fidelity
of displayed solutions. We utilize custom pixel shaders to eval-
uate solution polynomials on a per-pixel basis. Combining this
with adaptive subdivision of the height field, we are able to pro-
vide pixel-exact renderings of the finite element solution.

We investigate these visualization issues in the context of space-
time discontinuous Galerkin (SDG) methods. Unlike traditional fi-
nite element methods, SDG methods represent the solution within
each element independently. While not guaranteeing continuity
between adjacent elements, this has several advantages from the
standpoint of efficient local computation and parallelization. From
our standpoint, this is also advantageous because it means that each
element can be rendered in isolation from the others. This is a nat-
ural fit for graphics hardware, which generally disallows non-local
data access, say between elements or between adjacent nodes.

2 RELATED WORK

Our focus is on the visualization of spacetime finite element so-
lutions for time-varying problems. In this paper, we concentrate
specifically on problem areas involving 2-dimensional spatial do-
mains. Our 3-dimensional spacetime is covered by a tetrahedral
mesh. However, it is important to note that it is not a simplicial
complex as we allow non-conforming tessellations.

There has obviously been a great deal of prior work on render-
ing of 3-D volume data. There have also been several methods pro-
posed for rendering spacetime volumes. Here we discuss the most
salient examples of this prior work.

Spacetime Rendering There are multiple possible funda-
mental approaches to visualizing spacetime volumes. For our pur-
poses here, most standard visualization techniques can be applied
to our 3-D spacetimes. The more general setting of 4-D spacetime
requires somewhat more generalized techniques [24].

Arguably the most common approach to visualizing spacetime
data is by time slicing. Given that one dimension of the spacetime
volume is temporal, it is extremely natural to extract and animate
multiple spatial cross-sections of the spacetime. Vis5D [10] pro-
vides a good example of a system for time-varying visualization
that makes extensive use of temporal slicing. Woodring et al. [29]
extend this notion of slicing for direct rendering of 4-D spacetime
volumes.

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

425

One natural approach to rendering both spacetime and spatial
cross-sections is direct rendering via splatting. Splatting of 3-D
spacetime volumes can be implemented directly with traditional
splatting methods [28]. It can also be nicely generalized to 4-D
spacetime volumes [17] and even to general n-D hypervolumes [2].
Splatting also fits quite nicely within the framework of traditional
texture mapping hardware.

Another common approach to spacetime rendering is via isosur-
facing. The most popular method for extracting isosurfaces from
regular grids is Marching Cubes [12]. Similar algorithms have been
developed for irregular tetrahedral grids [22]. Marching methods of
this sort have been generalized to higher dimensions [4] although
the necessary lookup tables can become quite large [3].

GPU-Assisted Rendering One of the most important recent
developments in graphics hardware is the evolution from fixed-
function pipelines to programmable GPUs. This has provided
many opportunities for implementing more advanced rendering al-
gorithms directly in hardware. Of particular importance to us is the
fairly recent move to full floating point support within the graphics
pipeline.

In the past, there has been substantial work on designing custom
hardware for volume rendering. More recently, techniques have
been developed to efficiently perform such rendering tasks on stan-
dard PC hardware [11, 9]. Guthe et al. [8] and Weiler et al. [27]
have both demonstrated GPU-based techniques for rendering tetra-
hedral volumes.

Programmable GPU features have also been used to evaluate
higher-order geometry elements. Vlachos et al. [26] transpar-
ently convert triangles with per-corner normal data to piecewise-
polynomial patches. Losasso et al. [13] evaluate bi-cubic B-splines
to produce smooth surfaces that are C2 almost everywhere, except
at certain C1 cut vertices.

There are now multiple systems that have been developed for
providing higher-level language constructs for GPU programming.
Both Proudfoot et al. [19] and Mark et al. [15] describe C-like
shader languages. In contrast, McCool et al. [16] use a metapro-
gramming paradigm to embed shader programs directly in C++
code. We rely on the Cg system [15] for developing our vertex
and fragment programs.

3 FINITE ELEMENT SIMULATION

The visualization system we describe in this paper is a part of a
larger project aimed at developing new methods for simulating time
varying physical processes. Before describing our rendering tech-
niques, we first outline the finite element problem domain in which
they are being used.

