
LoD Volume Rendering of FEA Data

Shyh-Kuang Ueng∗ Yan-Jen Su† Chi-Tang Chang‡

Department of Computer Science

National Taiwan Ocean University

No. 2, Pei-Ning Road, Keelung, Taiwan 202

ABSTRACT

In this article, a new multiple resolution volume rendering method
for Finite Element Analysis (FEA) data is presented. Our method is
composed of three stages: At the first stage, the Gauss points of the
FEA cells are calculated. The function values, gradients, diffusions,
and influence scopes of the Gauss points are computed. By repre-
senting the Gauss points as graph vertices and connecting adjacent
Gauss points with edges, an adjacency graph is created. The ad-
jacency graph is used to represent the FEA data in the subsequent
computation. At the second stage, a hierarchical structure is es-
tablished upon the adjacency graph. Any two neighboring vertices
with similar function values are merged into a new vertex. The
similarity is measured by using a user-defined threshold. Conse-
quently a new adjacency graph is constructed. Then the threshold
is increased, and the graph reduction is triggered again to gener-
ate another adjacency graph. By repeating the processing, multiple
adjacency graphs are computed, and a Level of Detail(LoD) rep-
resentation of the FEA data is established. At the third stage, the
LoD structure is rendered by using a splatting method. At first, a
level of adjacency graph is selected by users. The graph vertices
are sorted based on their visibility orders and projected onto the
image plane in back-to-front order. Billboards are used to render
the vertices in the projection. The function values, gradients, and
influence scopes of the vertices are utilized to decide the colors,
opacities, orientations, and shapes of the billboards. The billboards
are then modulated with texture maps to generate the footprints of
the vertices. Finally, these footprints are composited to produce the
volume rendering image.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms;

Keywords: Volume rendering, splatting method, level-of-detail,
unstructured data, scientific visualization

1 INTRODUCTION

Finite Element Analysis(FEA) is a powerful technique used in sci-
entific computing [1, 32]. Volume rendering is a popular method
for visualizing FEA data. By generating semi-transparent cloud
images, volume rendering can reveal the blending and distribution
of a function inside a 3D domain. Therefore the global behavior of
the function is depicted. This functionality is difficult to obtain by
using other skills, like cross-section and iso-surface visualization.
Volume rendering methods can be categorized into two types, the
ray-casting methods and the projection methods. In a ray-casting
method, rays are casted from the eye position through the pixels on

∗e-mail: skueng@mail.ntou.edu.tw
†e-mail: m91570009@mail.ntou.edu.tw
‡e-mail:ykq@cyber.cs.ntou.edu.tw

the image plane toward the FEA data. For each ray casted, func-
tion values are sampled along the ray and converted into colors and
opacities. The colors are composited to produce the value of the
pixel penetrated by the ray[6, 7, 10]. In the projection methods, the
cells, the vertices, or other selected points of the FEA data are pro-
jected onto the image plane in front-to-back or back-to-front order.
The effects of the projections are accumulated to form the final im-
age [15, 19, 29]. Some hybrid methods have also been developed to
reduce computing costs and to increase image quality [8, 21, 31].

1.1 Related Work

Nonetheless, volume rendering is still a slow process, especially
when the data size is large. Many techniques have been devel-
oped to speed up the computation. In [8, 21, 13], parallel volume
rendering algorithms are proposed to speed up the processing. In
[15, 19], the projections of FEA cells are approximated by using
polygons. Scanline algorithms for polygon filling are employed
to compute the values of the pixels covered by the projections.
Other researchers design advanced splatting methods by using tex-
ture maps and graphics hardware to reduce computing time. These
algorithms are presented in [5, 17, 18, 28, 33]. Ueng et al. devel-
oped an out-of-core algorithm for visualizing large vector field data
[26]. The FEA data is divided into sub-regions based on an oc-
tree structure. Only the sub-regions required in the computing are
brought into the main memory. Therefore the required memory ca-
pacity is reduced, and large data sets can be interactively processed
in a desktop machine. Another out-of-core method is proposed in
[31]. The data are compressed in a preprocessing stage. During the
rendering process, the data are uncompressed and rendered on the
fly by using hybrid volume rendering skills.

