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ABSTRACT

Visualization of 3D tensor fields continues to be a major challenge
in terms of providing intuitive and uncluttered images that allow
the users to better understand their data. The primary focus of this
paper is on finding a formulation that lends itself to a stable nu-
merical algorithm for extracting stable and persistent topological
features from 2nd order real symmetric 3D tensors. While features
in 2D tensors can be identified as either wedge or trisector points,
in 3D, the corresponding stable features are lines, not just points.
These topological feature lines provide a compact representation of
the 3D tensor field and are essential in helping scientists and engi-
neers understand their complex nature. Existing techniques work
by finding degenerate points and are not numerically stable, and
worse, produce both false positive and false negative feature points.
This paper seeks to address this problem with a robust algorithm
that can extract these features in a numerically stable, accurate, and
complete manner.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;

Keywords: hyperstreamlines, real symmetric tensors, degenerate
tensors, tensor topology, topological lines

1 INTRODUCTION

The main motivation and goal of this paper is to develop a sim-
ple yet powerful representation of 3D real symmetric tensor fields.
Topology-based methods prove to yield simplified yet effective rep-
resentation in many visualization fields. The topological structures
are simple for users to understand the underlying data fields yet sen-
sitive enough to capture important features. In most cases, trained
users can even reconstruct the data fields by looking at the topo-
logical structures. Early work on using topology-based method to
visualize tensor fields by [5, 7] lays an important background for
this research project. It defines the tensor topology based on degen-
erate features and discusses its nature in 2D cases in great details,
and provides useful knowledge in 3D cases. But we find this early
work insufficient in studying 3D tensor topology. Not only is the
dimension of the features unknown, but how to numerically extract
the topological structures is also obscure. In their previous work,
Hesselink mentioned that the dimension of the degenerate features
can be points, lines, surfaces or subvolumes. This claim itself is
essentially true, but it does not point out the dimension of features
in 3D topology in general, i.e., in a typical non-degenerate data.
By analogy, although the critical features in 3D vector fields can be
lines, surfaces or even subvolumes, we know they are mostly points
in typical non-degenerate data. This knowledge is the foundation
of the study of topological structure in vector visualization. All the
subsequent study on separatrices and other topological features are

based on the extraction of the critical points. On the other hand,
no topological results on 3D real symmetric tensor fields been pub-
lished to date indicating that topological tensor features form lines.

During our research on 3D tensor topology, we confirmed that
the topological structures in 3D real symmetric tensor fields form
feature lines. This can be verified by an early theorem pointed out
by Wigner and von Neumann that the real symmetric degenerate
matrices form a variety of codimension two [14]. This discovery
is important in that it tells us that future studies on topology-based
method for 3D non-degenerate real symmetric tensor fields should
be based on feature lines. We can capture important features, study
the underlying tensor fields and even reconstruct the data fields by
looking at these extracted topological structural lines with their sep-
aratrix surfaces.

Traditionally, the degenerate features in 3D tensor fields are de-
fined as tensors whose cubic discriminant is equal to zero. Finding
roots of discriminants in a stable manner proves to be a challeng-
ing task because of their high-orderedness and singularity. In this
paper, we find an alternative formulation that decomposes the cu-
bic discriminant into the sum of the squares of seven cubic poly-
nomials referred to as discriminant constraint functions. Through
this decomposition, the tensors whose discriminant equals zero are
equivalent to the tensor whose individual tensor constraint func-
tions all equal zero at the same time. This formulation eliminates
the high-orderedness and singularity problems encountered in exist-
ing practice, and thus makes developing stable numerical algorithm
to extract degenerate feature lines possible.

2 TENSOR ANALYSIS

Tensor fields, especially second-order tensor fields, are useful
in many medical, mechanical and physical applications such as:
fluid dynamics, meteorology, molecular dynamics, biology, astro-
physics, mechanics, material science and earth science. Effective
tensor visualization methods can enhance research in a wide va-
riety of fields. However, developing an effective algorithm can be
difficult because of the large amount of information contained in 3D
tensor fields: there are nine independent components in each tensor
and six for a symmetric tensor. Users in many research fields are es-
pecially interested in real symmetric tensors. In some applications,
the data themselves are inherently symmetric. In other cases, sym-
metric tensor data can be obtained through various decomposition
techniques.