3.1 Spacetime DG Method

The standard finite element approach to simulating physical pro-
cesses over time is semi-discrete. The spatial domain is discretized
with a fixed mesh, inducing a discretized set of differential equa-
tions that are solved by a time-marching integration scheme. Usu-
ally, a uniform time-step is used across the entire spatial domain,
thus effectively computing a solution over a fixed mesh at several
constant points in time.

Spacetime discontinuous Galerkin methods [23, 6, 14, 30, 31,
18] are a relatively new class of finite element methods that com-
prise an interesting alternative to semi-discrete methods. Un-
like conventional finite element models, SDG methods work with
meshes covering the entire spacetime analysis domain. The SDG
algorithm weakly enforces the governing equations over each
spacetime element, eliminating the need for a separate time integra-
tion procedure. Another distinguishing feature of SDG methods is

Time

Figure 2: Spacetime mesh for a crack-tip wave scattering problem.
Spacetime tetrahedra are formed by repeatedly lifting vertices of a
planar space mesh forward in time. Local refinement occurs along
propagating shock fronts.

their use of discontinuous basis functions with support on individ-
ual elements, rather than the usual continuous bases. This approach
eliminates artificial coupling between adjacent elements when the
mesh satisfies certain causality constraints.

3.2 Spacetime Meshing

The spacetime meshes used in the underlying solution system are
constructed using the Tent Pitcher algorithm [25, 7]. It is the first
algorithm to build graded spacetime meshes over arbitrary simpli-
cially meshed spatial domains. Unlike most traditional approaches,
the Tent Pitcher algorithm does not impose a fixed global time step
on the mesh, or even a local time step on small regions of the mesh.
Rather, it produces a fully unstructured simplicial spacetime mesh,
where the duration of each spacetime element depends on the local
feature size and quality of the underlying space mesh.

Given a triangular mesh of some planar domain, Tent Pitcher
meshes the target spacetime domain using an advancing front algo-
rithm. Elements are added to the evolving mesh in small patches by
moving a vertex of the front forward in time. The amount by which
a vertex may be lifted into the future is limited by local causal-
ity constraints. The SDG solution is computed locally within each
new patch as soon as it is created. The mesh can also be adap-
tively refined or coarsened in response to a posteriori error esti-
mates computed by the numerical code [1]. This adaptation gen-
erates non-conforming spacetime meshes; two adjacent spacetime
elements may not share a common face. Figure 2 shows an example
of a spacetime mesh built by this system.

4 RENDERING SYSTEM

We have developed a visualization system designed to display the
results of a spacetime discontinuous Galerkin system, such as the
one outlined in the previous section. From the standpoint of the ren-
derer, these spacetime DG solutions have the following important
properties:

• We are presented with a (potentially nonconforming) simpli-
cial decomposition of spacetime.

426

(a) Per-vertex shading (b) Underlying spacetime mesh (c) Pixel-exact shading

Figure 3: A simple 1-D linear elastodynamic finite element solution over a 2-D spacetime. The solution is piecewise cubic within each spacetime
triangle, and per-vertex shading (a) produces a very poor representation of the actual solution (c).

• The solution within each element is given independently, and
these solutions are represented with higher-order basis func-
tions.

Currently, we are only working with problems that involve 1-D and
2-D spatial domains. Therefore, the resulting spacetimes are either
2-D triangulations or 3-D tetrahedralizations, respectively. Figure 2
shows an example of the kind of spacetime mesh our visualization
system is designed to process. This is a simulation of a crack-tip
wave scattering problem (see §5 for more details). Shock waves
propagating through the medium are clearly visible from the re-
sulting mesh refinement. The algorithm used for performing this
refinement (and coarsening) produces non-conforming spacetime
elements whenever it adapts the mesh density.

Our goal is to visualize the simulation as a time-varying process.
We do this by constructing multiple constant-time slices through the
spacetime mesh. Each time-slice represents the state of the spatial
domain at a constant point in time. We render each time-slice and
animate the result.

