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Figure 1: Vortex structures extracted by the GPU. Simulated flow transition (left), simulation of hurricane Isabel (right).

ABSTRACT

Feature detection in flow fields is a well researched area, but prac-
tical application is often difficult due to the numerical complexity
of the algorithms preventing interactive use and due to noise in ex-
perimental or high-resolution simulation data sets. We present an
integrated system that provides interactive denoising, vortex detec-
tion, and visualization of vector data on Cartesian grids. All three
major phases are implemented in such a way that the system runs
completely on a modern GPU once the vector field is downloaded
into graphics memory. The application aspect of our paper is two-
fold. First, we show how recently presented, prototypical GPU-
based algorithms for filtering, numerical computation, and volume
rendering can be combined into one productive system by handling
all idiosyncrasies of a chosen graphics card. Second, we demon-
strate that the significant speedup achieved compared to an opti-
mized software implementation now allows interactive exploration
of characteristic structures in turbulent flow fields.

CR Categories: I.3.3 [Computer Graphics]: Interactive
Rendering—Flow Visualization;

Keywords: Features in Volume Data Sets, Flow Visualization,
Hardware Acceleration, 3D Vector Field Visualization

1 INTRODUCTION

Physical and numerical flow simulations have become an important
part of the research activities in both industry and academia. To
gain understanding of the simulated flow, it is necessary to perform
some kind of data analysis. This is usually done by scientific flow
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visualization. A good survey of state-of-the-art flow visualization
techniques can be found in [17].

While there is probably no single visualization technique that can
be regarded the best one, there is no doubt that feature detection
methods are among the most effective tools for understanding flow
field structures. Of these, in turn, the class of vortex detection algo-
rithms has proven to be of special importance.

However, vortex detection is computationally much more expen-
sive than drawing an isosurface of the velocity magnitude or a slice
with any other scalar property mapped to a color. Accordingly, vor-
tex detection currently cannot be done on an off-the-shelf PC at
interactive frame rates—which may be desirable for tracking flow
structures over several time-steps in unsteady flows or for analyzing
flow data obtained by simulation or measuring techniques vulner-
able to noise, e.g. direct numerical simulation (DNS) or particle
image velocimetry (PIV).

In the latter cases, the vortex detection may be considerably affected
by noise (Fig. 2). Accordingly, some form of denoising should be
applied to the raw data before one tries to detect vortices. If the
frequency of the noise is known in advance, denoising is most ef-
fectively accomplished by designing a bandpass filter capable of
removing the relevant frequencies.

However, if the noise cannot be exactly located in the frequency
domain, an interactive cycle of filtering, vortex detection, visualiza-
tion and evaluation (based on the existing knowledge of the flow)
must be entered and repeated until the optimal filter characteris-
tics have been found and a visualization of acceptable quality is
obtained. Obviously, neither filtering nor visualization come for
free so handling the complete cycle is even more difficult than han-
dling the vortex detection alone. For engineers working in the field
of fluid dynamics verifying results of experiments or simulations
therefore presents a tedious and time-consuming task.

In this paper we present a system to alleviate this situation. We
demonstrate that by shifting the entire cycle from the CPU to the
GPU and by exploiting the modern GPUs’ parallel processing capa-
bilities interactive work is possible. Our solution expects the vector
field data to be made available in a texture which assumes the in-
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Figure 2: Vortex structures extracted from unfiltered vector fields.
The data sets are the same as those used in Fig. 1.

put data is defined on a uniform Cartesian grid. However, there are
efficient techniques for the conversion between grids without sacri-
ficing much accuracy (see e.g. [23]), thus, this poses no limitation.
Once the vortices have been detected an isosurface of the detected
vortex regions is generated. If the user decides to adjust the filter
support or the isovalue he will get an instantaneous update of the
visualization. Since at no instant any intermediate results have to
be passed back to the application, immediate feedback is obtained.