Recently many multiresolution visualization techniques are pro-
posed for rendering volume data. In these methods, the data are
pre-processed to form level-of-detail(LoD) representations. In the
visualization processing, data from one or several adjacent levels of
the LoD structures are rendered to produce the final image. There-
fore, the size of data involved in the processing is reduced, and the
rendering speed is increased. In [12], Laur and Hanrahan resam-
ple volume data based on an octree structure, and hence the data
are stored in hierarchical data structures. Lower resolution data are
rendered for quick visualization while higher resolution data are
rendered for exploring the details. A similar approach is adopted in
[16] for visualizing large irregular data. In [2, 4, 3, 9, 20], new al-
gorithms are presented to create LoD representations for tetrahedral
meshes. In these methods, the LoD structures are built up by grad-
ually simplifying and approximating the original meshes to support
multiple resolution visualization. Another method is designed by
LaMar et al. in [11]. The FEA data is encoded based on an octree
structure. Unlike other methods, the viewing direction and distance
of the eye position are taken into consideration in the rendering pro-
cessing. The regions closer to the viewer are rendered with higher
accuracy while other regions are visualized in lower resolution.

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

417

1.2 Summary

A new LoD visualization method for FEA data is presented in this
paper. At first, the FEA mesh is converted into an adjacency graph
by generating and connecting the Gauss points of the FEA data.
Then the adjacency graph vertices are merged to generate multiple
adjacency graphs based on user-defined criteria. These adjacency
graphs serve as the LoD representation of the FEA data. In order
to achieve better rendering quality, each adjacency graph vertex is
associated with several attributes. The basic attributes consist of
the function value and coordinates of the vertex. Other significant
attributes include: the influence scope which is a sphere represent-
ing the influence extents of the vertex, the gradient which shows
the direction in which the function value varies most, and the dif-
fusion which estimates the degree of the variation of the function
value. In the rendering processing, a level of adjacency graph is
selected by users. Then the vertices of the graph are projected onto
the image plane in back-to-front order to produce the image. To
speed up the computation, the vertices are rendered by using bill-
boards. The colors, opacities, shapes, and orientation of the bill-
boards are computed, based on the attributes of the vertices. The
billboards are then modulated with texture maps and composited
to generate the image. Compared with other methods, our method
possesses the following advantages: First, our approach is mesh-
less. No mesh generation, region-refinement, or cell coalescing
is required for constructing the LoD structure. Therefore our ap-
proach is easier to implement. Furthermore our method can also be
extended to cope with scattered data. Second, during the render-
ing computation, the targets to be rendered are the adjacency graph
vertices. The geometrical objects passed into the graphics pipeline
are a set of points. Therefore the costs of culling, clipping, and ren-
dering are reduced. Third, once the LoD structure is created, the
FEA mesh is no longer needed. Only the adjacency graph vertices
are stored. Therefore less memory space is needed for keeping the
hierarchical structure.

This paper is organized as follows: In Section 2, the methodol-
ogy of creating the LoD representation is presented. Then in Sec-
tion 3, our splatting rendering method is described. The usage of
the vertex attributes are explained there. Test results and analysis
are shown in Section 4. Conclusion and future work are provided
in Section 5.

2 CONSTRUCTION OF THE LOD REPRESENTATION

The LoD representation of the FEA data consists of multiple layers
of adjacency graphs. The bottom layer graph is comprised with the
Gauss points of the FEA cells. This graph is gradually reduced to
create other layers of adjacency graphs to form the multiple resolu-
tion representation.

2.1 Gauss Points and Function Reconstruction

In splatting rendering, projecting an FEA cell can be regarded as
carrying out integration inside the cell along the projection direc-
tion. Gauss quadrature method is a popular technique for calculat-
ing integration in FEA computing [32]. To evaluate the integration
of a function in an element, the element is transformed into a tem-
plate cell, the canonical cell. Then function values are sampled at
n specially selected points, the Gauss points. Each Gauss point is
associated with a weight. The summation of the products of the
function values and the weights are calculated. Finally, the sum-
mation is multiplied with the volume of the element to compute the
integration: ∫

e
f (x)dx ≈ ‖V‖

n

∑
i=1

wi f (xi),

ξ

ψ

η

0 1

1

1

X

Y

Z

(b) The Canonical Element(a) A Tetrahedral Element

Figure 1: The Canonical Cell of Tetrahedral Element

c

d

b

a

Gauss points
a
b
c
d

α, β, β
β, α, β
β, β, α
β, β, β

Coordinates Weights
0.25
0.25
0.25
0.25

α=0.58541020 β=0.13819660

Figure 2: Quadratic Order Gauss Points

where f (x) is the function to be integrated, ‖V‖ is the volume of the
element, and xi and wi are the coordinates and weights of the Gauss
points. The precision of this method depends on the number of the
Gauss points used in the integration. A quadratic order accuracy
is achieved, if 4 Gauss points are employed. Detail description of
Gauss quadrature method can be found in [1, 32]. In Figure 1, a
tetrahedral cell and the canonical cell are shown. The locations and
weights of the 4 Gauss points of the canonical cell are described in
Figure 2.