We assume that the user wishes to display one or more scalar
fields computed from the underlying solution. For any given vi-
sualization, we restrict the possible number of scalar fields to 2,
mapping one to height and one to color. Each scalar field can be
described using a polynomial on a per-element basis. We aim to
produce the most accurate possible rendering of these higher-order
scalar fields. To do so, we take advantage of the ability of modern
GPU hardware to evaluate fairly complex functions on a per-pixel
basis.

To illustrate the importance of per-pixel rendering, consider the
example shown in Figure 3. This is a very simple linear elasto-
dynamic system over a 1-D space domain—the entire triangulated
spacetime is shown. This is a simulation of a displacement propa-
gating through a rigid bar fixed at one end. The initial displacement
at the center of the bar travels with constant wavespeed towards the
two ends of the bar. The wavespeed is a constant depending on the
material of the bar. The wave reflects out of phase from the the
fixed end of the bar and travels to infinity past the free end. The
difference between computing the color field on a per-vertex basis
and a per-pixel basis is striking.

4.1 Slicing Spacetime

The spacetime mesh we are given consists of a set of vertices V
and a set of tetrahedral elements T . Each vertex vi = (xi,yi, ti) is
a point in the 3-D spacetime, with two spatial coordinates (xi,yi)

and a time value ti. A given tetrahedron is a quadruple of indices
τ = (i, j,k, l) referencing the vertices that are its corners. We do
not assume that the spacetime mesh is a simplicial complex. Our
only assumption is that each tetrahedron is non-degenerate (i.e., its
volume in spacetime is non-zero).

To render the state of the simulation at some time ti, we must
find the intersection of the spacetime mesh with the plane t = ti.
In particular, we want to find the set of all spacetime elements that
intersect this plane. Once we have found this set of tetrahedra, we
cut each one with the plane. This produces a set of polygons (ei-
ther triangles or quadrilaterals) that all exist at a common instant in
time. Because these polygons are produced by slicing tetrahedra,
they vary considerably in size. Indeed, as the time plane moves
forward in time, the mesh edges move as the plane cuts the tetrahe-
dra at different points. This results in significant temporal aliasing
artifacts when using per-vertex rendering.

Because a single dataset covers the entire spacetime extent of
a simulation, the meshes that we work with can grow quite large.
For example, the spacetime mesh shown in Figure 2 has roughly 11
million tetrahedral elements. It is therefore necessary to organize
the data so that it can be accessed efficiently. Fortunately, our access
pattern makes this quite straightforward.

To create an animation of the time-varying solution, we begin
with a time-slice at time t = 0. After rendering each frame, we
advance the time plane into the future by some small increment
∆t. For each tetrahedron, we can easily compute its minimum time
value—the time t of its lowest vertex. We then sort the tetrahedra
based on this minimal time value. This makes it particularly easy
to index the entire spacetime efficiently.

4.2 Displaying Scalar Fields

Once we have constructed a time-slice mesh, we need to render
the appropriate scalar fields at that point in time. As mentioned
previously, we consider the case where the user wishes to draw two
independent scalar fields, one which we map to height and the other
which we map to color. In general, these scalar fields might be any
aribitrary functions.

For the particular examples given in this paper, the underlying
solution is a displacement field represented in each element by a
cubic polynomial. The two scalar fields of interest to us are: (1)
velocity magnitude, which we map to height, and (2) strain energy
density, which we map to color using a log scale. Both are derived
analytically from the underlying displacement field. We represent

427

our polynomials using a complete cubic basis, requiring 20 coeffi-
cients per element. The finite element solver computes its solution
polynomials for each element in a local coordinate system, requir-
ing that we store an additional 6 transformation coefficients per el-
ement.

Our system is designed to move all scalar computation onto the
GPU. The task of the host processor is to manage the overall space-
time dataset and to construct time-slices. What is sent to the graph-
ics hardware is a planar mesh with per-polygon polynomials. The
work in the GPU is shared between a vertex and a fragment pro-
gram, which compute the height and color fields, respectively.