The remainder of the paper is organized as follows: In Section 2 we
discuss work of other researchers related to this paper. Section 3
outlines the λ2 vortex detection method and motivates why it was
used in this work. The architecture of our system is presented in
Section 4, followed by an evaluation in Section 5. The paper con-
cludes in Section 6.

2 RELATED WORK

A large body of research has been conducted on methods that are
able to reliably detect vortices. The papers by Jiang et al. [9] and
Post et al. [17] provide good overviews of the most popular tech-
niques and give taxonomies of vortex detection algorithms.

So-called local methods require only operations within the neigh-
borhood of a cell; thus, all algorithms based on the Jacobian matrix
(or the velocity gradient tensor) fall into this class. On the contrary,
global methods examine many grid cells to detect a vortex. Typi-
cal representatives of this class are algorithms based on streamline
tracing.

Furthermore, vortex detection algorithms can be classified accord-
ing to Galilean invariance. A vortex detection algorithm that is
Galilean invariant is valid in all inertial frames of reference and thus
is able to detect vortices not only in steady but also in time-varying
flow fields.

To our knowledge, none of the vortex detection algorithms found
in the literature has ever been implemented on a GPU. However,
many techniques have been developed to effectively visualize flow
fields using a GPU. Especially texture-based techniques—though
rather dated [2, 14]—are enjoying great popularity and are still a
topic of research [24]. Since the basic procedure of GPU-based
vortex detection can be expected to be the same as that of GPU-
based flow visualization, these research results are nevertheless a
valuable foundation for this work.

GPU-based feature detection is the most prominent part of this
work. Two other aspects are GPU-based filtering and volume
rendering. Both fields have been studied in detail by several
researchers. Hardware-accelerated filters—both linear and non-
linear—implementing a wide variety of kernels have been described

in [7, 6, 21]. Volume rendering techniques for Cartesian grids are
studied in [25, 18, 11]. Since this work concentrates on feature
detection and extraction and on integrating various techniques into
a productive system, we exclusively relied on these standard tech-
niques for filtering our data and visualizing the vortex structures.

3 THE λ2 METHOD

Most of the graphics adapters nowadays shipped with off-the-shelf
PCs include both programmable vertex and fragment processors.
Thus, the programmer is able to operate on each vertex provided by
the application and each fragment generated by the rasterization.
Since arbitrary data can be stored in texture memory with 32 bit
accuracy, these features have been used not only to create real-time
advanced visual effects but also to implement numerous numerical
algorithms. In fact, the modern GPUs’ high parallelism on several
levels (memory bandwidth, redundant rendering pipelines) has even
led to the development of general numerical libraries that allow the
user to transparently use the GPU as a high-performance floating-
point coprocessor [12].

Nevertheless, a GPU implementation will not be advantageous for
all algorithms. For a GPU implementation to be beneficial, it is
of paramount importance that the algorithm exhibits local behavior
or—put another way—that it can be efficiently implemented on a
multi-processor computer. Thus, referring to the taxonomies given
in Sec. 2 global vortex detection methods can immediately be dis-
carded. Galilean invariance was said to be another desirable prop-
erty of a vortex detection algorithm. This further isolates the num-
ber of vortex detection algorithms appropriate for an implementa-
tion on the GPU.

Of the algorithms proposed in the literature, we have found the λ2
method proposed by Jeong and Hussain [8, 15] to be the most suit-
able algorithm with these properties. This method is generally re-
garded to produce good results and only shows some shortcomings
when applied to turbomachinery flows [20]; thus, the λ2 method
presents an adequate choice.

Given a vector field

u(x) =





u1
u2
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the λ2 method first decomposes the velocity gradient tensor ∇u (the
Jacobian matrix of the vector field) into a symmetric part S and an
antisymmetric part Ω:
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From a physical point of view S is the strain-rate tensor and Ω the
spin tensor. Next, the eigenvalues of the matrix S2 +Ω2 need to be
determined. Since this matrix is real and symmetric, there will be
three eigenvalues—roots of the characteristic polynomial—denoted
by λ1 ≥ λ2 ≥ λ3. A vortex is then defined as a connected region
where two of the eigenvalues are negative. The eigenvalue relevant
for visualization is λ2—hence the name of the method.