In our splatting method, the Gauss points of an FEA cell are
used as the sampling points in the function reconstruction. The
original function, in the cell, is reconstructed by using the following
equation:

f (x) ≈
n

∑
i=1

wi f (xi)φi(x),

where xi and wi are the positions and weights of the Gauss points,
and φi(x) are the reconstruction kernels. Since the projection of
a 3D Gauss function is a 2D Gauss function, for convenience, 3D
Gauss functions are served as the kernels in the function reconstruc-
tion.

2.2 Adjacency Graph of Gauss Points

Adjacency graphs are utilized to represent the connectivities of
FEA cells [22, 25, 26, 30]. The adjacency graph of an FEA data
set is defined by representing each cell by using a graph vertex. If
two cells are neighbors, the corresponding graph vertices are con-
nected by an edge. An example of FEA data adjacency graph is
depicted in Figure 3. Adjacency graphs can be computed in linear
time complexity by using the methods proposed in [22, 24].

Since the adjacency graph is the dual graph of the FEA mesh, it
is a good approximation of the mesh topologically. The adjacency
graph is modified in this work to obtain better accuracy. Instead of
using one vertex, four Gauss points are used to represent a tetra-
hedral cell. The 4 Gauss points of the cell are connected to form
a subgraph with 4 vertices and 6 edges. Then each Gauss point of
this subgraph is connected to the nearest Gauss points of the neigh-
boring cells, and the Gauss point adjacency graph is created. A 2D
example of Gauss point adjacency graph is displayed in Figure 4.
The mesh is comprised with 4 triangle cells, and three Gauss points

418

(b) The Adjacency Graph (a) An FEA Data Set of 20 Cells

Figure 3: Example of FEA Data Adjacency Graph

Gauss Point

FEA Mesh

Adjacency Graph Edge

Figure 4: 2D Example of Gauss Point Adjacency Graph

are calculated in each cell. The FEA mesh is depicted with dash
lines while the adjacency graph is drawn by using solid lines.

During the creation of the adjacency graph, the attributes of the
Gauss points are computed and stored along with the graph. The
function value and coordinates of the Gauss points are calculated by
interpolating the function values and coordinates of the cell nodes.
The gradient is obtained by evaluating the partial derivatives of the
interpolation function of of the function value. The influence scope
is a sphere centered at the Gauss point. Its radius is equal to 4 times
of the distance between the Gauss point and the nearest cell node.
This method of computing the influence scope radius is based on
our experiments. By using larger influence scopes, the final image
would be too opaque and too fuzzy to display the details, while
using smaller influence scopes may produce holes in the image.
A 2D example of influence scope is illustrated in Figure 5. The
Gauss point is displayed by using a rectangle while the cell nodes
are represented by using circles.

To compute the diffusion, the difference between the function
value of the point and the average function value of the neighbor-
ing points is calculated first. Then the difference is divided by the
influence scope volume of the point to obtain the diffusion:

favg =
∑k

1 f jV j

∑k
1 V j

,

D f (xi) =
‖ fi − favg‖

Vi
,

where favg is the average function value of the neighboring points,
f j and V j are the function values and influence scope volumes of
the neighboring points, fi, Vi, and xi denote the function value, in-
fluence scope volume, and coordinates of this Gauss point, and D f
represents the diffusion.

2.3 LoD Representation of FEA Data

Once the adjacency graph is completed, a breadth-first-search is
triggered to merge the graph vertices. If the function value differ-
ence between a vertex and one of its neighboring vertices is within a
predefined threshold, the two vertices are merged to generate a new
vertex. The coordinates, function value, gradient, and diffusion of
the new vertex are obtained by computing the weighted average of

Influence scope

cell node
Gauss point

radius

Figure 5: 2D Example of Influence Scope of Gauss Point

these attributes of the two vertices. The influence scope volumes of
the two vertices serve as the weights in the computation:

gnew =
g1V1 +g2V2

V1 +V2
,

where g1 and g2 represent the attributes of the two vertices, gnew
denotes the attributes of the new vertex, and V1 and V2 represent the
influence scope volumes of the two vertices. The influence scope
volume of the new vertex is calculated by:

Vnew = V1 +V2 −V1∩2,

where Vnew is the influence scope volume of the new vertex, and
V1∩2 is the volume of the intersection of the influence scopes of the
two vertices. Since the new influence scope is a sphere, its radius
can be determined once its volume is known.