2.1 Degenerate Tensors and Discriminants

Each real symmetric tensor can be decomposed into three orthogo-
nal eigenvectors, each of which has an eigenvalue associated with
it. They are labeled as major, medium and minor eigenvectors ac-
cording to the relative magnitudes of their eigenvalues. In non-
degenerate cases, these eigenvectors do not cross each other. The
degenerate features are then defined as those where the eigenvectors
could cross each other. Hesselink et al. show that the only degen-
erate features are those having at least two equal eigenvalues [7].
Fortunately, we do not need to conduct the eigen decomposition to
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find the degenerate points. A tensor has two (or three) equal eigen-
values if and only if its discriminant equals zero. The discriminant
D3 of a tensor T with eigenvalues λ1, λ2 and λ3 is defined as,

T =





T00 T01 T02

T01 T11 T12

T02 T12 T22



 (1)

D3(T ) = (λ1 − λ2)
2(λ2 − λ3)

2(λ3 − λ1)
2

(2)

This can be reformulated into a form that does not require eigen
decomposition to explicitly determine eigenvalues as follows:

P = T00 + T11 + T22 (3)
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D3(T ) = Q
2
P

2
− 4RP

3
− 4Q

3 + 18PQR − 27R
2

(6)

From Equation 2, we can easily find that a discriminant is (a) al-
ways non-negative; (b) equal to zero if and only if at least two of the
eigenvalues are equal. And it is always perfect for computation and
numerical purposes because although it is defined on eigenvalues,
we do not really need to carry out an expensive eigen decompo-
sition. Instead, we only need to compute Equation 6 which is a
polynomial of order six to get the discriminant.

The justification to define tensors with two or more equal eigen-
values as the degenerate features is simple. In a vector field, the
streamline integration is ambiguous at a point with zero velocity. In
a tensor field, the hyperstreamline integration is also ambiguous at
a point with two equal eigenvalues, because any linear combination
of the two eigenvectors is another eigenvector. Since the degen-
erate tensors are the only places where hyperstreamlines can cross
each other, they play an important role in 3D tensor field topolog-
ical analysis, which divides the space into smaller subspaces such
that local hyperstreamlines exhibit similar patterns. In general, the
degenerate tensors can be interpreted in a similar fashion as the crit-
ical points in vector field visualization.

2.2 Dimensional Analysis

A feature set F is a subset of space S with degree of freedom s and
is defined on a domain with dimension D. A point P belongs to F if
and only if a set of constraints C are satisfied i.e., C(P ) = 0, where
there are c independent equations in C. And if when C(P ) = 0,
R degrees of freedom in P become indistinguishable, where we
define that there are R degrees of redundancy in the constraints C.
Then in a non-degenerate case, the dimension of the feature F on
domain with dimension D is H and is defined as:

H = D − C − R (7)

If we already know that the feature set F forms a space with a
dimension of G, then the dimension is:

H = D + G − S (8)

That a type of feature is of dimension H ≥ 0 means it stays
mostly stable in a form of dimension H for non-degenerate data
sets. Although they can also be in forms of other dimensions, such
as in cases of unstable features, their existence can be disturbed
by small errors introduced by computational or even interpolation
methods. Therefore, we define a feature to be stable only if the ex-
istence of the feature is not affected by the presence of a small noise
– even if the introduction of noise alters the location and properties
of the feature. For example, if the intersection point of two lines
on a plane is defined as a feature, then the intersection point of two
straight lines is simply stable. For the case where the two straight
lines lie right on top of each other, the feature turns into a line.
However, this case is not stable because although all the points on
these overlapping lines are feature points, a small disturbance in the
positions or orientations of these two lines will reduce the feature
line back to a single feature point. We use this type of dimensional
analysis to get our first idea of the dimension of stable features in
degenerate and non-degenerate 3D tensors.

3 PREVIOUS WORK

Early tensor visualization techniques relied on the tensor ellipsoid
which deformed a spherical glyph according to the eigenvalues of
the tensors. Variations of the basic tensor ellipsoid include draw-
ing eigenvalue scaled axes for the eigenvectors, Haber’s disk and
rod glyphs [6], flow probe [3], Laidlaw et al. glyphs using brush
strokes [12, 11]. More recently, Gordon Kindlmann proposed new
glyphs that uses superquadric tensor glyphs to visualize tensors as
a combination of spherical, planar and linear tensors [9]. With few
exceptions, particularly for the case of 3D tensor fields, glyphs are
used in a sparing manner because of the clutter and occlusion they
produce. Hence, they provide a discrete, rather than a continuous
view of the tensor field. To address this problem, tensor splats were
introduced by [1] to provide a global continuous view of the tensor
field. Using a barycentric mapping of linear, planar, and spherical
tensors, different parts of the tensor volume can be highlighted.

A hyperstreamline is basically a streamline defined over an
eigenvector field [4]. Typically, the major eigenvector field is used
for integrating the hyperstreamline, while the two other eigenvector
fields provide local information along the length of the major hy-
perstreamline and are mapped to its cross section. One of the weak-
ness of hyperstreamlines is ambiguity in places where the tensors
are isotropic or even planar, i.e. the eigenvalues are nearly equal.
In these areas, a sudden change in direction of the hyperstreamline
may arise. To address this problem, tensorlines were introduced by
[18]. Ambiguities are resolved by taking the anisotropy of the lo-
cal tensor into account as well as information about orientation of
nearby features. This allows the tensorlines to proceed in a rela-
tively smooth path, even in the face of isotropic regions or noise in
the data set.