4 SYSTEM ARCHITECTURE

The system is divided into two parts: an initialization part that is
executed once per data set and the actual cycle that is entered each
time the filter characteristics are adjusted by the user.
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Prior to entering the cycle, the vector field (which is assumed to
be defined on a Cartesian grid) must be loaded and preprocessed.
The preprocessing consists of adding a one-cell border around the
volume. The values of the border cells are chosen such that the gra-
dients at the original cells can all be determined using central dif-
ferences. This work-around relieves us from the burden of having
to handle border cells differently from inner cells during gradient
estimation. Thus, assuming original grid dimensions of I × J ×K,
a volume of the dimensions (I +2)× (J +2)× (K +2) is obtained.
This volume is then cut into K +2 slices each holding all the values
of a constant Z-coordinate and each slice copied to a 2D RGBA-
texture. We have chosen a 32 bit floating point texture for this pur-
pose since this allows us to store vector components of type float
without introducing truncation errors on common PC platforms.

The cycle in turn can be further divided into three major parts: de-
noising of the raw vector data, computation of λ2 values, and ren-
dering of the output of the vortex detection algorithm. Since the λ2
values comprise scalar data, any volume rendering technique can be
employed for visualization. Thus, part three can be titled the vol-
ume visualization phase. The following subsections describe these
parts in detail.

For our implementation we have chosen the ATI 9800 graphics
adapter and DirectX/D3D despite the low instruction limit of 64 +
32 = 96 instruction slots. The reason for choosing this platform is
that—as will be shown—the system requires multiple passes if the
number of redundant computations is to be reduced and multi-pass
rendering with the ATI/DX9 combination does involve only a very
minor performance penalty.

4.1 Filtering

All measurements—and even some simulation data—are subject to
noise. To oppress this noise, a lowpass filter can be employed. Usu-
ally, a lowpass filter’s ability to oppress noise greatly depends on its
support, i.e. the number of neighbors incorporated into the calcula-
tion of the filtered value.

In a hardware implementation the neighbors need to be determined
by lookups into textures filled by the application with the appro-
priate information. Thus, a filter of support N requires N3 texture
lookups to obtain the neighbor information. Our target platform
only supports 32 texture lookups per pass; thus, the maximum filter
support that can be implemented in a single pass is three. If more
advanced filters are required, multi-pass implementations must be
resorted to.

For this work, a Gaussian lowpass filter has been employed. This
type of filter has two benefits that make it suitable for our applica-
tion:

• The Gauss filter is isotropic, i.e. it is rotation invariant. In
contrary to non-isotropic filters, isotropic filters are good at
preserving oriented features which is essential for vortex de-
tection.

• The Gauss filter is separable, i.e. small filter kernels can be
implemented in a single pass while large filter kernels can be
implemented with several passes with little additional over-
head.

For the presented system, both single- and multi-pass Gaussian low-
pass filters have been implemented.

Single-Pass Filtering To filter the (border-extended) vector
data, the application renders K +2 filled quadrilaterals of (I +2)×
(J + 2) pixels each. For each quadrilateral, the current slice, the

one to the back, and the one to the front are passed as textures. A
pixel shader then is executed for each generated fragment. In the
shader the neighbors are looked up and multiplied by a weighting
factor. The intermediate results are then added and written to the
RGB-components of the output pixel. The filtered data is directly
rendered to a second stack of K + 2 floating point textures, each
texture again of size (I + 2)× (J + 2) texels. Overall, 27 texture
lookups plus 44 arithmetic instruction slots are required.

To obtain the weights of the neighbors we evaluate the Gauss func-
tion for the arguments 0, x,

√
2x, and

√
3x and normalize the func-

tion values so that the sum over all 27 weights equals one. The value
of x is predefined to some constant value and denotes the minimum
distance between voxel centers. The remaining arguments are cal-
culated by considering the other distances (match in at most one
coordinate) relative to the minimum distance. The arguments for
evaluating the Gauss function remain constant. However, the user
can adjust the variance σ 2 of the Gauss function and thus can adjust
the neighbor weights which are then passed to the pixel shader as
program parameters.

