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Figure 1: Isosurface exploration of a CT volume model, showing different anatomical structures of a human head

ABSTRACT

We introduce a novel span-triangle data structure, based on the
span-space representation for isosurfaces. It stores all necessary
cell information for dynamic manipulation of the isovalue in an ef-
ficient way. We have found that using our data structure in combi-
nation with point-based techniques, implemented on graphics hard-
ware, effects in real-time rendering and exploration. Our extraction
algorithm utilizes an incremental and progressive update scheme,
enabling smooth interaction without significant latency. Moreover,
the corresponding visualization pipeline is capable of processing
large data sets by utilizing all three levels of memory: disk, sys-
tem and graphics. We address practical usability in actual medical
applications, achieving a new level of interactivity.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.3 [Com-
puter Graphics]: Picture/Image Generation—Display Algorithms;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modelling—Curve, surface, solid, and object representations

Keywords: Point-Based Visualization, Isosurfaces, Hardware Ac-
celeration, Large Data Set Visualization, Visualization in Medicine

1 INTRODUCTION

Visualization plays an important role in many scientific and medi-
cal applications, facilitating the understanding of three-dimensional
volume data. A crucial part is the exploration of the underlying
spatial scalar field, targeting at characteristic structures inside solid
bodies, like bone or soft tissue in medical data sets. One com-
mon approach is direct volume rendering, where the user gets in-
sight vision into a representation of the complete volume. Pop-
ular techniques are ray-casting, shear-warp, texture-mapping and
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splatting [18]. These techniques can be used to display directly
surfaces in the volume by utilizing appropriate ray-intersections or
by applying transfer functions that correspond to a single spike in
value space. On the other hand, many applications require a ge-
ometric representation of a surface model. Therefore, an alterna-
tive approach is indirect isosurface visualization. An isosurface
is a surface-based representation, generated from geometric prim-
itives that are associated with a constant scalar value. Unfortu-
nately, achieving interactive exploration of the underlying volume
data with isosurfaces is still a challenge. Many solutions are based
on a separation between the generation of surface primitives and
the actual rendering. Typically, the generation is performed for
each new isovalue and previous geometry is discarded. Such an
approach requires a complete recalculation of the model. Addition-
ally, many approaches use triangle models to represent surfaces.
In a standard triangle-based method, like Marching Cubes, volume
grid cells that are intersected by the isosurface are identified, poly-
gonized and added to the output mesh [17]. The resulting model
is built from a set of interconnected triangles. This may lead to
high memory consumption, making the isosurface exploration and
memory management a hard challenge.

To overcome the aforementioned performance and memory draw-
backs we have developed a novel data structure - the span-triangle
- derived from the span-space representation [16]. It stores rele-
vant cell information for all isosurface models in a user-specified
scalar range. Given a specific isovalue, we can extract the corre-
sponding model with optimal time complexity O(k), for output size
k. Our incremental and progressive update scheme exploits data
coherence between different models and allows smooth manipula-
tion of the isovalue in real-time. We have chosen point primitives
to represent and display geometry within the rendering pipeline.
Point elements do not contain connectivity information and there-
fore can be managed efficiently in applications that work with dy-
namic data. Moreover, representing objects with points enables
the possibility to sample the original data only at scalar regions
that contain relevant surface information. We have implemented
a point-based renderer that is accelerated with recent features of
graphics hardware [2]. Therefore, we are able to consider a visual-
ization pipeline, which is distributed among three levels of memory,
i.e. disk, system and graphics, supporting data sets with more than
5123 resolution.
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In the following we provide the notation and technical terms, used
in this paper: We consider a volume as a set of samples in three
dimensional space. Each sample is associated with a scalar inten-
sity value x ∈ ℜ in the range [rmin,rmax]. Applying a reconstruc-
tion function, e.g. trilinear interpolation, results in the correspond-
ing scalar field function V : ℜ3 → ℜ. Therefore, having an iso-
value υ ∈ ℜ we can define the corresponding isosurface as the set
of points {x ∈ ℜ3 | V (x) = υ}. Additionally, neighboring sam-
ples of the volume specify a subvolume, called cell. For example,
a cell in a three-dimensional volume grid is constructed by eight
corner samples with scalar values x1, ...,x8 ∈ ℜ. The cell range
[xmin,xmax] is defined, using the minimum and maximum intensity
values. A cell is called active, if it is intersected by the isosurface,
i.e. υ ∈ [xmin,xmax]. Finally, the span is the width of the corre-
sponding interval, i.e. s = xmax− xmin.