Based on our experiments, the image quality may be too fuzzy if
vertices with large influence scopes are created. To avoid this prob-
lem, if the the influence scope diameter of the new vertex exceeds
a predefined limited, the two vertices will not be merged. The limit
of influence scope diameter is defined by:

k ∗ Ld
3
√

N
,

where k is a constant decided by users, Ld is the length of the di-
agonal of the bounding box of the data set, and N is the number of
cells. The other skill to improve image quality is to merge vertices
whose influence scopes overlapping most. If more than one neigh-
boring vertices satisfying the criteria, the neighboring vertex whose
influence scope overlapping with that of the current vertex most is
selected in the vertex merging. This skill helps us to avoid losing
contrast in the final image.

The breadth-first-search stops when the function value difference
between any two neighboring vertices exceeds the threshold. The
remaining vertices and the newly created vertices form a new ad-
jacency graph. This new graph is comprised with less vertices and
serves as a coarser approximation of the FEA data. Then the thresh-
old is increased, and this new adjacency graph is reduced to con-
struct another adjacency graph. As this graph reduction repeats,
multiple adjacency graphs are constructed. The LoD representation
is generated. An example of LoD adjacency graph is depicted in
Figure 6. The original adjacency graph with 160 vertices is shown
in the left part of the figure while the next level of adjacency graph
containing 66 vertices is illustrated in the right part.

3 LOD ADJACENCY GRAPH RENDERING

To visualize the FEA data, users are asked to select a level of adja-
cency graph. The selected adjacency graph is rendered by using a
splatting method. At first, all graph vertices are sorted according to
their visibility orders. Then they are projected onto the image plane

419

Figure 6: Example of LoD Adjacency Graph

Figure 7: Footprint Function of Different Variances

in back-to-front order. To speed up the projection, the vertices are
rendered by using billboards. The billboards are modulated with
textures to generate the footprints of the vertices. The footprints are
composited to form the final image.

3.1 The Footprint Function and Texture Maps

The splatting methods proposed in [28, 33] are used in our work.
Since 3D Gauss functions are served as the reconstruction kernels
and the parallel projection of a 3D Gauss function is a 2D Gauss
function, 2D Gauss functions are used as the footprint functions
in blending the effects of the vertices. A 2D Gaussian function is
defined by:

G(x,y) = S f ∗ e
−(x2+y2)

2σ2 , (1)

where S f is the scaling factor, and σ is the variance.
Evaluating the footprint function on the grid points of a 2D rect-

angular table and regarding the footprint function values as opac-
ities, a texture map is constructed. The texture map is used to
modulate billboards to produce the footprints of vertices. By using
different variances and scaling factors, different texture maps are
produced. A small variance results in a texture map with greater
variation of opacity. This phenomena is illustrated in Figure 7. The
variance of the footprint function in the left image is twice larger
than that of the footprint function in the right image. Therefore,
the variation of opacity in the right image is more significant. The
scaling factor is another factor which influences the texture map.
If the scaling factor is increased, the footprint function values are
enlarged and the texture map is more saturated. In this work, the
initial value of the scaling factor is equal to the weight of the Gauss
point. However, its value will be modified according to the size of
the influence scope. The method of modifying the scaling factor is
presented in the following subsection.

3.2 Diffusion and Influence Scopes

The diffusion of a vertex is an estimate of the variation of the func-
tion value. If the diffusion is large, the function value varies sig-
nificantly near the vertex. To reflect the quick change of function
value, the billboard of the vertex is modulated with a texture map

of greater variation. On the other hand, if the diffusion is low, the
function value varies smoothly. The billboard should be modulated
with a texture map of low contrast. A heuristic method is adopted
for calculating the variance of the footprint function. At first, a
standard variance, σavg, is selected as the basis. Given a diffusion
value, D f , the variance, σ , is computed by:

σ2 = min(
lnDavg

lnD f
,c)σ2

avg,

where Davg is the average value of the diffusions of all vertices, and
c is a constant defined by users to avoid producing infinite variance
when D f is small.

Beside the diffusion, the volume of influence scope also affects
the variance and the scaling factor. The projection of a large in-
fluence scope is wider and more opaque. The intensity in the pro-
jection also varies more quickly. Therefore the billboard should
be modulated with a texture map with more saturated opacity and
greater variation. The methods proposed in [12] are modified to ad-
just the footprint function to generate the desired texture map. First
the average diameter of influence scope is calculated and treated
as the standard diameter. If the diameter of a influence scope is m
times larger than the standard diameter, then the scaling factor and
the variance are modified by:

Snew = 1− (1−Sold)m,

σ2
new =

σ2
old
m

,

where Snew and σnew are the new scaling factor and variance, and
Sold and σold are the original scaling factor and variance.