Topology-based tensor visualization techniques represent the
tensor fields in a simple yet powerful way. The critical features
are extracted as a simplified version of the underlying data field.
Experienced users can understand and even reconstruct the tensor
data by looking at their properties and patterns. The critical feature
is defined as degenerate tensors where the eigenvalues are identical,
and are the only places that the two associated hyperstreamlines can
intersect themselves. In 2D tensor fields, there is only one way to
obtain a degenerate point: the two eigenvalues must be equal. Hes-
selink and Delmarcelle used this concept in 2D and discussed the
nature of the degenerate points (wedges and trisectors) in great de-
tail. However, it is less successful in 3D, in part because there are
two types of degenerate points in 3D: double and triple degenerate
points, where two of the three eigenvalues are equal, and all three
eigenvalues are identical, respectively. This early work does not
fully explore the properties of the double degenerate features and
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instead focuses on the triple degenerate tensors, whose properties
are closer to their counterparts in 2D. In [7], they hint that the triple
degenerate points (for the double point load data) are connected by
a locus of double degenerate points. The paper fails to point out
that the dimension of the stable double degenerate features are in
fact lines in most of the typical non-degenerate tensor fields. And
hence, it did not talk about finding a stable numerical method to
extract these feature lines in 3D.

Although triple degenerate features are useful, they are ex-
tremely rare and unstable. Using the dimensional analysis tech-
nique, we know the dimensions of triple degenerate features in 3D
is of dimension H = D +G−S = 3+1−6 = −2. G = 1 is due
to the fact that the triple degenerate tensors are only an identity ten-
sor times a constant, so that they have only one degree of freedom.
S = 6 is because a real symmetric tensor has six independent com-
ponents, hence it has six degrees of freedoms. A dimensionality
that is less than zero means the feature is unstable. In other words,
not only is it extremely rare in real data, but its very existence will
also be easily dissolved by small errors introduced by numerical
and interpolation methods. This property dramatically limits the
usefulness of triple degenerate tensors in practical contexts. Even
in time-varying data, which has a dimension of four, the dimensions
of the feature of H = 4 + 1 − 6 = −1, is still unstable. Actually,
in our experiments with many real time-varying stress datasets, we
have not found any triple degenerate points. The only data set that
contains triple degenerate points is from a synthetic data set known
as the Boussinesq double point load stress tensor.

In complex 2D tensor fields, the extracted topology may also
be very complex. [17] proposed algorithms to simplify 2D tensor
topology as well as track them in time-varying 2D tensor fields [16].

Anisotropy in tensor fields are important features in some fields
such as diffusion tensor MRI. In 3D, tensors are classified as be-
ing linear or anisotropic where there is a predominant eigenvalue
and two other smaller eigenvalues, planar where there are two
roughly equal eigenvalues and one smaller one, and spherical or
isotropic where there are three roughly identical eigenvalues. [10]
uses barycentric coordinates to map these properties to color and
opacity in volume rendering tensor fields. An alternative approach,
called HyperLIC, was proposed by [20] to highlight anisotropy us-
ing textures. Linear tensors are represented by highly correlated,
high contrast textures, while isotropic tensors end up as blurry tex-
tures with no preferred orientation.

Using the physical analogy of bending steel beams under load,
[2] used deformation to visualize the effects of tensor fields. Ide-
alized objects such as lines, surfaces and subvolumes are deformed
under tensor transformations. This was further improved by [19]
to provide a globally consistent deformation based on a collection
of local deformations. Calculations were carried using a system of
springs.

Extending the idea of deformation to optics, [21] added three
alternative ways of visualizing tensors: (a) First, light rays were
traced through a tensor volume and bent according to the local ten-
sor properties that they encounter. The bent rays show divergent or
convergent regions in the tensor field. (b) Second, the exit points
of the rays are collected, as in caustic ray tracing. Different wave-
lengths are simulated and color separation on the resulting caus-
tic image provides a dense visualization of divergence and conver-
gence from a given viewpoint. (c) Third, the tensor field is treated
as a lens that distorts an image. Studying the distortion of a known
image, e.g. checkerboard pattern, reveals compressive and tensile
regions in the tensor field.

4 METHODS

In this section, we first show that the features are indeed lines in
non-degenerate data set. Then we discuss the details of our numeri-

cal methods to extract the degenerate features in 3D real symmetric
tensor fields.