2 RELATED WORK

A lot of research is focusing on the improvement of isosurface gen-
eration performance. This is achieved mainly by reducing the num-
ber of cells visited during the extraction or by providing an effi-
cient access to active cells. There are three different types of tech-
niques: domain search, range search and cell propagation. Domain
search techniques work in the geometric space. One example is
the hierarchical partitioning of the spatial domain. Wilhelms and
van Gelder use an octree with intensity extrema values to avoid the
traversal of inactive cells, i.e. that do not intersect with the isosur-
face [25]. This approach is useful for interactive visualization, but
performance is dependent strongly on the data set. Other research
has concentrated on processing the scalar space. Typically, data
structures are defined that contain cell information, sorted by the
cell-minimum and -maximum scalar values. Examples are active
lists, sweeping simplices and interval trees [8, 23, 5]. Other range
search algorithms are based on the the span-space representation.
Using this approach, the isosurface generation can be reduced to
a range searching problem. The acceleration is achieved by sub-
dividing the span-space, using data structures such as the kd-tree
and lattice decomposition [16, 22]. In general, range search meth-
ods can be orders of magnitude faster than Marching Cubes, but
they suffer from the common problem of excessive extra memory
requirements [24]. The basic idea of cell propagation techniques is
to grow the isosurface from an initial set of cells. Known solutions
are the extrema graph and seed sets [11, 3]. Finally, recent methods
address also the problem of isosurface exploration. The Isoslider
system is based on the idea that small changes in isovalue require
small changes to active cells [4]. Their algorithm uses a triangle-
based approach, resulting in high-quality rendering, but long pre-
processing times even for moderate data sizes.

Point-based techniques have been proposed by Levoy and Whit-
ted in their technical report from 1985 [15]. New approaches of
rendering point primitives have become popular, especially since
the work of Grossmann and Dally, who use hierarchical z-buffers
to fill holes between point primitives in screen space [9]. Fur-
ther approaches like QSplat and surfels use splatting techniques
to represent and render surfaces by displaying point primitives as
small discs or ellipsoids that are scaled as a function of the dis-
tance to the eye [20, 19, 26]. Alexa et al. use adaptive resam-
pling of the point set to match the output resolution on the image
plane [1]. Recent algorithms incorporate also point-based tech-
niques for isosurface rendering. Bærentzen et al. are not focus-
ing on interactive isosurface exploration, but have shown that speed
of hardware-accelerated point-rendering can be superior to triangle
rendering [2]. Furthermore, Iso-Splatting uses approximate projec-
tion of points on the isosurface to improve visual quality of point-

based isosurface representations [6].

The development of our data structure was inspired by the work of
Gallagher and by the ISSUE algorithm [7, 22]. Our representation
is based also on a regular decomposition of the span-space, whereby
we use a different subdivision scheme and a different data structure
for isosurface cell information. Additionally, once the data is stored
in the span-triangle, we do not require any explicit searching for ac-
tive cells. Our data structure establishes a tight coupling between
representation and point-based rendering, leading to both fast up-
dates of the surface model and interactive rendering rates.

3 METHODS

The main elements of our visualization pipeline are illustrated in
figure 2. In the first processing step we access the input volume
in disk memory. We generate the span-triangle data structure in
system memory that contains all isosurface cell information for a
user-specified scalar range. Then, we extract the point data for
one specific isovalue and transfer it to graphics memory for ren-
dering. During exploration we update the surface model incremen-
tally on each change of the isovalue. At the end of the visualization
pipeline, the user has the possibility to fix the isovalue, releasing
unused memory resources and making them available for further
application steps or the generation of a higher-quality model.