4.2.1 Elastodynamics Simulation

The examples we present are all elastodynamic problems for which
the finite element solver is computing a spacetime displacement
field. The solution assigns a 2-D displacement vector u to every
point (x,y, t) in spacetime. Within each spacetime element, the dis-
placement field is represented with a complete cubic polynomial
basis that contains the 20 cubic monomial functions:

u(x,y, t) =
20

∑
α=1

cα mα (x,y, t)

Here the 2-D coefficient vectors cα are the finite element solution
data and mα ranges over the cubic monomials. For the convenience
of the solver, these solutions are represented in a spacetime coordi-
nate system local to the current element. Given a spacetime point p̂
described in the global coordinate system, the transformation to the
local coordinate system of an element is given by

p =

1/wx 0 0
0 1/wy 0
0 0 1/wt

(p̂− ĉ)

where ĉ is the center of the element (in the global coordinate frame)
and wx,wy,wt are the extents of the element along the x,y, t axes.

The spacetime velocity field v is the time derivative of the dis-
placement field

v(x,y, t) =
20

∑
α=1

cα ṁα (x,y, t)

Note that only 10 of the functions ṁα are non-zero, and thus only
10 of the coefficient vectors cα are relevant to this computation.

The strain energy density U is the spacetime scalar field given
by

U(x,y, t) =
1
2

ε(x,y, t) : C(x,y)ε(x,y, t)

in which ε = 1
2 (∇u+∇uT) is the strain tensor and C is the fourth-

order elasticity tensor that maps the strain tensor into the stress ten-
sor. In our system, this is mapped to the color field on a log scale.

4.2.2 Vertex Program: Height Field Evaluation

The time-slice mesh constructed by the application is planar;
each vertex simply encodes its position in the 2-D spatial domain
(x,y,0). The task of the vertex program is to compute the magni-
tude of the velocity field z = ‖v(x,y, t)‖ at the given corner of the
current polygon.

To evaluate the velocity magnitude, the vertex program requires
a total of 26 scalar parameters: 6 coefficients for the global-to-local
transformation and 2 scalars for each of the 10 relevant solution
coefficients cα . As these parameters vary on a per-polygon basis,
they are passed to the vertex program via texture registers. The

current time t is a global constant that only changes on a per-frame
basis.

Note that, by evaluating the height only at the vertices of the
mesh, we are constructing a piecewise-linear approximation of the
true height field. For a piecewise-cubic displacement field, the true
velocity magnitude field would be piecewise-quadratic. In princi-
ple, we could compute per-pixel heights using a root finding pro-
cedure in the pixel shader. This would be similar in spirit to GPU-
based ray tracing [20, 5]. However, full per-pixel height evaluation
yields a very small increment in quality versus simpler methods,
and further stresses the already busy pixel shaders. Therefore, we
have decided against this approach.

Rather than evaluating height on a per-pixel basis, we simply
perform polygonal subdivision on the host processor. Any polygon
which is deemed too large is quadrisected. This can be performed
recursively if necessary. Highest fidelity results are achieved by
quadrisecting based on the projected screen size of the portion of
the height field represented by the polygon in question. However,
except in extreme circumstances, we have found simple fixed sub-
division based on an area threshold to be preferable. It avoids
the substantial increase in CPU load required by the screen-space
size estimates. Fixed subdivision patterns are also more amenable
to hardware acceleration, using features such as render-to-vertex-
array. Figure 4 illustrates the effect of subdivision.

Having finished its computation of the velocity magnitude, the
vertex program performs two tasks. First, it displaces the cur-
rent vertex to its proper position: (x,y,0) → (x,y,z), where z =
‖v(x,y, t)‖. Second, it uses texture registers to pass its 26 param-
eters plus the position (x,y,z) to the fragment program. For most
current GPU architectures, 8 texture registers are available for data
transfer to the fragment program. We use 1 register for transferring
geometry, leaving 7 for parameter transfer. Notice that this allows
us to transfer 28, rather than just 26, parameters to the fragment
program. We take advantage of this otherwise unused bandwidth
by passing an extra 2 coeffcients through the vertex program that it
would not otherwise require; this data is then passed through to the
fragment program.

4.2.3 Fragment Program: Color & Lighting

The task of the fragment program is twofold: to compute a color
field and to compute pixel-exact lighting of the height field. The
color field is computed by evaluating the strain energy density U at
each pixel. Similarly, we light the surface by evaluating the normal
of the height field at each pixel, and then use a standard Phong
illumination model.

