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ABSTRACT

We describe a general algorithm to produce compatible 3D trian-
gulations from spatial decompositions. Such triangulations match
edges and faces across spatial cell boundaries, solving several
problems in graphics and visualization including the crack prob-
lem found in adaptive isosurface generation, triangulation of arbi-
trary grids (including unstructured grids), clipping, and the interval
tetrahedrization problem. The algorithm produces compatible tri-
angulations on a cell-by-cell basis, using a modified Delaunay tri-
angulation with a simple point ordering rule to resolve degenerate
cases and produce unique triangulations across cell boundaries.
The algorithm is naturally parallel since it requires no neighbor-
hood cell information, only a unique, global point numbering. We
show application of this algorithm to adaptive contour generation;
tetrahedrization of unstructured meshes; clipping and interval vol-
ume mesh generation.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling; Algo-
rithms

Keywords: triangulation, tetrahedrization, adaptive grid, clipping,
contouring, template, Delaunay, parallel

1   INTRODUCTION

Three-dimensional spatial decompositions are routinely used in
graphics and visualization to accelerate computation, model physi-
cally-based behavior, and represent sampled data. Adaptive spatial
structures such as octrees, KD-trees, adaptively sampled distance
fields [10], and adaptive mesh refinement data [2][1] are often
employed to generate implicit surfaces or perform multi-resolution
visualization of large data sets. Various types of grids, including
regular volumes, topologically regular structured grids, and
unstructured grids, are used in physically-based modeling applica-
tions and to simulate complex physical processes [8][32]. Volume
data are also used to represent sampled data, such as that produced
from laser digitizing systems [9], or digital sampling processes
such as CT, MRI, and confocal microscopy.

Use of spatial decompositions introduces several problems into
graphics and visualization applications. The so called crack prob-
lem occurs when neighboring cells in an adaptive decomposition
exist at different levels of subdivision. Naive contour generation of
such a decomposition results in cracks in the isosurface. The
cracks may be geometric, where an actual hole exists in the sur-
face, or topological, where T-junctions are created. Cracks may
cause rendering artifacts, or introduce undesirable surface features
that can adversely affect subsequent modeling operations such as
decimation, connectivity analysis, or surface subdivision. Cracks

can be prevented by creating compatible triangulations between
spatial decompositions as shown in Figure 1, and then operating on
the triangulation.

Several rendering and visualization algorithms require the exist-
ence of tetrahedral meshes, e.g., [26][18][13][14]. Structured and
unstructured grids often consist of hexahedron, prism, wedge, and
pyramid cell topologies and require tessellation if such tetrahedral-
based algorithms are to be used. A related problem is the triangula-
tion of higher-order basis functions (e.g., quadratic, cubic or other
higher-order basis used in finite element analysis) into linear tetra-
hedra for processing by conventional visualization algorithms. The
triangulation of grids must insure that the 1D triangulation of each
cell edge is compatible with the corresponding edge neighbor, and
the 2D triangulation of each cell face is compatible with the corre-
sponding face neighbor. While template-based approaches for cell
tessellation work well for simple spatial decompositions with uni-
form cell types (e.g., volumes with voxel cells), heterogeneous
meshes or higher-order meshes are harder to triangulate. Further-
more, conventional methods require a triangulation of the entire
domain, which can bloat memory consumption or require a sepa-
rate pre-processing step. The algorithm presented here is fast
enough so that compatible cell tetrahedrizations can be produced
on the fly as each cell is processed. The tetrahedra are then dis-
carded after they are processed to reduce memory consumption.

Modeling operations applied to spatial decompositions intro-
duce additional challenges. Clipping a 3D mesh using an implicit
function or scalar contour value introduces complex cuts across
cells. Clipping is useful for viewing the interior of structures, or to
generate finite element meshes of anatomic structures (i.e., gener-
ating an interval mesh between two isocontour values). The faces
of neighboring elements must be triangulated to insure inter-cell
compatibility. Forming compatible triangulations is very difficult
when the boundary of each clipped cell must be compatible with
each of its neighbors.

This paper addresses these problems by describing a simple,
deterministic algorithm that produces compatible triangulations
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Figure 1. Compatible triangulations across neighboring octant
faces in an octree at different levels of subdivision. An ordered
Delaunay triangulation guarantees a unique, compatible triangu-
lation between planar faces of convex cells.
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between the cells of spatial decompositions. The algorithm
requires minimal knowledge of neighboring cells, only the coordi-
nates and a unique id (i.e., point id) for each point defining a cell in
the decomposition. In this paper we show how to modify the 3D
Delaunay triangulation to generate unique triangulations even
when degenerate points are present, thereby guaranteeing compati-
bility across cell faces. We will also show results for adaptive iso-
contouring, mesh triangulation, clipping and mesh generation.
Source code for this work is also available on the web.