In the following subsection 3.1, we describe the span-triangle data
structure and the related isosurface extraction algorithm. Subsec-
tion 3.2 deals with the generation of the data structure from the
input volume. Finally, in section 3.3 we address the rendering tech-
nique, based on our data structure, as well as the corresponding
update scheme during exploration.

3.1 The Data Structure

The design of our data structure is based on a special scalar range
representation that was designed for the acceleration of isosurface
extraction [16]. Assuming a cell with a scalar minimum xmin and
maximum xmax, we consider the cell as a point (xmin,xmax) in ℜ2.
The corresponding two-dimensional space with cell-minima on the
x-axis and cell-maxima on the y-axis is the so-called span-space.
Unlike the cell interval representation [xmin,xmax], it is possible to
subdivide the data domain in a simpler way and to develop an effi-
cient searching algorithm for active cells [22]. We focus on medical
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Figure 2: Our visualization pipeline, supporting three levels of mem-
ory: disk, system and graphics.
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volume data sets (e.g. CT, MRI) that typically contain only discrete
scalar values. Consequently, we consider a discretized version of
the span-space, illustrated in figure 3.

The span-triangle contains information of potentially active cells
for a pre-defined range of isovalues [υmin,υmax] ⊆ [rmin,rmax],
which we call exploration range. Our goal was to create a data
structure, which allows the efficient extraction of an isosurface
model for a specific isovalue as a set of active cells. We have cho-
sen linear arrays as the major building blocks in order to achieve
optimal cache utilization. Therefore, there are three types of data
containers: base array, span array and cell information array.

• Each element in the base array corresponds to cells with a par-
ticular based cell minimum value b = xmin−υmin and contains
a span and cell information array.

• Each span array is implemented as an offset table, containing
indices to the appropriate cell information. Furthermore, an
item in the offset table corresponds to cells with a certain cell
span s = xmax− xmin.

• During generation of the span-triangle, all potentially active
cells are collected and stored in the appropriate cell informa-
tion array, sorted by the cell span s. Therefore, we realize a
cell sorting in the span-space by b and s.

The cell information contains two items: The cell identifier is a
four bytes integer value, equal to the index of the first corner sam-
ple of each cell in the input volume. The cell normal is represented
by a normal vector, belonging to the center of each cell. We store
each normal in spherical coordinates quantized to two byte values,
i.e. the azimuth and polar angles. This results in a compact rep-
resentation, requiring only six bytes of memory per cell. Figure 4
illustrates the structure of the span-triangle. The layout of the base
and span arrays forms a triangle in the span-space.

The specific structure of the span-triangle enables the possibility to
access active cells in a very efficient way. The isosurface extraction
reduces to a set of linear traversal operations, working in the cell in-
formation arrays. Let Base, Span and CellInfo represent the data ar-
rays of the span-triangle. Furthermore, assume that Base[b].Span[s]
returns the offset value to the cell information for a based cell min-
imum of b and cell span of s. Let Base[b].CellInfo.Max be the
maximum index for the CellInfo array, corresponding to the total
number of cells for b. The following pseudo-code shows the ex-
traction routine for an isovalue υ :

rmin rmax

rmax

rmin cell-min

cell-max

iso-
value

isovalue

Figure 3: Discretized span-space. The small rectangles represent cell
data. The grey region marks the cells that are active for the current
isovalue.
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Figure 4: Sample span-triangle data structure for an exploration
range of [υmin,υmax] = [0,4] and isovalue υ = 2. Active cells are marked
as filled circles, inactive cells as empty circles. Only array elements
that are colored grey need to be accessed.