The color ramp used in generating the color field is simply a 1-D
texture. This is provided by the user. The pixel shader converts the
strain energy density U into a texture coordinate s using a log scale
mapping:

s =
log(U +1)

log(Umax +1)

The texture coordinate s is clamped to the range [0,1] and used to
lookup a color value in the ramp texture. The value Umax can either
be computed as the maximum over the field or can be provided by
the user (to exercise greater control over the color distribution).

The pixel shader requires 46 coefficients: 20 each for the x and
y spatial derivatives of the displacement field and 6 for the local
transformation. Of these 46, 28 are known or used by the vertex
program and are passed by it to the pixel shader. The remaining
18 coefficients are passed to the pixel shader by the CPU in a tex-
ture rectangle. We use the NVIDIA GL_TEXTURE_RECTANGLE_NV
extension to create these textures because of two important char-
acteristics. First, it allows texel coefficients to be arbitrary floating
point scalars, rather than limiting them to the range [0,1]. This is
essential as it allows us to preserve the precision of the solution

428

(a) Raw polygons (b) With edge overdraw

(c) And subdivision as well

Figure 4: Drawing time-sliced polygons alone leads to noticeable
cracks. Using edge overdraw plus polygon quadrisection eliminates
these problems.

data. Second, it provides for exact texel addressing and does not
perform any interpolation of neighboring texels, which would ob-
viously produce totally spurious results in our setting.

For each frame, we must build a texture rectangle containing the
relevant coefficient data. Each element is allocated a horizontal
span of 6 texels, whose rgb values are used to store the required
18 coefficients. These 6-texel spans are packed into a texture rect-
angle such that they are never broken across rows. The maximum
defined resolution of a texture rectangle is 4096×4096, thus we can
pack b4096/18c = 227 elements per row. Each texture rectangle
can thus accommodate the data for a total of 4096×227 = 929,792
elements. Extremely large datasets might therefore require more
than one texture per frame. However, as typical datasets currently
have on the order of 50,000 elements per frame, this upper limit is
not at all constricting. The CPU packs element coefficients into the
texture rectangle in the order in which the polygons will be drawn,
thus the fragment shaders will access the texture in (approximately)
scanline order.

To light the surface, we use a standard Phong illumination model.
The diffuse and specular reflectances are simply scalar multiples
of the color computed above. The pixel shader already has access
to the coefficients necessary to compute the spatial derivatives of
the height field function, and thus its normal. One slight problem
arises when the velocity magnitude is 0—the spatial derivatives of
the height field will be undefined. However, it is clear that geomet-
rically the height field is flat, and that its normal is simply (0,0,1).
It is also important to note that we do not need to perform any inter-
polation of normals over the polygon. At each pixel, we compute
an exact normal vector directly from the underlying height field
polynomial.

4.3 Discontinuity Antialiasing

Recall that the solutions we are drawing are represented indepen-
dently within each element. These solutions are not required to
be fully continuous across element boundaries. Therefore, even for

solutions with very tight convergence bounds, we can wind up com-
puting subtly different scalar values along shared edges. Unless the
solution has a fairly large error, this is generally not easily noticed in
the color field. However, it can lead to very obvious artifacts in the
height field. Specifically, even small height discrepancies can lead
to aliasing during polygon rasterization that causes small cracks to
appear in the height field (see Figure 4).

Our solution to this problem is to overdraw all edges shared be-
tween polygons. While this obviously increases the per-frame ren-
dering time, it removes what would otherwise be very distracting
aliasing artifacts. This edge overdraw approach is similar to the
antialiasing approach adopted by Sander et al. [21]. However, our
problem is somewhat easier. They need to blend lines smoothly
with the underlying polygons to antialias discontinuity edges (e.g.,
silhouettes). We do not require blending, as we are only trying to
fill gaps rather than blend discontinuities.