Multi-Pass Filtering A single-pass Gauss filter is restricted
to support three. If multiple passes are acceptable, the 3D Gauss
filter can be separated into three 1D filters, each of them applied
in a single rendering pass and reusing the output of the preceding
filter pass. The order of the passes is arbitrary and does not effect
the result. However, the complexity of the implementation and the
amount of temporary texture memory are very well affected.

If the data is filtered first in X- and Y-direction, only a single input
and output texture are required for the first two passes since the in-
put data is stored as Z-aligned slices. However, the final Z-direction
rendering pass requires N slices to have already been filtered in X-
and Y-direction; thus, N + 1 temporary floating point textures are
required.

On the other hand, if the data is filtered first in Z-direction, N slices
of the unfiltered vector data are used as input and the result is writ-
ten to a single floating point texture. For the remaining passes,
another floating point texture is required; thus, only two temporary
textures are required (independent of the filter support) and no pro-
gram logic is needed that caches the results of the XY-filtering for
a final Z-filtering pass.

As before, the filtering is then done by rendering K+2 filled quadri-
laterals of (I + 2)× (J + 2) pixels. In the pixel shader, the current
pixel’s N neighbor values (including itself) are looked up. Since
all neighbors are equidistantly spaced, the Gauss function is now
evaluated at equidistantly spaced points to obtain the weights.

The passes consume N texture lookups each and 32 and 12 instruc-
tions slots for the filtering in X-/Y- and Z-direction, respectively.
Since, in either case, at most N texture lookups are required, filter
supports of up to 31 could theoretically be implemented with the
number of texture lookups restricted to 32. However, on our plat-
form the number of texture samplers is currently limited to 16 so
the maximum filter support is 15.

4.2 Vortex Detection

A careful implementation of λ2 vortex detection requires almost
twice as many instruction slots as are available on the ATI 9800.
Hence it is impossible to implement the vortex detection in a single
pass and the question arises as to where to cut the pixel shader into
passes.

This split-up must not be arbitrary. When adjusting an algorithm
to multi-pass rendering, intermediate results are written to a texture
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which in turn is made available to the subsequent pass. This means
that the amount of intermediate data per pixel has to fit into a RBGA
texel of at most 128 bit. If this does not suffice it is possible on some
architectures to use multiple render targets (MRTs). Fortunately,
the λ2 method can very nicely be split into two passes.

The idea is to calculate the coefficients of the characteristic polyno-
mial in the first pass and to solve the characteristic equation in the
second pass. Since the characteristic polynomial is a cubic, only
four floating point numbers need to be passed between the passes.
This data tightly fits into an RGBA value and thus allows us to
abandon MRTs.

The following paragraphs outline the shader implementations.

Pass 1: Finding the Characteristic Polynomial The HLSL
instruction set includes instructions for manipulating matrices and
vectors. Formulating the λ2 method in HLSL is therefore a trivial
task:

// Construct the Jacobian and its transposed

jacobianT = float3x3(gradientX, gradientY, gradientZ);

jacobian = transpose(jacobianT);

// Determine the symmetric and antisymmetric parts

symmetric = (jacobian + jacobianT)/2.0;

antisymmetric = (jacobian - jacobianT)/2.0;

// ... and the sum of their squares

sum = mul(symmetric, symmetric) +

mul(antisymmetric, antisymmetric);

...

Unfortunately, this code compiles to too many instruction slots.
However, by considering that the matrix to be used for calculat-
ing eigenvalues is symmetric, a more efficient (and somewhat more
unreadable) formulation can be found that requires only six tex-
ture lookups and 59 instruction slots and, therefore, is accepted as
a single-pass shader:

sum00 = gradientX.x * gradientX.x +

gradientY.x * gradientX.y +

gradientZ.x * gradientX.z;

sum01 = gradientX.x * (gradientY.x + gradientX.y)/2.0 +

(gradientY.x * gradientY.y +

gradientZ.x * gradientY.z +

gradientX.y * gradientY.y +

gradientZ.y * gradientX.z)/2.0;

The remaining matrix entries can be derived analogously by permu-
tations of indices. Once the sum matrix has been derived, the coef-
ficients of the characteristic polynomial are calculated in a straight-
forward way and assigned to the current pixel’s color to make them
available to the solver pass.