FOR b FROM 0 TO υ−υmin DO
s := υ−υmin−b;
FOR i FROM Base[b].Span[s] TO Base[b].CellInfo.Max DO

Add cell from Base[b].CellInfo[i] to isosurface;
END

END

The extraction of the isosurface is a nonhierarchical procedure,
where only those cells that contribute to the current isosurface are
accessed. Moreover, it is just a traversal of the base array, combined
with look-ups to the cell information via the offsets from the span
array, as shown in figure 4. Therefore, the extraction runs in optimal
time complexity O(k), for k as the number of active cells. The inner
loop of the algorithm can be replaced by a memory block operation
in order to read out the cell information with highest efficiency.

3.2 Generation of the Data Structure

Before we describe the span-triangle generation, we list possible
strategies for a pre-selection of the exploration range [υmin,υmax]⊆
[rmin,rmax]. The background for the pre-selection is that only spe-
cific scalar subranges contain useful information. Figure 5 illus-
trates a typical situation, when working with volumetric data sets:
Choosing a too low or too high isovalue results in an inadequate
visualization. By utilizing point primitives we have the potential
to reduce memory consumption of the span-triangle and speed-up
its generation. Therefore, it makes sense to choose an exploration
range that is as small as possible, discarding regions that are not

Figure 5: The left image shows a too low, the right image a too high
isovalue. Information content of both visualizations is rather low.
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useful for the current application. In our implementation we em-
ploy manual trial-and-error to find a good interval. This is in fact
a simple and robust solution, but not useful for real applications,
especially in the medical context. Therefore, we propose three dif-
ferent strategies for the pre-selection:

• When working with medical computer tomography data sets,
we can pre-select by using Hounsfield units [10]. Specific
scalar ranges can be mapped to anatomical structures of the
human body, e.g. skin, soft tissue and bone.

• Another possibility is to exploit data-driven approaches from
semi-automatic transfer function design for direct volume ren-
dering. For example, Kindlmann et al. use a method to locate
boundaries in the data value space to support the user during
selection of the transfer function [13]. The output of such an
algorithm could be used for our span-triangle generation.

• Finally, a simple but effective solution is to choose the ex-
ploration range, based on a maximally allowed memory con-
sumption. First, we compute a ”reduced” span-triangle, stor-
ing only the counters of potentially active cells, instead of the
cell information itself. Then, we set the largest possible ex-
ploration range, shrinking it until memory consumption is low
enough.

The span-triangle is created in a two-pass approach. In the first step
we generate a temporary data structure. Afterwards, we build the
final span-triangle. This approach is required to achieve an efficient
balance between the speed and memory overhead during the gener-
ation: First, we use a fast radix-sort-based approach with O(n) time
complexity for sorting the cell information by b and s [21]. This
requires the availability of a cell histogram in advance. Second,
having the number and type of cells, we do not need any extra al-
location of the cell information arrays and we have no performance
overhead due to additional copy operations during the sorting pro-
cess.

The temporary data structure is a single linked list of buckets. The
bucketing is required to achieve robust allocation even on systems
that are prone to memory fragmentation. Moreover, it allows us to
minimize the memory overhead in the second pass. Each bucket
contains the same information per cell as the final span-triangle and
additionally the b and s indices. The temporary data structure is
built by a cell-by-cell traversal of the input volume, similar to the
Marching Cubes approach:

1. Identification of potential isosurface cells, based on the pre-
defined exploration range: A cell is considered as potentially
active, if there is an overlap between the cell interval and ex-
ploration interval, i.e. [xmin,xmax]∩ [υmin,υmax] 6= /0. If this
condition fails, the cell is skipped.

2. Computation of the cell information, i.e. cell index and cell
normal: The normal vector is calculated with the central dif-
ference operator [14]. Then, it is normalized and converted
into spherical coordinates, as mentioned in subsection 3.1.

3. Computation of offsets b and s for the span arrays: The off-
sets are computed from the cell histogram. This approach
is equivalent to the calculation of the counter and offset ta-
bles in the radix-sort algorithm. Note that for cases where
[υmin,υmax] ⊂ [rmin,rmax], we have to crop b and s to the ex-
ploration range, before we can use them for the indexing of
the span-triangle.