5 RESULTS

In this section, we demonstrate some visualization results from our
system on selected elastodynamic problems. All rendering was per-
formed on a standard PC with a 2.4 GHz Pentium 4 processor, 1 GB
of RAM, and an NVIDIA GeForce FX 5800 Ultra graphics card.
On this hardware configuration, our renderer generally achieves in-
teractive rates of roughly 10 frames per second on spacetimes in the
range of 3–5 million tetrahedra.

Our first example—as seen in Figures 4, 5, and 6—models crack-
tip wave scattering within an elastic solid subjected to shock load-
ing. For the view shown in Figure 6, the crack covers the left half
of the bottom boundary, with the crack tip in the center of the bot-
tom edge. These solutions actually cover only the upper right-hand
quadrant of the complete domain.

(a) Per-vertex color (b) Per-pixel color

Figure 5: Per-pixel color computation is clearly much more faithful
to the underlying solution than per-vertex color computation.

In Figure 5 we see a comparison over a small portion of the solu-
tion between (a) per-vertex and (b) per-pixel computation. In both
cases, we are using per-vertex height computations without subdi-
vision. For the per-vertex color case, we compute colors only at the
vertices and linearly interpolate them over the triangle. As with the
much simpler example shown in Figure 3, we see that the per-pixel
rendering provides a far better view of the actual solution being
computed. Note in particular the substantial color distortion on the
lower-left spike in the per-vertex rendering.

Figure 6 shows a sequence of constant time snapshots of the so-
lution to the crack-tip scattering problem. The total spacetime mesh
contains approximately 25 million tetrahedra, and there are roughly
20,000 polygons per time-slice. The initial wave enters the domain
from the top, reflects off the crack-tip at the bottom, and then con-
tinues to reflect back and forth across the domain. Both the wave

429

Figure 6: Time sequence showing a shock wave approaching a crack, which lies along the lower edge of the quadrant shown. The shock scatters
off the crack tip located in the middle of the quadrant.

fronts and color field are very well-resolved by the per-pixel ren-
dering. It is important to remember that essentially all shading ar-
tifacts in this picture are a result of the structure of the solution.
This is another important practical benefit gained from pixel-exact
rendering. With inexact per-vertex color computations, it would be
unclear whether visual artifacts were a result of the rendering or the
solution. Here, we know that we are faithfully rendering the solu-
tion. Therefore, artifacts such as shading discontinuities are indica-
tive of actual normal discontinuities in the field being computed.
This makes our per-pixel rendering approach much more useful as
a diagnostic tool, for assessing the quality of the computed solution,
than a per-vertex rendering system would be.

In Figure 7 we examine wave scattering in a representative vol-
ume element for a fiber-reinforced composite material with stiff
fibers embedded in a more flexible matrix. The fiber sections ap-
pear as circular inclusions in the model. As the shock wave passes
through the medium, the inclusions begin to debond from the sur-
rounding material. The spacetime consists of roughly 6.3 million
tetrahedra. As before, our rendering system is able to resolve the
complex wave and stress patterns quite well.

Figure 8 demonstrates the impact of our pixel-exact rendering in
this example. The per-vertex rendering has many more color dis-
continuities than the per-pixel rendering. More importantly, we can
see that the overall structure of the stress field appears substantially
different. Specifically, compare the red-to-yellow transition regions
around the central inclusion and the stress fields along the upper
boundary. The stress patterns differ markedly in the per-vertex and
per-pixel renderings.

Figure 9 shows our final example solution. Here we are seeing a
single sector of a 2-D cross section of a solid rocket booster. Shock
waves are propagating through the solid rocket fuel from the left,
which points towards the center of the rocket where combustion
has begun. This simulation produces a fairly complex wave pat-
tern in the height field and an equally complex strain energy den-
sity field that is mapped to color. This complexity is quite nicely
resolved—and at interactive rates—by our per-pixel rendering sys-
tem. This data set contains a total of 4.7 million tetrahedra, with
roughly 30,000 polygons per time-slice.

6 CONCLUSION

In this paper, we have outlined an approach for pixel-exact ren-
dering of spacetime finite element solutions. The system we have
described uses modern programmable GPU features to offload a

sizeable portion of the visualization task onto the graphics hard-
ware. This frees the CPU to devote all its resources to data manage-
ment and user interaction. We have shown that computing lighting
and color fields from higher-order polynomials is both possible and
produces far greater visual fidelity than per-vertex rendering. We
have also explored a fairly new application domain for visualiza-
tion: spacetime discontinuous Galerkin finite element methods.