4.1 Dimensionality of Tensor Features

Before we can extract the critical features from 3D tensor fields,
we need to know what kind of features we are looking for. Algo-
rithms to locate points, lines, surfaces and volumes employ very
different strategies. As mentioned earlier, we found that for most
non-degenerate 3D tensors, the dimensionality of the critical feature
is one and hence they form feature lines. This can be shown using
dimensional analysis described earlier, or with the theorem by von
Neumann and Wigner which states that the real symmetric degener-
ate matrices form a variety of codimension two [14]. Codimension
is defined as the difference of the dimensions between a subspace
and the space where it is defined. An interpretation of this theorem
is that one of the two codimensions is introduced by the constraint
that at least two eigenvalues must be equal. The other codimension
is introduced implicitly by the fact that when two eigenvalues are
equal, the associated eigenvectors are undetermined up to one de-
gree of freedom, since any orthogonal linear combinations of the
eigenvectors yield another valid pair. For real symmetric 3D ten-
sors, we have six degrees of freedom. Hence, it also follows from
this theorem that these tensors form a variety of dimension four.
An approach to parameterize the 3D degenerate tensors using four
parameters is introduced in [22].

For a tensor field with a spatial dimension of D = 3, the con-
straint that two eigenvalues are equal is a constraint with a dimen-
sion of C = 1. In the meantime, the eigenvectors have R = 1
degree of redundancy as shown above. Thus the dimension of the
features is: H = D − C − R = 3 − 1 − 1 = 1. That means, for a
non-degenerate tensor field, the degenerate features are lines. Using
the theorem by von Neumann and Wigner, we see that dimension
D = 3 and codimension is 2, so the features in the data form a sub-
space of dimension 3 − 2 = 1, i.e. lines. While the main features
are lines, it is still possible to have features that are points, surfaces
or subvolumes, but those types of features would be considered un-
stable and do not persist. Those types of unstable features are also
less common in most 3D tensor fields. As such, we focus our ten-
sor feature extraction to extract feature lines rather than surfaces or
subvolumes. We still need to extract points as these form the basis
for the feature lines. Because of this design criterion, features that
are surfaces (e.g. in the single point load data) or subvolumes may
not be detected as readily as feature lines. This limitation is not
insurmountable, but is rather based on the effective use of limited
resources in finding features that are not as common nor stable.

4.2 Constraint Functions

To find the critical degenerate tensors, we need to locate those ten-
sors whose discriminants are zero. Although Equation 6 provides
an elegant representation for evaluating the discriminant without
having to perform eigen decomposition, it is not very suitable for
finding roots. In Equation 6, the discriminant of a real symmetric
tensor is a polynomial of order six. Since it is always non-negative,
the degenerate tensor also happens to be its minimum. A good
method widely used to find the root of an equation is to detect the
change of signs and then to recursively bisect the domain of inter-
est. But because the degenerate feature is itself a minimum, there
is no change of sign at all. Relying on the gradients is also dan-
gerous, because the gradients are notoriously unstable unless they
are very close to the feature. Due to this high-orderedness and sin-
gularity, directly finding the root of a cubic discriminant stably is
very difficult. Instead, we look for another representation of the
discriminant.

In our investigation so far, we found that while [8] pointed out
that not all non-negative polynomials can be broken down into the
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sum of squares of polynomials, the cubic discriminant can be writ-
ten as the sum of the squares of seven polynomials. We also learned
that not only can the discriminant of a second-order tensor of any
dimension be expressed as the sum of squares [13], but our solution
to the 3D case of seven equations is optimal [15]. Therefore, the
definition of degenerate tensors can also be expressed as the tensors
where the seven discriminant constraint functions are all zero at the
same time. We use these seven cubic equations to extract the fea-
ture lines from 3D tensor fields. The seven discriminant constraints
are:

fx(T ) = T00(T
2
11 − T 2

22) + T00(T
2
01 − T 2

02) + T11(T
2
22 − T 2

00) +

T11(T
2
12 − T 2

01) + T22(T
2
00 − T 2

11) + T22(T
2
02 − T 2

12)

fy1(T ) = T12(2(T
2
12 − T 2

00) − (T 2
02 + T 2

01) + 2(T11T00 + T22T00

−T11T22)) + T01T02(2T00 − T22 − T11)

fy2(T ) = T02(2(T
2
02 − T 2

11) − (T 2
01 + T 2

12) + 2(T22T11 + T00T11

−T22T00)) + T12T01(2T11 − T00 − T22)

fy3(T ) = T01(2(T
2
01 − T 2

22) − (T 2
12 + T 2

02) + 2(T00T22 + T11T22

−T00T11)) + T02T12(2T22 − T11 − T00)

fz1(T ) = T12(T
2
02 − T 2

01) + T01T02(T11 − T22)

fz2(T ) = T02(T
2
01 − T 2

12) + T12T01(T22 − T00)

fz3(T ) = T01(T
2
12 − T 2

02) + T02T12(T00 − T11)