Remark that each iteration needs to access only two slices of the
input volume simultaneously. Therefore, it is not required to load
the complete volume into system memory. No further access to the
data in disk memory is necessary.

In the second pass of the generation routine, we walk through the
temporary data structure and sort the cell information into the span-
triangle. Thereby, we follow again the radix-sort approach and use
the available offset tables. There is one special case that we have
to consider during this procedure: There may be specific cell types
that do not occur in the input volume. Then, we need to adapt the
corresponding offset value in the span-array to point to the same cell
information as the next valid cell type element. Such a situation is
illustrated in the cell info array for b = 1 in figure 4. As soon as we
have finished the traversal of a temporary data bucket, we release
it to reduce the memory overhead. Following such an strategy we
need to keep only one data set at the same time in system memory.
Note that the temporary cell information has a memory overhead,
compared to the final span-triangle. However, the employed buck-
eting for the temporary data structure allows us to swap buckets to
disk memory, before the maximally allowed memory consumption
is reached.

3.3 Isosurface Visualization and Update

To visualize the isosurface model for one specific isovalue we com-
bine the extraction process from the span-triangle data structure
with point-based rendering. The main steps of this procedure are:

1. Traversal of the span-triangle and extraction of the relevant
cell information.

2. Conversion of cell information to a graphics-hardware com-
patible format, called vertex data.

3. Transfer of vertex data to graphics memory and display.

For isosurface rendering, each vertex consists of a position and nor-
mal vector in the floating-point format. When working with high-
resolution data sets we have to find a reasonable trade-off between
speed and quality. One important focus in our work is interactivity,
so we have decided to approximate each cell by one point, located
at the cell center. This is a known technique from mesh decimation
and level-of-detail rendering and is incorporated also in other sur-
face rendering systems [2]. Points are rendered by projecting them
onto the image plane with a surface splatting algorithm, using the
normal vector for shading [6]. Remember that cell information is
stored in a compact format, packed to one 32-bit cell index and two
8-bit spherical normal angles. We calculate the point positions and
normals on-the-fly during isosurface extraction. Having the initial
dimensions of the input volume, we obtain the point coordinates
(in volume index space) using efficient integer division and mod-
ulo operations. Let the variable index be the volume array index
from a cell information array. Assume constants dim.x and dim.xy
as the initial volume dimensions in x-direction and for a slice, re-
spectively:

 x
y
z

 =

 index DIV dim.xy
index MOD dim.xy DIV dim.x
index MOD dim.xy MOD dim.x

 (1)

Moreover, we require sine and cosine functions for the calculation
of the normal vector. These are precalculated in small look-up-
tables with only 256 entries, because spherical angles are stored in
eight bits.

The most important point for achieving interactive exploration is
the incremental update of the isosurface model. On any change
of the isovalue, the currently extracted model is updated without
discarding cells that are still active. Due to the coherence of our
data structure we transfer only the absolutely necessary informa-
tion between system and graphics memory: First, we free parts of
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the vertex data, which correspond to cells that have became inac-
tive after the isovalue change. Afterwards, we upload the data for
all activated cells, as shown in figure 6. The exploration is realized
using an incremental version of the presented isosurface extraction.
The following pseudo-code shows the update algorithm for an in-
creasing isovalue υ > υ+. The update for a decreasing isovalue is
analogous:

FOR b FROM 0 TO υ−υmin DO
s := υ−υmin−b;
s+ := υ+−υmin−b;
Free vertex data from Base[b].Span[s] to Base[b].Span[s+-1];

END

FOR b FROM υ−υmin + 1 TO υ+−υmin DO
s+ := υ+−υmin−b;
Upload vertex data, starting from Base[b].Span[s+];

END

One remaining challenge that has to be considered is that the ver-
tex data upload can be quite slow for large changes of the isovalue.
To handle such cases, we have incorporated a progressive update
scheme to achieve smooth interaction without blocking the appli-
cation: In advance, we estimate the transfer rate from system to
graphics memory. During exploration, we interrupt the upload pro-
cess whenever necessary to guarantee a user-defined response time.
We continue with the upload of the remaining vertex data on the
next frame. We have observed that choosing a response time of ap-
proximately 125 ms is enough to minimize the delay between the
extraction of the model and feedback to the user.