3.3 Billboard Orientation and Shapes

In the splatting method, the projection of a vertex is rendered by
using a semi-transparent billboard. Theoretically, the billboard is a
patch in the iso-surface passing through the vertex, and the gradi-
ent is the normal vector of the patch. When the gradient is nearly
orthogonal to the view direction, the patch should appear narrow to
the viewer. Therefore, the billboard has to be rotated and reshaped.
At first, the gradient is projected onto the image plane to generate
a 2D vector. Then the billboard is rotated until one of its axes, the
y-axis, coincides with the 2D vector. Then the billboard is scaled
down in its y-axis. The scaling coefficient,C f , is computed by:

C f = max(
~g
‖~g‖ · ~v

‖~v‖ ,0.2),

where ~g is the gradient, and ~v is the view direction. The scalar
value, 0.2, is treated as a threshold to avoid creating a slim bill-
board. An example of rotating and reshaping the billboard by using
the gradient is demonstrated in Figure 8.

4 IMPLEMENTATION AND TEST RESULTS

The whole system is implemented on a desk-top machine equipped
with a 2.0 GHz cpu and 768M bytes main memory. The operating
system is RedHat Linux 7.0. The splatting rendering procedure is
implemented by using OpenGL under the Linux system. The image
resolution is 700x700.

4.1 Implementation Issues

In the construction of the LoD structure, the threshold is linearly in-
creased between every two iterations of the graph reduction. There-
fore, in the i-th iteration of graph reduction, the criterion of merging

420

Gradient
X

Y

The Billboard after
Rotation & Reshaping

X

YGradient

The Original Billboard

Figure 8: Rotating and Reshaping of Billboard

two vertices is determined by:

‖ f1 − f2‖
‖ fmax − fmin‖

≤ i∗ ε, (2)

where f1 and f2 are the function values of the vertices, fmax and
fmin are the maximum and the minimum function values of the data
set, and ε is a constant. The value, i ∗ ε , is called the reduction
error, and ε is the incremental value of the reduction error. The
reduction error represents the relative error introduced in the graph
reduction. Given a fixed reduction error, there are two ways of cre-
ating an adjacency graph. The first one is to create the adjacency
graph by starting with a small reduction error. Then the reduction
error is gradually increased and the reduction process is repeated
until the reduction error equal to the limit. The second way is to
construct the adjacency graph by using the given reduction error di-
rectly and performing the graph reduction just once. The reduction
errors of the two adjacency graphs are the same. However, based
on our experiments, the adjacency graph generated by using the first
method results in better image quality than that produced by using
the second method.

To speed up the splatting, some approximating techniques are
adopted in the implementation. Sixteen texture maps are generated
by using different variances at a preprocessing stage. When splat-
ting a vertex, the diffusion and the influence scope diameter are
used to compute the variance of the footprint function. The texture
map with the nearest variance is selected for the splatting. The in-
fluence scope diameter is also used in computing the scaling factor
of the footprint function. However, the scaling factor is not directly
used to modify the texture map. Instead it is utilized to increase or
decrease the opacity of the billboard. Based on the function value
of the vertex, the color and opacity of the billboard are retrieved
from a look-up table. The billboard size is set to the diameter of
the influence scope. The billboard is shaded by using Phong Illu-
mination Model. The gradient is served as the normal vector in the
shading computation.

Three data sets are utilized in the experiments. To create the first
data set, we split a unit cube into a tetrahedral mesh. The function
value of each node is set to the distance from the cube center to the
node. This data set is called the Standard Data Set. The second test
data set contains a wind-tunnel simulation of the M6-wing. The
energy values of the data set are rendered in the tests. The third
data set is created by releasing particles in a turbulence flow field
around a spherical obstacle inside a round tube. The density of
particle inside the domain is visualized in the tests.