Pass 2: Solving the Characteristic Equation To solve the
polynomial equation involving the characteristic polynomial, we
adopted the modification of Cardan’s solution proposed by Nick-
alls [16]. Assuming a cubic polynomial equation

ax3 +bx2 + cx+d = 0

the method gives the three roots (eigenvalues in our case) α , β , and
γ by

α = xN +2δ cos(θ) (1)
β = xN +2δ cos(2π/3+θ) (2)
γ = xN +2δ cos(4π/3+θ) (3)

Figure 3: Comparison of the two root finding approaches. As can
be seen at the large arch near the image center, the handling of two
cases (bottom) removes some artifacts present when handling only
one case (top). The colors denote the velocity magnitude.

where

xN = −b/(3a)

cos(3θ) = −yN/(2aδ 3)

δ 2 = (b2 −3ac)/(9a2)

and yN is the value of the polynomial evaluated at xN .

Expressions (1) – (3) can be easily mapped to graphics hardware
since the HLSL instruction set includes a both a cos and an acos

instruction. However, the PS2.0 sincos instruction (which the
HLSL cos is mapped to) consumes eight instruction slots; thus,
a total of 24 instruction slots are required for the three cosine cal-
culations alone. As a result, when using the native instructions of
the GPU, the maximum number of instructions is surpassed and the
program is again rejected.

One often used technique to solve this problem is to replace trigono-
metric operations with lookups into 1D luminance textures of pre-
calculated function values. Thus, by creating two textures with pre-
computed cosine and inverse cosine values, respectively, only four
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(a) (b) (c)

Figure 4: Comparison of slab filling methods. (a) Original slices,
(b) pre-calculated axis-aligned slices, (c) viewport-aligned slices cal-
culated on-the-fly.

texture lookups are necessary for obtaining θ and the three cosines.

However, this approach is too general for our application.
What is actually needed are cosine values for the arguments
arccos(−yN/(2aδ 3))/3 + 2k/3π where k ∈ {0,1,2}. It is, there-
fore, much more efficient to create a single 1D RGBA texture1

storing precomputed cosines for these arguments and to access the
texture with the inverse cosine argument. The three cosines can
then be obtained simultaneously with a single texture lookup and
no inverse cosine calculations are necessary at all. The resulting
program thus requires only two texture lookups and 31 arithmetic
instruction slots.

Obviously, compared to the four texture lookups of the more gen-
eral approach, this is another significant performance gain. This
also becomes evident when comparing the λ2 calculation times:
The overall computation time reduces by another 15%.

Actually, the described method for solving the characteristic poly-
nomial does only produce correct eigenvalues if there are three dis-
tinct real roots. This is the case in about 99.5 percent for the data
set shown in Fig. 5, thus, the results obtained by the given approach
are a good approximation. Setting h = 2aδ 3 three real roots are ob-
tained if y2

N < h2. For yN > h2 (one real root) or y2
N = h2 (three real

roots, two or three equal roots) the calculation must be modified.
For the latter case, δ is adjusted to δ = 3

√

yN/(2a) and the roots are
then α = β = xN +δ and γ = xN −2δ .

Handling all three cases is costly on a streaming architecture and
even exceeds the maximum number of instruction slots of our plat-
form. The matrix S2 + Ω2, however, is real and symmetric and,
therefore, will always have three real roots. The case yN > h2 will
thus occur only very rarely (if at all) due to numerical inaccuracies.
Accordingly, we have decided to neglect this case and to handle
only the remaining two cases. The number of required instruction
slots in our fragment program then raises from 31 to 55 which is
well within the limits of available instruction slots. Fig. 3 contrasts
the approach handling two cases with the simplified root finding
approach handling only a single case.