4 IMPLEMENTATION

Our implementation is based on the Julius software development
framework for medical visualization [12]. All steps of the pre-
sented visualization pipeline have been realized with reusable and
extendible software components.

One challenge that we had to consider during the implementation
of our data structure is the problem of allocating large continuous
blocks of memory. Usually, the reason is memory fragmentation,
occurring on PC machines with 32-bit addressing. The solution
to this problem is a bucketing technique as we have utilized for
the temporary data structure during the span-triangle generation.
The cell information arrays are the major part in the span-triangle
regarding memory consumption. Therefore, we divide them into
buckets that can be allocated safely.

We exploit the following hardware-accelerated features for point
rendering that are available in the OpenGL API: We use OpenGL
point primitives GL POINTS for display. This results in low-quality
splats, compared to solutions that are based e.g. on Gaussian re-
construction kernel functions [19]. On the other hand, we can
exploit full hardware-acceleration for transformation, lighting and
rasterization. To solve the hole-filling problem in point render-
ing we use a similar approach as Bærentzen et al. [2]: The size
of each point in screen space is calculated on the graphics pro-
cessor unit, using the GL ARB point parameter extension. Its
screen size is attenuated, based on the distance to the viewer. Fi-
nally, to allocate vertex information directly in graphics memory we
take advantage of vertex buffer objects (VBO), implemented via
GL ARB vertex buffer object. Therefore, data does not need
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Figure 6: Incremental update of a sample span-triangle for an iso-
value, changing from υ = 2 to υ+ = 4. Empty circles represent point
data that has to be freed from graphics memory or remains inac-
tive. Filled circles indicate cells that have to be uploaded to graphics
memory or are still active. Notice the grey background color in this
illustration, showing elements of the span-triangle that have to be
really accessed.

to be transferred from system memory on each frame, effecting in
rendering speed-up.

5 RESULTS

To measure the performance and memory consumption during ex-
ploration, we have chosen a current desktop PC, equipped with an
Intel Pentium IV 2.8 GHz processor and 2 GB of system memory.
Our graphics card has been an ATI Radeon 9800 Pro with 256 MB
of memory. Table 1 gives an overview of the data sets, used for the
evaluation. We have chosen volumes mainly from medical appli-
cation areas, covering sizes from 16 MB to 588 MB. The current
implementation of our renderer allows only structured grids and
isotropic data. Bonsai, Head and Leg have been aquired with a CT-
device. The Skull1 and Skull2 data sets are cone-beam scans. Table
2 shows the span-triangle statistics, including pre-processing times
for the generation of the data structure and sizes in system memory.
Head and Leg reveal an increased memory consumption, showing
the significance of image noise and width of the exploration range
for the size of the span-triangle. We achieve an average reduction
in system memory of 61 %, compared to disk memory in table 1.
The reason for this result is a combination of three concepts:

• Adaption of the exploration range to current application
needs, instead of using the whole scalar range.

• Utilization of point data, allowing to sample the volume only
on the surface of the current model.

• Compact cell information, requiring only six bytes.

Data set Resolution Scalar bits Disk memory
Bonsai 256×256×256 8 / 8 16 MB
Head 320×404×230 12 / 16 54 MB
Skull1 512×512×512 12 / 16 256 MB
Leg 599×599×500 12 / 16 342 MB
Skull2 700×700×600 12 / 16 588 MB

Table 1: Used volume data sets. The left scalar bit values show used
bits, the right values are allocated bits. Disk memory is based on
allocated bits.
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The dominating part considering memory allocation are the
CellInfo arrays. Therefore, we have not included the consumption
of the raw span-triangle structure in table 2. The span-triangle con-
tains two pointers in each base array element and one offset value
per span array element. Furthermore, there are υmax − υmin + 1
base array elements. This effects in the following raw size with
∆e = υmax−υmin:

sizeraw = (∆e+1)(
∆e
2

+2) (2)