4.2 Costs of Constructing LoD Representation

For each data set, three adjacency graphs are constructed. The
graph reduction is carried out many times to build an adjacency
graph. The incremental values of reduction error, ε , for the standard
data, the M6 wing data, and the turbulence flow data are 0.000134,
0.00177, and 0.000058 respectively. The reduction errors and the

Table 1: Errors of Adjacency Graph Reduction

Data Set #Point Error #iteration
Standard 1,703,580 0.0 0

442,297 0.00255 19
96,361 0.00482 36

M6 Wing 1,151,848 0.0 0
493,003 0.01947 11
199,480 0.09945 85

Turbulence 3,343,008 0.0 0
982,753 0.00035 6
596,866 0.00243 42

number of iterations of the graph reduction performed to generate
the adjacency graphs are displayed in Table 1. The numbers of
points in the adjacency graphs are shown in the second column.
The reduction errors are displayed in the third column. The last
column contains the numbers of iterations of the graph reduction
performed. For the standard data, the first adjacency graph and the
adjacency graphs produced in the 19th and the 36th iteration are
selected. For the M6 wing data, the original adjacency graph and
the adjacency graphs produced in the 11th and the 85th iteration are
kept for the rendering processing. For the turbulence data, the first
adjacency graph and the adjacency graphs generated in the 6th and
the 42nd iteration are stored.

The costs of constructing the adjacency graphs are depicted in
Table 2. The third column contains the reduction ratios. A reduc-
tion ratio is computed by dividing the number of points in the first
level of adjacency graph by the number of points in the current
level of adjacency graph. The last column displays the costs to
build each level of the adjacency graph from the first level adja-
cency graph. The costs are measured in seconds. To build a new
adjacency graph, several iterations of graph reduction have to be
carried out. For example, the 2nd and the 3rd adjacency graphs of
the M6 wing data are created by performing 11 and 85 iterations of
graph reduction. Dividing the cost by the number of iteration, the
average cost of performing one iteration of the graph reduction is
computed. The average graph reduction costs of the standard data,
the M6 wing data, and the turbulence flow data are 3.98, 1.16, and
10.24 seconds respectively. These costs are influenced by the sizes
of the data sets. The average graph reduction cost of a larger data
set is always bigger. The topology of mesh is also a key factor.
The topological structures of the standard data and the M6 wing
data are simpler. Therefore, their average graph reduction costs are
lower. The main memory capacity is another important issue. In
our implementation, the whole LoD structure is kept in the main
memory when performing the graph reduction. The required mem-
ory space of the turbulence flow data exceeds the memory capacity
of the computer. Page-swapping is triggered by the OS to transfer
data between the disk and the main memory. Therefore the average
reduction cost is increased.

4.3 Costs of Splatting Rendering

The costs of rendering the LoD structures of the test data are col-
lected and displayed in Table 3. The costs, measured in seconds,
are displayed in the third column. The speed-up rates, contained in
the last column, are obtained by dividing the rendering cost of each
level of the adjacency graph with the rendering cost of the first level
adjacency graph. The standard test data reveals an obvious speed-
up in the rendering computation as the number of points decreased.
However, the speed-up for the other two test data sets is lower than
our expectation. The reason is that the view point is put inside the
domains, and many vertices are outside the view volume and culled

421

Table 2: Costs of Constructing LoD Representation

Data Set #Point Reduction Ratio Costs(sec.)
Standard 1,703,580 1:1 0.0

442,297 3.85:1 61.76
96,361 17.68:1 111.05

M6 Wing 1,151,848 1:1 0.0
493,003 2.34:1 25.49
199,480 5.77:1 98.22

Turbulence 3,343,008 1:1 0.0
982,753 3.40:1 254.05
596,866 5.60:1 430.12

Table 3: Costs of Volume Rendering

Data Set Num. of Point Costs(sec.) Speed-up
Standard 1,703,580 30.87 1.0

442,297 8.08 3.82
96,361 2.44 12.65

M6 Wing 1,151,848 35.70 1.0
493,003 22.23 1.61
199,480 16.16 2.21

Turbulence 3,343,008 37.17 1.0
982,753 25.50 1.46
596,866 15.84 2.38

by the graphics pipeline. Therefore, only a portion of the vertices
are involved in the rendering, and the speed-up is not linear.