D3(T ) = fx(T )2 + fy1(T )2 + fy2(T )2 + fy3(T )2+
15fz1(T )2 + 15fz2(T )2 + 15fz3(T )2

(9)

A tensor is degenerate if and only if all of its seven discriminant
constraint functions are zero. This is the condition that we employ
to extract the critical features in 3D tensor fields. Its first advantage
is that the constraint functions are only cubic polynomials, instead
of a polynomial of order of six which tend to oscillate more. This
property leads to a more stable and accurate numerical algorithm.
In addition, the requirement that all seven constraint functions be
zero at the same time depends on the tensor value only and not on
the gradient calculated from adjacent tensors. Hence, the algorithm
yields a more accurate result than the algorithms that rely on finding
critical points where the gradients of the discriminants are zeros.
Its second advantage is that the constraint functions can be both
positive or negative, as opposed to always being non-negative. This
property allows us to perform a fast and inexpensive check for the
existence of features. And finally, the reformulation also does not
require eigen decomposition.

Although degenerate features require that all seven discriminant
constraint functions be zero at the same time, pseudo-features with
less than seven constraints satisfying this criterion are also very in-
teresting (See Figure 1). In our experiments, some of these pseudo-
feature points have three to five constraints as zeros. Our study
into them reveals some other interesting properties of tensor fields.
More research into these pseudo-features is also necessary to study
their significance.

4.3 Root Finding

In order to extract smooth and continuous feature lines in 3D tensor
fields, we look at each of the 6 faces of every hexahedral cell. For
each face, we extract the intersection point(s) of the feature lines.
These points are then connected to generate a continuous feature
line.

We know that the degenerate 3D tensors on a 2D slice are mostly
points. The only exception is if the feature line lies exactly on the
face. But even for that case, that feature line will intersect an adja-
cent non-coplanar face on the edge, or possibly corner vertex. To

(a) Two degenerate points (b) Three degenerate points

Figure 1: White dots are degenerate points indicating places where
all seven constraint functions are zero. Each colored curve corre-
sponds to a constraint function being equal to zero. Places where
multiple curves intersect are where multiple constraint functions are
satisfied simultaneously. The background is pseudo-colored by the
discriminant functions. The data is a 2D slice of a randomly gener-
ated 3D tensor field.

find these feature (intersection) points that satisfies all seven con-
straints simultaneously, we employ a modified version of Newton-
Raphson algorithm to solve such a over-specified system of equa-
tions.

Assume the tensor field is T (X). For the feature points X∗, we

have
−→
CF (X∗) = CFi(X

∗) = 0, for i = 1, ..., 7, where
−→
CF (X) is

an assembly of the seven constraint functions into one vector func-
tion. Using the modified Newton-Rhapson method and an initial
guess of Xn, we have the following updating formula,

Xn+1 = Xn −

(

∂
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T

·
∂
−→
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−1(
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∣

∣

∣

∣

∣

X=Xn

(10)

∂
−→
CF

∂X
=

∂
−→
CF

∂T
·

∂T

∂X
(11)

Note that we calculate the ∂
−→
CF
∂X

from the chain rule using ∂
−→
CF
∂T

and ∂T
∂X

rather than from the interpolated values of
−→
CF on the grid

using finite difference methods for higher precision. ∂
−→
CF
∂T

is calcu-

lated from the formula of the tensor constraints, and ∂T
∂X

is from the
interpolated tensor values. We used both the bilinear and bicubic
natural spline interpolations.

Using the center of each cell as the initial guess for an inter-
section point, we find that this method converges to the actual in-
tersection point within five iterations in most non-degenerate cases
with a precision up to 10−9, and it almost never misses a feature
point if it exists. Additional points are obtained by subdividing
the cell face. This modified Newton-Rhapson method on constraint
functions is superior in speed, accuracy and precision compared to
other methods developed directly based on the cubic discriminants.
For example, we also implemented a comparison algorithm based
on cubic discriminant that searched for its minimum using conju-
gate gradient methods. Not only is it about 50 times slower, using
any precision less than 10−6 will yield a false negative rate of over
50%.

4.4 Connecting Feature Points

Some cells may have more than one pair of intersection points and
hence more than one feature line. We use a multi-pass approach to
connect these intersection points. We only examine candidate cells
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that contain intersection points on at least one of their six faces.
In the first pass, all candidate cells containing exactly two inter-
section points are processed by: (a) simply connecting those two
points, (b) recording the orientation of the line segment as tangents
at the end points, and (c) marking the cell as processed. In the sub-
sequent passes, their unprocessed neighboring candidate cells are
processed by connecting a line segment between each pair of in-
tersection points in such a way as to minimize the angle deviation
between the tangent recorded at the end point and the line towards
other intersection points within the cell. Each neighboring candi-
date cell is marked as processed, and the procedure continues until
there are no more candidate cells.