Each pointer and offset value requires four bytes in our implemen-
tation, which results in additional 0.1 MB to 28.1 MB of memory
for our test data sets. Equation 2 shows that the memory consump-
tion of the raw data structure (i.e. without cell information) is de-
pendent quadratically on the width of the exploration range. The
resulting restriction is tolerable for medical data sets, where scalar
ranges are limited typically to 12 bits. Data sets with wide scalar
intervals need to be reduced during pre-processing. The generation
times from table 2 include both steps: creation of the temporary
data structure and the span-triangle. The resulting pre-processing
times are low enough for medical use of our visualization pipeline.

Table 3 shows the number of active cells, the time for the initial
extraction of the point data from the span-triangle and the render-
ing speed for selected isosurface models. We have asked a medical
expert to select specific isovalues by using our technique in order
to reveal characteristic anatomical structures. It is hard to compare
directly our extraction times to previous results, because they use
other grid types, perform additional cell triangulations or do not fo-
cus on iterative updates [24, 2, 6, 4]. Nevertheless, our results show
that extracting the point model from the span-triangle instead of a
volume grid results in a significant increase in performance, even
though the reported measurements include the transfer to graphics
memory. Rendering times have been measured for random rotations
and 300 frames. The average rendering rate is 35.8 mio. of points
per second for Bonsai and Head, and 60.1 mio. points per second
for the large data sets. These values are depending on the size of the
input volume and consequently on the splat sizes in screen space.
The rendering performance shows great potential even for larger
data sets than presented in this paper. Note that the range of varia-
tion for the measured values in table 3 is quite large. One reason is
the varying number of buckets due to our bucketing techniques that
we have implemented for the cell information arrays, as mentioned
in section 4. Another possible reason is the internal resource man-
agement on the GPU. In the current implementation, each vertex
element consumes 24 bytes in graphics memory (due to six floating
point values). There is no additional overhead per cell for the span-
triangle in system memory. Note that as soon as we fix the isovalue
and release non-used information we gain additional reductions of
memory from 1 % to 26 %, as compared to the values in table 1.

Finally, we provide measurements concerning the exploration speed
with our progressive update scheme. Table 4 shows the exploration
times for each data set. We define it as the time, required for the

Data set υmin,υmax Generation System memory
Bonsai 30, 255 1.3 s 12.5 MB
Head 260, 4095 6.7 s 69.8 MB
Skull1 1450, 4095 13.9 s 82.4 MB
Leg 2500, 4095 19.6 s 173.2 MB
Skull2 1750, 4095 21.2 s 102.1 MB

Table 2: Generation times and memory sizes of the span-triangle for
manually pre-selected exploration ranges. All timings include con-
struction of the temporary and final data structure without volume
import. The memory values are based only on pure cell information.

Data set Isovalue Active cells First extraction FPS
Bonsai 40 563273 41 ms 91.6

78 215523 17 ms 163.7
193 122052 15 ms 247.1

Head 1077 541303 64 ms 87.5
1730 452676 104 ms 85.8
2814 77091 120 ms 148.6

Skull1 1698 2912153 220 ms 23.0
2048 1470773 131 ms 42.0

Leg 2714 2703212 201 ms 24.5
3053 4844748 828 ms 7.1
3165 2851516 238 ms 22.9

Skull2 1900 3829972 286 ms 18.0
2230 612395 66 ms 93.6

Table 3: Number of active cells, time for the initial extraction of point
data including transfer to graphics memory, and rendering speed in
frames-per-second (FPS). The number of active cells corresponds to
the number of points during rendering.

update of the isosurface model when slicing from one extrema to
the other within the exploration range in one single step. All mea-
surements include also visual feedback. The values are dependent
on the user-specified response time, here 125 ms. Typically, users
explore in small isovalue step-sizes. Therefore, the exploration
time gives a worst-case view for the delay concerning interactivity
of an exploration system. Additionally, we have measured explo-
ration times that are two orders of magnitude slower, when using
an isovalue step-size of one. Combining this result with the full-
extraction times in table 3 shows clearly the advantage of the pro-
gressive system and utilization of arbitrary large step-sizes. Finally,
the results show that the performance is highly dependant on the di-
rection of the exploration. The reason is that the vertex data upload
to graphics memory requires more time than freeing of the data.
The balance between both operations may vary, depending on the
isovalue direction during update of the isosurface model.