4.3 Volume Visualization

The input vector data is processed slice per slice. Rendering the
resulting λ2 values directly into a 3D texture was not possible at the
time of this writing, thus, the results are again written to a stack of
2D. Obviously, simply blending quadrilaterals with the λ2 values
mapped as textures will not produce appealing visualizations since
virtually nothing at all is seen when looking along the X- or the

1The ATI 9800 does not support RGB floating point textures so RGBA
textures had to be used, leaving the alpha component unused.

Y-axis2.

Many techniques have been developed to cope with this problem.
Rendering view-aligned slices is generally regarded as the method
to produce the least artifacts. However, for doing this efficiently, 3D
textures are usually required [3] which would require transferring
the scalar field from the graphics card memory back to the applica-
tion. This introduces significant latencies into the vortex detection
system and, thus, is not appropriate for our application.

One work-around to this problem was proposed by Rezk-Salama
et. al [18] based on the work of Eckel [4]. The basic idea is to deter-
mine the intersection polygons of viewport-aligned slices with the
given stack of quadrilaterals and to interpolate color values on these
polygons using the two neighboring textures. The original stack of
quadrilaterals and the resulting intermediate slices are depicted in
Fig. 4 (a) and (c), respectively.

A drawback of this approach is the large number of intersection
polygons that have to be calculated each time the volume is ro-
tated. Our implementation, therefore, employs a slightly different
approach.

Instead of determining viewport-aligned intersection polygons on-
the-fly, we pre-compute sets of intersection polygons from the
X- and Y-direction (both positive and negative), respectively, and
switch between them (and the original stack) depending on the ori-
entation of the volume’s bounding box to the viewer. Fig. 4 (b)
shows the resulting slices.

This approach not only enables us to pre-calculate the intersection
polygons but also to send the geometry data of the slices only once
to the graphics adapter as a vertex buffer. If the original stack’s
slices are assumed to be equidistant, the amount of geometry stored
in the vertex buffers can further be significantly reduced (by factors
of I + 1 and J + 1, respectively) by storing only a single stack of
stripes and rendering the remaining ones with a suitable translation
applied. Thus, the approach is able to accelerate the visualization
without taking a noteworthy amount of memory.

An isosurface is most efficiently extracted from the stack of slices
by rendering the slices with all pixels within a user-defined interval
around the isovalue set to opaque and the remaining pixels set to
transparent. However, the resulting “surface” will have a uniform
color which conceals its 3D structure. We have, therefore, inte-
grated a lighting model into our system incorporating both ambient

2This statement assumes orthogonal projection; with perspective projec-
tion the situation is better but still unacceptable.

Figure 5: Two visualizations of the same vortex tubes. The left image
was produced with the hardware-based approach using direct volume
rendering, the right image using a commercial flow visualization tool
using a Marching Cubes approach.
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Figure 6: λ2 isosurfaces of the hurricane Isabel data set. The images in the upper row show the effect of successively decreasing the isovalue.
As can be seen, the vortex structures gets narrower. The lower row images illustrate the effect of modifying the filter characteristics starting
with the same base image. While both adjustments tend to remove small-scale vortex structures, it can be seen that filtering better preserves
large vortex structures.

and diffuse. A full-featured Blinn-Phong model including specu-
lar lighting was rejected due to the computational costs (we found
that the specular component is about as costly as the ambient and
diffuse terms taken together) and the little additional insight that is
obtained from highlights. This way, the rendering in Z-direction
can be accomplished with one texture lookup and 15 arithmetic in-
struction slots, the rendering in X- and Y-direction with two texture
lookups and 18 instruction slots.

The quality of the extracted isosurface strongly depends on the
number of slices used for the visualization. This is inherent in all
slice-based volume rendering techniques and no drawback of the
approach chosen for this system. We have added the possibility
to add intermediate slices interpolated between grid points to be
able to trade more pleasing visualizations for reduced frame rates.
Fig. 7 shows the effect of adding intermediate slices for the data set
depicted in Fig. 3. Although not all artifacts are removed, there is
nevertheless a notable improvement in image quality.