4.4 Visualization Results

The images shown in Figures 9,10, and 11 are the visualization re-
sults of the first test data. The original adjacency graph contains
more than 1.7 million of points. The volume rendering image of
this graph is shown in Figure 9. The other two adjacency graphs
contain about 442 and 96 thousand points respectively. The vol-
ume rendering images of these graphs are shown in Figures 10 and
11. Comparing these two images with Figure 9, the quality of im-
age is still clear enough to reveal the distribution of function value,
even though the data size is reduced by more than 17 times. The
next series of pictures displays the visualization results of the M6-
wing data. The distribution of energy around the wind is displayed.
The original adjacency graph is composed of about 1.15 million
of points. The other two coarser adjacency graphs are comprised
with 493 and 199 thousand points. The volume rendering images of
these adjacency graphs are shown in Figures 12, 13, and 14. As the
data size is reduced by more than 82%, the image of the adjacency
graph with lowest resolution still sustains an accurate approxima-
tion of the volume rendering image of the original adjacency graph.
The third series of pictures shows the volume rendering images of
the turbulence flow data. The colors are used to show the density
of particles traveling in the flow field. In Figure 15, the original
adjacency graph of 3.3 million points is rendered. The second level
of adjacency graph consists of 997 thousand points. The volume
rendering image of the graph is displayed in Figure 16. The adja-
cency graph of the third level contains only 599 thousand vertices.
The image of Figure 17 is the visualization result of the adjacency
graph. Comparing the three pictures, it is obvious that the image
produced by rendering the simplified adjacency graph still reveals
the key features of the flow field, though the number of vertices is
reduced to about one sixth of the original data.

Figure 9: Standard Data Set of 1.7 M Points

Figure 10: Standard Data Set of 442K Points

Figure 11: Standard Data Set of 96K Points

422

Figure 12: M6 Wing Data Set of 1.15 M Points

Figure 13: M6 Wing Data Set of 493K Points

Figure 14: M6 Wing Data Set of 199K Points

Figure 15: Turbulence Flow Data Set of 3.3 M Points

Figure 16: Turbulence Flow Data Set of 982K Points

Figure 17: Turbulence Flow Data Set of 596K Points

423

5 CONCLUSION AND FUTURE WORK

In this article, an LoD volume visualization method for FEA data
is presented. It constructs hierarchical representations of FEA data,
and allow users to render the data with different precisions. Fur-
thermore, our method is a meshless method. It can be extended to
cope with scattered scientific data and the data generated by using
meshless FEA computational methods. Some FEA computation
may last for a long time before the final solution is generated. It is
useful to visualize the partial results while the computation is car-
rying on such that ill-modeled computing can be terminated before
wasting too much resources. Our method can be modified to com-
bined with FEA solvers to generate volume rendering images dur-
ing the computing. Therefore, the progression of the computing can
be monitored interactively. Data compression is another important
issue for FEA computing [23, 31]. The adjacency graph structure
offers an alternative choice for compressing FEA data. Our LoD
representation can be utilized to replace the mesh of FEA data to
save memory space.

REFERENCES

[1] D. Burnett. Finite Element Analysis. 1987.
[2] Prashant Chopra and Joerg Meyer. TetFusion: An Algorithm for Rapid

Tetrahedral Mesh Simplification. In Proceedings of the IEEE Visual-
ization’2002, pages 133–140, 2002.

[3] p. Cignoni, D. Costanza, C. Mantani, C. Rocchini, and R. Scopigno.
Simplification of Tetrahedral Meshes with Accurate Error Evaluation.
In Proceedings of IEEE Visualization’2000 Conference, August 2000.

[4] Paolo Cignoni, Claudio Montani, Enrico Puppa, and Roberts
Scopigno. Multiresolution Representation and Visualization of Vol-
ume Data. IEEE Transactions on Visualization and Computer Graph-
ics, 11:352–369, 1997.

[5] A. Roger Crawfis and Nelson Max. Texture Splats for 3D Scalar
and Vector Field Visualization. In Proceedings of the IEEE Visual-
ization’93, 1993.

[6] R. Gallagher and J. Nagtegaal. An Efficient 3D Visualization Tech-
niques for Finite Element and Other Coarse Volume. ACM Computer
Graphics, 23:185–193, 1989.

[7] M. P. Garrity. Raytracing Irregular Volume Data. Computer Graphics,
24:35–40, 1990.

[8] C. Giertsen and J. Petersen. Parallel Volume Rendering on a Network
of Workstations. IEEE Computer Graphics and Applications, 13:16–
23, 1993.

[9] Wei Hong and Arie Kaufman. Feature Preserved Volume Simplifica-
tion. In Proceedings of the 8th ACM Symposium on Solid Modeling
and Applications, pages 334–339, 2003.

[10] James Kajiya. Ray Tracing Volume Densities. In Proceedings of SIG-
GRAPH’84 Conference, pages 165–174, 1984.

[11] Eric LaMar, Hamann Bernd, and Kenneth Joy. Multiresolution Tech-
niques for Interactive Texture-Based Volume Visualization. In Pro-
ceedings of IEEE Visualization’1999 Conference, pages 355–362,
1999.