Figures 7 to 10 on the last page of this paper show screenshots of
selected data sets for characteristic isovalues. The Head data set
is shown on the first page. We have observed that for large vol-
umes the rendering of one point per cell results in adequate qual-
ity. In practice the projected cell in screen space is typically not
much larger than the size of a pixel. Therefore, we have decided
not to implement the support for multi-component isosurfaces or
point-on-surface projection, as described in [6]. In other cases, e.g.
where the quality of this approach is not sufficient or the input vol-
ume covers a too large scalar value range, our exploration system
can be used for an accelerated pre-selection of the isovalue: Our
fast pre-processing and extraction times make possible to create a
lower-quality point model in order to determine the desired iso-
value. Afterwards, we can use the corresponding cell information
from the span-triangle for accelerated generation of a higher-quality
model, using other point- or even triangle-based techniques.

Data set υmin → υmax υmax → υmin
Bonsai < 0.1 s 0.1 s
Head 0.2 s 0.2 s
Skull1 0.3 s 0.9 s
Leg 1.3 s 0.6 s
Skull2 0.2 s 2.6 s

Table 4: Exploration times, using progressive update. The left col-
umn contains timings for increasing isovalues, the right column for
decreasing isovalues.
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6 CONCLUSION AND FUTURE WORK

We have presented a novel span-triangle data structure, based on the
span-space representation. We have shown that it can be used for in-
teractive isosurface exploration of high-resolution volumes. Isosur-
face models can be extracted without significant delay during inter-
action by utilizing an incremental and progressive update scheme.
We assure real-time point-based rendering with typically more than
20 frames-per-second by using a tight coupling between data rep-
resentation and display, as well as by taking advantage of hardware
acceleration. We can process volumes with approximately 600 MB
of memory with a visualization pipeline that works on all levels
of memory. Pre-processing times for high-resolution volumes are
about 20 seconds and are therefore suitable for actual medical ap-
plications. Furthermore, our approach has the following benefits:

• Each cell information is stored only once in the isosurfacing
data structure.

• We achieve high cache efficiency due to continuous low-level
data structures.

• The utilization of data coherence makes possible to minimize
the transfer between system and graphics memory.

• Isovalues can be changed with arbitrary large step-sizes
within the exploration range.

• Isosurface models are represented compactly, because geo-
metric primitives are placed only within active cells.

• The isosurface extraction algorithm has linear time complex-
ity with respect to the output size and is therefore optimal.

Currently, we are extending our point-based renderer to support
anisotropic input volumes via non-circular splats. Additionally, we
are implementing out-of-core processing for the span-triangle data
structure. The idea is to swap parts of the cell data to disk mem-
ory, when system memory consumption gets too high. Moreover,
we plan to utilize more advanced features of graphics hardware and
shader programming to improve the rendering quality. Examples
are point sprites and vertex programs. Another interesting topic is
the utilization of our data structure in other applications than iso-
surface exploration, e.g. animation and surface growth techniques.
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Figure 7: Isosurface exploration of the bonsai tree data set for isovalues υ = 40, 78 and 193.

Figure 8: Human dry skull volume for isovalue υ = 1698 (left and center image) and υ = 2048 (right image).

Figure 9: Leg data set, showing the skin (υ = 2714), subcutaneous vessels (υ = 3053) and bone (υ = 3165).

Figure 10: Large model for isovalues υ = 1900 (left, center) and υ = 2230 (right). The images show the skull bone, teeth and dental roots.
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