In our current implementation, we use this iterative method to
generate the tangent lines on feature points and ultimately resolve
the line connections between multiple points. In the future, we
plan to calculate the tangent of the degenerate tensor line at a spe-
cific feature point analytically instead of from the post-processing
method.

4.5 Categorization of Degenerate Lines

There are two cases where hyperstreamlines cross each other in
double degenerate tensors. The first case (type P for planar) is when
the major and medium eigenvalues are identical, and the second
case (type L for linear) is when the medium and minor eigenval-
ues are identical. We define a quantity K, that measures the eigen
difference, of a tensor T with eigenvalues λ1 ≤ λ2 ≤ λ3:

K = 2λ2 − (λ1 + λ3) (12)

The eigen difference K measures whether the tensor at a point is
closer to type P or type L. It is easy to show that K returns a positive
value for a type P degenerate tensor, and returns a negative value
for a type L degenerate tensor. When K equals zero, the three
eigenvalues are the same, and the tensor is triple degenerate. We
color code the feature lines with their associated eigen differences:
warm colors for type P and cool colors for type L. The closer the
color is to pure green, the closer the tensor is to triple degeneracy
(See Figures 2 - 4). Since triple degenerate points are the only
locations where a type P and type L feature line can cross, coupled
with the color mapping for K, the combined presentation provides
a strong visual clue for finding triple degenerate points even though
these are not explicitly calculated.

4.6 Higher Order Degeneracy

Previous researchers have pointed out that tensor features may have
higher order degeneracy than just points, and may include lines, sur-
faces and subvolumes. It can be proven that not only is the discrim-
inant zero at the degenerate tensors, but also the first order gradient
of the discriminant is also equal to zero. We hypothesize that the
higher order degeneracy happens only where the second or higher
order of discriminant gradients are zeros. One can find this kind of
phenomenon only under very special conditions. For example, we
can show that for the single point load data, there are two types of
degenerate features: one is a feature line directly below the point
load direction; the other is a surface spreading symmetrically down
from the point load. The higher order surface degeneracy happens
in this particular dataset because of a delicate equilibrium achiev-
able only in a purely synthetic data. This equilibrium can be easily
disturbed by noise or other forces, and the feature will fall back to
the more stable form of lines. This is confirmed in the double point
load data. In this data, although the discriminants on the degener-
ate surface are still very small, as indicated by the weak transparent
surface in Figure 4, the stable tensor features are lines.

In the same figure, we notice that near the apex of these two
weak surfaces, the feature lines seem to break apart. We think that
in the vicinity of those two points, the appropriate tensor feature is
a small feature surface. Since our current algorithm is not designed
for finding such features, it appears as an artifact. This is an area
that we plan on addressing as well – even though such features are
generally unstable.

Another generally unstable higher order feature is feature sub-
volumes. We think that in some type of tensor data sets, such as dif-
fusion tensor data sets, it may be more likely to find such features.
The locations of such features can be found in purely isotropic re-
gions, and while they may not be of too much interest, we also plan
to investigate this aspect, just for completeness.

5 IMPLEMENTATION ISSUES

In this section, we discuss two implementation issues affecting the
speed and accuracy of the results.

5.1 Pre-filtering

Methods based on constraint functions are superior over those di-
rectly based on discriminants because their signs could either be
positive or negative around the features. This property allows us
to detect sign changes in the vicinity of the tensor features with-
out referring to the unpredictable gradients of tensors. This prop-
erty also allows us to quickly eliminate those cells without sign
changes from further consideration when finding tensor features
within them, thereby speeding up the whole feature extraction pro-
cess. The pre-filtering procedure proceeds by successively evaluat-
ing the seven constraint functions for each cell. If a cell shows that
there is no sign changes from any single one of the seven constraint
functions, and their values are significantly away from zero, then
subsequent evaluations are skipped since the cell can be eliminated
as a candidate cell.

5.2 Interpolation Methods

Usually the features lines are stable in non-degenerate data set. But
in rare cases, such as when the features are higher order e.g. surface
or subvolume features, the feature lines become unstable in that a
small amount of noise could dramatically change the features. In
our experiments, this occurs in one area of a synthetic data – the
bifurcating branch below the loads in the double point load stress
tensor. More details about this data set will be discussed in Sec-
tion 6.