2    RELATED WORK

Several authors have encountered the isosurface crack problem
and offered various methods to solve it. As early as 1988 Bloo-
menthal [4] described an adaptive octree method for generation of
implicit surfaces. Edge tracking on the more divided octant face is
used to eliminate cracks, requiring complex topological structures
to navigate the net of edges on octant faces and on the isosurface.
[24] address the problem by aligning the intersection edge gener-
ated from the higher resolution octant with the edge generated
from the lower resolution octant. While this resolves the crack
geometrically, it leaves topological cracks (T-junctions) in the sur-
face that can adversely affect later operations on the mesh, includ-
ing introducing rendering artifacts. [30] approaches the problem in
a similar way, except that the low-resolution edge is subdivided by
introducing points from the higher resolution edge segments. The
triangle attached to the low resolution edge is also subdivided, cre-
ating a fan of triangles. The resulting mesh is watertight with no T-
junctions. [29] describe a method to create compatible tessellations
of adaptive mesh refinement (AMR) grids by constructing a dual
grid to the original. This shrinks the original grid by one level and
leaves gaps between blocks of different resolutions. The gaps are
then triangulated to produce tetrahedra and wedges, a non-trivial
process. The authors mention an approach based on Delaunay tri-
angulation, but reject it in 3D due to the issue of triangulation
degeneracies, which this paper addresses.

Generation of meshes from scalar fields is another important
operation in modeling and visualization. [17] treats interval tetra-
hedrization of volumetric data. The idea behind this work is to
generate a tetrahedral mesh in the volume between two isosur-
faces. In application this can be used to create computational
meshes from volume data, such as finite element meshes of bone
structure. A principle challenge addressed by this method is to
maintain compatibility between adjacent voxel triangulations.
Face triangulations require control of face diagonals. Nielson’s
approach creates compatible triangulations using voxel templates,
and is specialized for volume data. Clipping as defined by [23]
separates n-dimensional data into two n-dimensional parts: one
below a specified isosurface value, and one above. Clipping is a
specialized form of interval volume tetrahedrization, where one of
the isosurface values is set at the extreme range of the scalar data.

Many algorithms require the existence of tetrahedral meshes.
Direct volume rendering techniques of non-regular data such as
rectilinear grids, unstructured grids, or scattered points may
project triangle faces [25][21], or integrate rays through tetrahedra
[26]. Tetrahedra are also used to form multiresolution frameworks
for volume visualization [33], including methods to decimate tetra-
hedral meshes [20]. Visualization of irregular grids, such as
streamline generation [14] and detection of separation and attach-
ment lines [13] are often most efficient on tetrahedral meshes, or
benefit from the simplicity of their linear interpolation functions.

In many cases these algorithms require a preprocessing step that
converts the grid into tetrahedra. While this is trivial for volumes
or structured grids, for unstructured grids of mixed types (e.g.,
hexahedra, wedge, pyramid, and tetrahedra cells) the requirement
of face compatibility is difficult to satisfy. Meshes based on
higher-order basis such as p-order finite element meshes are also
difficult to tessellate in a compatible manner. Such meshes are
used to analyze curved geometry and provide high-rate numerical
convergence to the solution of partial differential equations [15].

3   ALGORITHM

The algorithm described here creates compatible triangulations of
spatial decompositions. The algorithm is simple, general, and scal-
able. It creates unique triangulations on the planar faces of convex
cells using a modified Delaunay triangulation algorithm. Non-pla-
nar faces, and non-convex cells can be treated by mapping to para-
metric space, followed by triangulation in that space. The
Delaunay triangulation is modified by using a globally unique
point id to resolve degenerate cases.

We begin this section by providing some terminology and math-
ematical background. We then show how these properties can be
used to generate compatible triangulations in various applications.

3.1   Terminology
We refer to the spatial decomposition of a domain in R3 as D,
which is a discretization of D into the closed subdomains, or cells,
ci, where

(1)

The cells ci are bounded by a finite set of boundary entities  of
dimension m, with . A compatible spatial decomposition
is one in which the intersection of any two cells ci and cj is a
boundary entity common to both ci and cj

 with  and (2)

In application ci are typically convex and of simple topological
structure: a tetrahedron, hexahedron, or octant (possibly with sub-
divided faces).

A compatible triangulation is also a compatible decomposition,
except that all ci are simplices si (tetrahedra in R3). A compatible
triangulation, or simply a triangulation, can be produced by tessel-
lating each ci in D in such a way as to preserve the properties of
Equations (1) and (2).

3.2   Delaunay Properties
The Delaunay triangulation T(P) is a simple method to produce an
unique triangulation of the convex hull of a set of non-degenerate
points P [11]. One property of the Delaunay triangulation is that
for any n+1 points forming a simplex of dimension n, the circum-
sphere of the simplex contains no other points of the set P. Degen-
erate cases occur when the this property does not hold, for example
the eight vertices of a cube all lie on the same circumsphere. In
such cases, the triangulation is not unique and can be created by
choosing one triangulation of several alternatives, as long as the
triangulation remains compatible.