We believe that this work can be extended in a number of promis-
ing directions. One important area for future work is to address the
problem of extremely large spacetimes. At the moment, our sys-
tem assumes that the entire spacetime can be kept in main memory,
whether through direct I/O or through memory mapping. However,
long running simulations may produce far more data than can fit
in a 32-bit virtual memory space. Out-of-core data management
techniques will clearly become necessary. Taking advantage of
near-term hardware advances, particularly the ability to render into
vertex arrays, should make achieving highly accurate height fields
much easier. It would also be very interesting to explore alternative
spacetime rendering modalities. We have restricted our attention
to time-slicing. Various direct pixel-exact renderings of spacetime
might also provide useful information.

7 ACKNOWLEDGEMENTS

This research was funded in part by the National Science Foun-
dation under an ITR grant DMR-0121695. We thank the numer-
ous people involved in the CPSD spacetime discontinuous Galerkin
project for producing the simulation results visualized here. We
would like to specifically thank Shuo-Heng Chung for the 3-D
spacetime image (Fig. 2), Reza Abedi and Morgan Hawker for pro-
viding us with their simulation data, and Christopher Wojtan for his
work on the 2-D spacetime rendering (Fig. 3).

REFERENCES

[1] Reza Abedi, Shuo-Heng Chung, Jeff Erickson, Yong Fan, Michael
Garland, Damrong Guoy, Robert Haber, John M. Sullivan, Shripad
Thite, and Yuan Zhou. Spacetime meshing with adaptive refinement
and coarsening. In Proc. 20th Annual ACM Symposium on Computa-
tional Geometry, pages 300–309, June 2004.

[2] C. Bajaj, V. Pascucci, G. Rabbiolo, and D. Schikore. Hypervolume
visualization: A challenge in simplicity. In 1998 Volume Visualization
Symposium, pages 95–102, October 1998.

430

Figure 7: Shock passing through a medium with circular inclusions. The shock causes the inclusions to debond from the surrounding medium.

(a) Per-vertex color

(b) Per-pixel color

Figure 8: Per-pixel vs. per-vertex comparison for the last time step
shown in Figure 7.

[3] David C. Banks and Stephen Linton. Counting cases in Marching
Cubes: Toward a generic algorithm for producing substitopes. In Pro-
ceedings of IEEE Visualization 2003, pages 51–58, October 2003.

[4] P. Bhaniramka, R. Wenger, and Roger Crawfis. Isosurfacing in higher
dimensions. In IEEE Visualization 2000, pages 267–273, October
2000.

[5] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In
Graphics Hardware 2002, pages 37–46, September 2002.

[6] B. Cockburn and P. A. Gremaud. Error estimates for finite element
methods for hyperbolic conservation laws. SIAM J. Num. Anal.,
33:522–554, 1996.

[7] Jeff Erickson, Damrong Guoy, John M. Sullivan, and Alper Üngör.
Building space-time meshes over arbitrary spatial domains. In Proc.
11th Int. Meshing Roundtable, pages 391–402, 2002.

[8] Stefan Guthe, Stefan Röttger, Andreas Schieber, Wolfgang Straßer,
and Thomas Ertl. High-quality unstructured volume rendering on the
pc platform. In Graphics Hardware 2002, pages 119–126, September
2002.

[9] Markus Hadwiger, Christoph Berger, and Helwig Hauser. High-
quality two-level volume rendering of segmented data sets on con-
sumer graphics hardware. In Proceedings of IEEE Visualization 2003,
pages 301–308, October 2003.

[10] Bill Hibbard and Dave Santek. The VIS-5D system for easy interac-
tive visualization. In Proceedings of the IEEE Conference on Visual-
ization, pages 28–35, October 1990.

[11] J. Krüger and R. Westermann. Acceleration techniques for gpu-base
volume rendering. In Proceedings of IEEE Visualization 2003, pages
287–292, October 2003.

[12] William E. Lorenson and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. Computer Graphics
(Proceedings of SIGGRAPH 87), 21(4):163–169, July 1987.