[12] David Laur and Pat Hanrahan. Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering. In Proceedings of SIG-
GRAPH’91 Conference, July 1991.

[13] K. L. Ma, J. Painter, and M Krogh. A Data Distributed Parallel Algo-
rithm for Ray-tracing Volume Rendering. In Proceedings of Parallel
Rendering Symposium’93, pages 15–22, 1993.

[14] Nelson Max. Optical Models for Direct Volume Rendering. IEEE
Transactions on Visualization and Computer Graphics, 1(2):99–108,
1995.

[15] Nelson Max, P. Hanrahan, and R. Crawfis. Area and Volume Coher-
ence for Efficient Visualization of 3D Scalar Functions. ACM Com-
puter Graphics, 24:27–33, 1990.

[16] Jeremy Meredith and Kwan-Liu Ma. Multiresolution View-
Dependent Splat Based Volume Rendering of Large Irregular Data.
In Proceeding of IEEE Visualization’2001 Conference, pages 93–100,
2001.

[17] Klaus Mueller and Roger Crawfis. Eliminating Popping Artifacts in
Sheet Buffer Based Splatting. In Proceedings of the IEEE Visualiza-
tion ’98, pages 239–245, 1998.

[18] Klaus Mueller and Roger Crawfis. Splatting without the Blur. In
Proceedings of the IEEE Visualization ’99, August 1999.

[19] Peter Shirley and Allan Tuchman. A Polygonal Approximation to
Direct Scalar Volume Rendering. In Proceedings of 1990 Workshop
on Volume Visualization, pages 63–70, December 1990.

[20] Issac J. Trotts, Bernd Hamann, and Kenneth I. Joy. Simplification of
Tetrahedral Meshes with Error Bounds. IEEE Transactions on Visual-
ization and Computer Graphics, 5(3):99–108, 1999.

[21] Shyh-Kuang Ueng and Kris Sikorski. Parallel Visualization of 3D Fi-
nite Element Analysis Data. In Proceedings of the 7th SIAM Confer-
ence on Parallel Processing for Scientific Computing, pages 808–813,
1995.

[22] Shyh-Kuang Ueng and Kris Sikorski. A Note on a Linear Time Algo-
rithm for Constructing Adjacency Graphs of 3D FEA Data. The Visual
Computer, 12(9):445–450, 1996.

[23] Shyh-Kuang Ueng and Kris Sikorski. A Data Compression Method
for Tetrahedral Meshes. In Proceedings of SPIE Visualization and
Data Analysis 2002, volume 4665, pages 134–141, San Jose, CA,
USA, 2002.

[24] Shyh-Kuang Ueng and Kris Sikorski. An Out-Of-Core Method for
Computing Connectivities of Large Unstructured Meshes. In Pro-
ceedings of the 4th Eurographics Workshop on Parallel Graphics and
Visualization, pages 97–103, Blaubeuren, Germany, September 2002.

[25] Shyh-Kuang Ueng, Kris Sikorski, and Kwan-Liu Ma. Fast Algorithms
for Visualizing Fluid Motion in Steady Flow on Unstructured Grid. In
Proceedings of IEEE Visualization’1996 Conference, pages 313–319,
1996.

[26] Shyh-Kuang Ueng, Kris Sikorski, and Kwan-Liu Ma. Out-Of-
Core Streamline Visualization on Large Unstructured Meshes. IEEE
Transactions on Visualization and Computer Graphics, 3(4):100–108,
1997.

[27] Lee Westover. Interactive Volume Rendering. In Proceedings of the
Chapel Hill Workshop on Volume Visualization, May 1989.

[28] Lee Westover. Footprint Evaluation for Volume Rendering. In Pro-
ceedings of SIGGRAPH’90 Conference, August 1990.

[29] Peter L. Williams. Interactive Splatting of Nonrectilinear Volumes.
In Proceedings of IEEE Visualization’1992 Conference, pages 37–44,
1992.

[30] Peter L. Williams. Visibility Ordering Meshed Polyhedra. ACM Trans.
on Graphics, 11(2):103–126, 1992.

[31] Chuan-kai Young, Tulika Mitra, and Tzi-cker Chiueh. On-the-Fly
Rendering Of Losslessly Compressed Irregular Volume Data. In Pro-
ceedings of the IEEE Visualization’00, pages 101–108, 2000.

[32] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. 1989.
[33] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus

Gross. EWA Volume Splatting. In Proceedings of IEEE Visualiza-
tion’2001, pages 29–36, 2001.

424