In this area, not only are the discriminants and their first order
gradients zero, but the second order gradients are also very small.
This higher order degeneracy makes degenerate tensor features ex-
tremely sensitive even to the small noise introduced by interpola-
tion. Figure 3 shows the effects of varying the interpolation method.
In both images, we first compute the tensor values on a 323 grid
and apply our numerical method to extract the degenerate tensors
with a specified interpolation method. To confirm the correctness
of the results, we also resampled the tensor values from the original
grid to a higher resolution grid of 1283 using the same interpola-
tion method and volume rendered it. The colors are mapped to the
discriminant, where less transparent blue colors are closer to zero,
and more transparent red colors have higher values. The features
should be located in the blue regions. Since the implementation of
the resampling and the volume rendering is straightforward, it also
serves as a visual verifier for our numerical algorithm. Figure 3(a)
uses linear interpolation, and the degenerate features lines appear
broken and disorganized. In contrast, the result from tricubic natu-
ral spline interpolation is shown in Figure 3(b). We can see it fixed
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(a) First set (b) Second set

Figure 2: Randomly generated 3D tensors. Warmer line colors are closer to type P degenerate points where major and medium hyperstreamlines
intersect, while cooler line colors are closer to type L degenerate points where medium and minor hyperstreamlines intersect. The rest of the
volume is pseudo-colored by the discriminant using cool colors for low discriminant values (closer to feature lines) and warm transparent colors
for distant values.

the problem almost perfectly. Actually, we also tried other higher-
order interpolation methods such as: tricubic, triquartic, triquintic
and Hermite interpolation. They all have improved results over the
trilinear interpolation, but do not address the problem as satisfacto-
rily as the tricubic natural spline interpolation.

(a) (b)

Figure 3: Closeup of the bifurcating feature lines below the point
loads in the double point load data set. Feature lines are colored by
the eigen difference while the volume is colored by the discriminant
using cool colors for low discriminant values (closer to feature lines)
and warm transparent colors for distant values. (a) Trilinear interpo-
lation, (b) Tricubic natural spline interpolation.

6 RESULTS

We experimented with four data sets to test out our degenerate
tensor extraction algorithm. The first is a 2D rectangular patch
with symmetric 3D tensors at the four corners that have been set
randomly (see Figure 1). The tensor values within the patch are
obtained through linear interpolation. This synthetic data corre-
sponds to tensors on a face of a 3D cell. The second is a 3D
cell with symmetric 3D tensors on its eight corners which are
also set randomly (see Figure 2). It is sampled into a higher
resolution for smoother features lines. The third is the stress
tensor data in a semi-infinite volume with two point loads (see

Figure 4). The fourth is the deformation tensors in the com-
puted flow past a cylinder with hemispherical cap (see Figure
5). For Figures 2 to 4, the colors of the volumes are mapped to
the tensor discriminant (Equation 6) with more transparent cooler
colors mapped to lower values and more opaque warmer colors
mapped to higher values. Degenerate tensors can be found in
the cool blue regions. Digital images can be accessed online at:
www.cse.ucsc.edu/research/avis/tensortopo.html.

Figure 2 shows degenerate tensors in a 3D cell form feature lines
(rendered as tubes). Note that the feature lines are not hyperstream-
lines, rather they are where the major and medium, or the medium
and minor, or all three hyperstreamlines intersect each other. The
color of the tubes are mapped to the eigen difference, where the
type P lines are mapped to warmer colors and the type L lines are
mapped to cooler colors. Only the faint green is visible in the vicin-
ity of the tubes because the tubes are in the blue regions. We see that
complex feature lines can form even from a simple linearly interpo-
lated random tensor field. In (a), the type P and L lines swirl around
each other, while in (b), the two types of lines form a complicated
structure.

Figure 4 shows the double point load stress tensors. The yellow
arrows indicate the two point loads, and the two magenta spheres
are the triple degenerate points. We can see the line of double de-
generacy connecting these two stress-free points as alluded to in [7].
Other very interesting feature lines are also extracted. The first is a
vertical loop that lies directly under the double degenerate feature
line connecting the two triple degenerate points. This feature is not
present in the single point load data. This loop feature is also stable
in the sense that it persists even as the magnitudes of the two point
loads are varied. The second is how the blue feature line below each
of the point load bifurcate and then reconnect. These two structures
and the vertical loop are connected together by a type P feature line
running between the two point loads. Looking from the top view in
(b), we see another interesting feature which is the circular feature
line that connects the two point loads and the two triple degenerate
points. We need to further investigate the physical significance of
these features that have not been seen in previous visualizations of
the data. It is worth noting that the stress tensor is dominated by
only one single load in the vicinity of the load point, so it is locally
similar to the single point load stress tensor where the degenerate
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(a) Oblique view (b) Top view

Figure 4: Double point load data. Yellow arrows indicate point load, while the 2 magenta spheres show the location of the triple degenerate
points. Feature lines are colored by the eigen difference while the volume is colored by the discriminant.

tensor form a surface symmetrically spreading away from the load
point. Since our algorithm is designed for extracting features lines,
it produces artifacts when the features form a surface or subvolume.