Fig. 5 shows screenshots taken with our system (without adding
intermediate slices) and screenshots taken with PowerVIZ, a com-
mercial flow visualization tool [5]. The data set used for these
screenshots has 135×225×129 voxels and was obtained by DNS
of K-type transition experiments [10, 19]. PowerVIZ does not use

Figure 7: Upper right section of the data set shown in Fig. 3 rendered
with no intermediate slices (left) and five intermediate slices (right).

volume rendering techniques for extracting the isosurface but in-
stead extracts a polygonal representation using a Marching Cubes
approach. As can be seen, the results are nevertheless very similar
in general and only differ (visually) where the vortex tubes narrow
and the number of slices over the profile is reduced.

The effects of modifying the filter characteristics and isovalues are
depicted in Fig. 6 at the example of a 251× 251× 100 data set of
hurricane Isabel. As can be seen, the Gauss filtering (lower row)
clearly highlights large-scale vortex structures while suppressing
small vortices—a behavior that cannot be obtained by isovalue ad-
justments (upper row).

Fig. 1, left, demonstrates the filtering at the example of a larger K-
type transition data set of 229×116×250 voxels extracted from a
more turbulent zone. As can be seen, the characteristic Λ-vortices
that are of particular interest to fluid dynamics researchers are much
easier to spot in the filtered vector field than in the unfiltered field
(Fig. 2, left).

5 RESULTS

5.1 Storage Requirements

Most GPU-based algorithms using fragments programs or pixel
shaders for performing the calculations store the input data as tex-
tures. However, the amount of texture memory is quite limited and
256 MB must be considered very large at the moment. Memory
efficiency is, therefore, a crucial topic in the evaluation of graphics-
hardware–accelerated implementations since it eventually defines
an upper limit for the size of the input data sets.

Our system stores the raw input data in a 128 bit RGBA texture.
This texture must not be modified since it is needed each time the
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filter characteristics are adjusted. To store the filtered results, an-
other 128 bit floating point texture is required. This texture is reused
for storing the gradients of the λ2 scalar field required for lighting
the isosurface. The remaining textures are independent of the size
of the input data and of negligible size. Thus, if the input data
comprises N nodes, about 32N byte memory are consumed by the
system. Assuming 256 MB texture memory, this means that the
system is applicable to data sets of at most eight million grid points
or equivalently a cube of the dimensions 200×200×200. We con-
sider this to be sufficient for data sets obtained experimentally.

However, both the filtering and the λ2 vortex detection are local.
Thus, if the system limits are surpassed, a bricking approach can be
easily used to accommodate the system to larger data sets.

5.2 Performance Evaluation

For evaluating the performance of the system the data set of Fig. 5
of the dimensions 135×225×129 was visualized at a viewport size
of 512×512 pixels on an ATI 9800 XT graphics adapter. Since the
system is almost completely GPU-based, the configuration of the
underlying PC/workstation is irrelevant for the benchmark.

We have found the filtering time to be about 147 ms for both the
single-pass Gauss filter of support three and the multi-pass Gauss
filter of support 11. Obviously, the reduced number of texture
lookups required for the separable Gauss filter more than outweighs
the overhead of two additional rendering passes. The λ2 compu-
tation took 108 ms for the simplified root finding approach and
130 ms for the correct approach, the gradient calculation time was
14 ms. These times are independent of the number of intermediate
slices and the direction from which the volume is looked at.

One the other hand, the rendering time depends strongly on the
direction and the number of intermediate slices, therefore, we
have measured rendering times for both the cheapest direction (Z-
direction, original stack of slices) and the most expensive direction
(Y-direction, stacks of pre-calculated stripes, largest of the three di-
mensions).

For the Z-direction we measured a visualization time of 38 ms
(26.3 fps), for the Y-direction a time of 212 ms (4.7 fps). When
adding one intermediate slice, the visualization times increase by a
factor of two. As expected, the frame rates scale linearly with the
amount of pixels generated by the application. No color mapping
of velocity magnitudes was done for these measurements.