[13] Frank Losasso, Hugues Hoppe, Scott Schaefer, and Joe Warren.
Smooth geometry images. In Proceedings of the Eurographics Sym-
posium on Geometry Processing, pages 138–145, 2003.

[14] R. B. Lowrie, P. L. Roe, and B. van Leer. Space-time methods for
hyperbolic conservation laws. In Barriers and Challenges in Compu-
tational Fluid Dynamics, volume 6 of ICASE/LaRC Interdisciplinary
Series in Science and Engineering, pages 79–98. Kluwer, 1998.

[15] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kil-
gard. Cg: A system for programming graphics hardware in a C-like
language. ACM Transactions on Graphics, 22(3):896–907, July 2003.
Proceedings of SIGGRAPH 2003.

[16] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader
metaprogramming. In Graphics Hardware 2002, pages 57–68,
September 2002.

[17] Neophytos Neophytou and Klaus Mueller. Space-time points: 4D
splatting on efficient grids. In Proceedings of Symposium on Volume
Visualization, pages 97–106. ACM SIGGRAPH, 2002.

[18] Jayandran Palaniappan, Robert B. Haber, and Robert L. Jerrard.
A spacetime discontinuous Galerkin method for scalar conservation
laws. Comp. Methods Appl. Mechs. Engng., 2004. in press.

[19] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Han-
rahan. A real-time procedural shading system for programmable

431

Figure 9: Time sequence of shock wave propagation in a solid rocket
booster. Note the complexity of both the wave and color patterns.

graphics hardware. In Proceedings of ACM SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, pages 159–
170, August 2001.

[20] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. ACM Transactions
on Graphics, 21(3):703–712, July 2002.

[21] Pedro V. Sander, Hugues Hoppe, John Snyder, and Steven J. Gortler.
Discontinuity edge overdraw. In 2001 ACM Symposium on Interactive
3D Graphics, pages 167–174, March 2001.

[22] Han-Wei Shen and Christopher R. Johnson. Sweeping simplices: A
fast iso-surface extraction algorithm for unstructured grids. In Pro-
ceedings of IEEE Visualization 1995, pages 143–150, October 1995.

[23] L. L. Thompson. Design and Analysis of Space-Time and Galerkin
Least-Squares Finite Element Methods for Fluid-Structure Interaction
in Exterior Domains. PhD thesis, Stanford University, 1994.

[24] M. Tory, N. Röber, T. Möller, A. Center, and M. S. Atkins. 4D space-
time techniques: A medical imaging case study. In Proceedings of
IEEE Visualization 2001, pages 473–476, October 2001.

[25] Alper Üngör and Alla Sheffer. Pitching tents in space-time: Mesh
generation for discontinuous Galerkin method. Int. J. Foundations of
Computer Science, 13(2):201–221, 2002.

[26] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell. Curved
pn triangles. In 2001 ACM Symposium on Interactive 3D Graphics,
pages 159–166, March 2001.

[27] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl.
Hardware-based ray casting for tetrahedral meshes. In Proceedings
of IEEE Visualization 2003, pages 333–340, October 2003.

[28] Lee Westover. Footprint evaluation for volume rendering. Computer
Graphics (Proceedings of SIGGRAPH 90), 24(4):367–376, August
1990.

[29] Jonathan Woodring, Chaoli Wang, and Han-Wei Shen. High dimen-
sional direct rendering of time-varying volumetric data. In Proceed-
ings of IEEE Visualization 2003, pages 417–424, October 2003.

[30] L. Yin, A. Acharya, N. Sobh, R.B. Haber, and D. A. Tortorelli. A
space-time discontinuous Galerkin method for elastodynamic analy-
sis. In B. Cockburn, G. Karniadakis, and C. Shu, editors, Lecture
Notes in Computational Science and Engineering, volume 11, pages
459–464. Springer, 2000.

[31] Lin Yin. A Spacetime Discontinuous Galerkin Finite-Element Method
for Elastodynamic Analysis. Ph. D. thesis, Department of Theoretical
& Applied Mechanics, University of Illinois, Urbana, IL, 2002.

432