Figure 5 shows degenerate lines in the deformation tensors of
the computed flow past a cylinder with a hemispherical cap. Only
a portion of the data close to the cap is shown because most of the
interesting features are found there. First, we see a curved line on
the cap shown by the black arrow. It matches some of the patterns
of the velocity topology from the same data set. There are more
features at the upper half of the data because the flow there is more
turbulent. Figure 5(a) is from a oblique view. Most of the features
are close to the geometry of the object except a complicated branch
structure which extends away from the geometry. It contains a small
cyan horn shape indicated by the pink arrow, two green ring shapes,
and a bifurcating structure. Figure 5(b) is from a top view. Again,
we see that most of the interesting features are very close to the
geometry of the object. We also see a strong type L (blue) bulb
shape structure that extends to the end of the cylinder. Near the cap,
it intertwines with a strong type P (red) heart shape structure. This
phenomenon is interesting in that although these two structures are
very close, they do not cross each other, because there is no green
color at their visual cross points. It also means the tensors are quite
turbulent in this area, because large variations are happening in very
close proximity. There are many other interesting features shown
in these two images. In the near future, we will investigate the
significance of these features and finish a formal analysis on the
role of the degenerate tensor lines in 3D tensor field.

7 CONCLUSION

We pointed out that the degenerate tensors form lines in 3D real
symmetric tensor field. This knowledge lays a foundation for future
research on topology based methods to visualize 3D tensor fields.
Furthermore, we presented an algorithm to extract degenerate ten-
sor lines. This algorithm uses a new formula that decomposes cubic
discriminant into a sum of squares of seven polynomials. Feature
points are first extracted on each face of a candidate hexahedral cell,
and the points connected in an iterative fashion to generate feature
lines. We applied this algorithm on several data sets including ran-
domly generated tensor fields which allowed us to stress test our al-
gorithm, several analytical data set e.g. single and double point load

data sets to validate our results, and several computational data set
e.g. flow past cylinder with hemispherical cap, to test its practical
use. The results point to new knowledge, for the case of the double
point load data set, as well as additional areas of investigation such
as studying the correlation between the interesting patterns we saw
in the real data sets and the underlying physics. These new insights
will be useful in seeding hyperstreamlines, topology simplification,
and tracking topology in time-varying data.

8 ACKNOWLEDGMENT

This work is supported by NSF ACI-9908881. The flow data is
courtesy of NASA. We would also like to thank Peter Lax, Beres-
ford Parlett, and Xavier Tricoche for their correspondence and sug-
gestions. The comments by the reviewers also helped to improve
this paper.

REFERENCES

[1] A. Bhalerao and C.-F. Westin. Tensor splats: Visualising tensor fields

by texture mapped volume rendering. In Sixth International Con-

ference on Medical Image Computing and Computer-Assisted Inter-

vention (MICCAI’03), pages 294–901, Montreal, Canada, November

2003.

[2] E. Boring and A. Pang. Interactive deformations from tensor fields. In

D. Ebert, H. Hagen, and H. Rushmeier, editors, Proceedings IEEE Vi-

sualization ’98, pages 297–304. IEEE Computer Society Press, 1998.

Tensor / Flow.

[3] W.C. de Leeuw and J.J. van Wijk. A probe for local flow field visual-

ization. In G.M Nielson and D. Bergeron, editors, Proceedings IEEE

Visualization ’93, pages 39–45. IEEE Computer Society Press, 1993.

[4] T. Delmarcelle and L. Hesselink. Visualizing second-order tensor

fields with hyperstreamlines. IEEE Computer Graphics and Appli-

cations, 13(4):25–33, July 1993.

[5] T. Delmarcelle and L. Hesselink. The topology of second-order ten-

sor fields. In R.D. Bergeron and A.E. Kaufman, editors, Proceed-

ings IEEE Visualization ’94, pages 140–148. IEEE Computer Society

Press, 1994. Flow Features and Topology.

[6] R.B. Haber. Visualization techniques for engineering mechanics.

Computing Systems in Engineering, 1(1):37–50, 1990.

319



(a) Oblique View (b) Top View

Figure 5: Degenerate lines in deformation tensors of flow past a cylinder with a hemispherical cap. Feature lines are colored by the eigen
difference.

[7] L. Hesselink, Y. Levy, and Y. Lavin. The topology of symmetric,

second-order 3D tensor fields. IEEE Transactions on Visualization

and Computer Graphics, 3(1):1–11, Jan-Mar 1997.
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