To judge the performance of a GPU-based algorithm, a compari-
son with an equally optimized software implementation is required.
For this reason, we have also implemented the vortex detection al-
gorithm proposed above on an Intel Pentium 4 processor. All the
proposed optimizations like e.g. the usage of lookup tables for de-
termining cosine values were included. Since the P4’s SSE2 ex-
tension is capable of processing four-component vectors with 32
bit per components, macros for performing vector operations were
implemented and used where possible. Unfortunately, there is no
SSE2 instruction a dot product can be mapped to; thus, an instruc-
tion sequence had to be used instead3. We have chosen the se-
quence proposed by Breternitz et al. [1]. Using this implemen-
tation, we measured 1,150 ms for the λ2 vortex detection on the
135 × 225 × 129 data set—almost an order of magnitude slower
compared to the hardware-based approach.

3MMX allows the dot product to be mapped to two instructions using
the PMADDWD instruction. However, each vector component then is confined
to 16 bit which is unacceptable for this application.

Figure 8: Visualizations of vortex structures in an experimentally
obtained water channel data set with little filtering (upper image)
and strong filtering (lower image).

As expected, PowerVIZ, a tool well-known for its generally good
performance is even significantly slower (about 8 s) than the op-
timized software implementation. This must probably be ascribed
to more complex internal data structures since PowerVIZ works on
a hierarchy of Cartesian grids while our system requires a single
Cartesian grid. Anyway, using an own optimized implementation
for comparison is well justified.

5.3 Application to CFD

An interactive cycle of filtering, vortex detection, and visualization
is particularly useful for noisy data. For experimentally obtained
datasets this is obviously the case. Fig. 8 shows a data set obtained
in an experiment studying laminar-turbulent boundary layer transi-
tions [13].

For data sets obtained by computational fluid dynamics (CFD) the
situation depends on the simulation technique. Turbulence mod-
els vary in how much modelling they contribute to the fluid flow
simulation. At one end of the spectrum there is RANS (Reynolds
Averaged Navier-Stokes) which models turbulence by essentially
increasing the fluid viscosity. Increased viscosity leads to the elim-
ination of small-scale structures through diffusion and dissipation.
Thus, RANS simulations usually are only modestly vulnerable to
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noise. Turbulence modelling in LES (Large Eddy Simulation) also
results in an increased computational viscosity in comparison with
the molecular viscosity and accordingly also results in data sets
with moderate noise.

On the contrary, DNS should capture all scales that are relevant
in the flow without any modelling. Large Reynolds number flows
typically mean small viscosity, and, particularly for turbulent flows,
very small length scales. Thus, high grid resolutions are required
for DNS. If insufficient resolution is available, the smallest scales
will be determined by the numerics and not by the physics, which
eventually results in noisy data.

Our system is, therefore, particularly suitable for environments
where experimental (Fig. 8) or DNS data (Fig. 1 and 3) are sub-
ject of analysis.

6 CONCLUSIONS

We have described a system for filtering, vortex detection, and vi-
sualization of flow data. By employing modern graphics hardware
for performing the calculations instead of the CPU, we were able to
improve the system performance by almost an order of magnitude.
For the first time, the cycle of filtering, vortex detection, and visu-
alization can be handled interactively using low-cost off-the-shelf
hardware readily available at the desks of many researchers. The
presented system has already been approved by engineers working
in the field of fluid dynamics. Despite the fact that basically only
several well-known techniques are combined into a single tool our
collaborators have decided that the performance and effectiveness
of our system well justify an integration into their workflow.

In the future, we plan to evaluate further local vortex detection algo-
rithms and more advanced filters in terms of portability to graphics
hardware. Furthermore, we intend to improve the volume render-
ing to be able to produce more pleasing visualizations for data sets
with a low number of slices. Another attractive feature would be
the tracking of features over several time-steps as it was presented
in [22].
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