An important property relative to the work presented here is as
follows. Given a set of points  that form the triangulation

, and a set of points  which lie on a m-
dimensional hyperplane  with , then  is a m-

ci
i
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dimensional Delaunay triangulation on . This property follows
because the intersection of a n-dimensional Delaunay triangulation
with H preserves the property of circumsphere containment [22].
Note that it is possible for edges to pass from points on one side of
H to the points on the other side. However, if the  lies on
the convex hull of ci, then no such edges can exist, since all points
are on one side of H.

Given this property, a compatible triangulation can be generated
from a spatial decomposition using the Delaunay triangulation,
assuming that each cell ci is convex, each face  lies on some
Hm-1, and the points  are non-degenerate. Note also that each
cell ci can be triangulated independently and will generate a com-
patible triangulation since the faces of each  form a unique tri-
angulation.

The ability to create compatible triangulations in an independent
manner from cell to cell forms the basis of our algorithm. This
approach works well as long as the spatial decomposition consists
of convex cells with planar faces and non-degenerate point sets.
However, these conditions are rarely met in practice; especially the
requirement for non-degenerate point sets. Volumes and octrees
are composed of cubical cells (i.e., voxels and octants) that have
degenerate points, but are convex with planar faces. Therefore, to
extend the applicability of the algorithm, we must address situa-
tions when these properties do not hold.

3.3   Degenerate Points
As stated earlier, the Delaunay triangulation is unique when the
generating point set P is non-degenerate. Degenerate points intro-
duce ambiguities into the triangulation, requiring an arbitrary
choice in the triangulation process. The resulting triangulation has
equivalent Delaunay properties as compared to other triangulation
representing different choices, and is therefore not unique with
respect to the Delaunay property.

To form a unique triangulation, we introduce an additional con-
dition regarding the choice of which triangulation to pick. This
condition is simple: we use the order of the point in P, or equiva-
lently, a unique point id that supports a mathematical ordering
operation (e.g., the operations < or >). As Figure 2 shows, the
order in which points on a subdivided 2:1 octant face are inserted
can be used to control the resulting triangulation. As long as the
same order is used in the neighboring octants, the triangulation
will be a compatible triangulation.

A variety of point ordering rules are possible. The octant on the
left in Figure 2 was triangulated with corner vertices first, followed
by edge vertices. Finally, the center face vertex was added to the
triangulation. The middle octant in Figure 2 had its central face

vertex inserted prior to its edge vertices. However, the simplest
rule is to sort the points according to a unique integer id (or any
other unique, sortable id). This will insure that the points on a face

 are always inserted into the triangulation in the same order.
This is true whether ci or cj (the cells on either side of the face) is
triangulated, since the sorted order on  will always be the same.

3.4   Non-Planar Faces and Concave Cells
Many important spatial decompositions such as volumes and
octrees are composed of cells that are convex with planar faces.
The ordered Delaunay triangulation technique produces compati-
ble triangulations for these types. However, there are decomposi-
tions that may consist of cells with non-planar faces such as finite
element meshes (e.g., warped hexahedron or higher-order ele-
ments). Note that cells with non-planar faces implies non-convex
cell shapes, since a non-planar, convex face on one cell implies a
non-planar, concave face on the face neighbor.

The simplest way to treat such situations is to triangulate such
cells in parametric space. Many cells such as finite elements are
typically defined in an orthogonal r-s-t coordinate system that
ranges from  or  depending on the for-
mulation [8]. This inevitably introduces degenerate points, since
an element like a hexahedron with vertices at  in
parametric space has eight vertices all of which lie on the same cir-
cumsphere. The point ordering property is used to disambiguate
the triangulation; as a result it will be compatible with its 
neighbor. Note that for this to be true, the mapping into parametric
space must preserve point degeneracies; that is, a degenerate face
in parametric space must remain degenerate independent of which
face it is mapped to in parametric space. (For example, cells with
tetrahedral topology should be mapped into a regular tetrahedron,
not into the right-angle tetrahedron found in finite element analy-
sis.)

In principle concave cells with planar faces may exist. This is
rare in practical application. Such cells require the use of a con-
strained Delaunay triangulation, since the Delaunay triangulation
is always convex. While simple techniques such as rejecting a sim-
plex whose center is outside of the cell may work in many situa-
tions, there are potential cases where the triangulation may not
form a valid geometric triangulation [22] with the cell, and sim-
plex deletion cannot resolve the situation. While constrained
Delaunay methods are available [5], a better alternative may be to
decompose the cells of the spatial decomposition into convex
pieces first, followed by triangulation. In this paper we assume that
cells are convex or can be mapped into a convex cell in parametric
space.

4    IMPLEMENTATION DETAILS AND APPLICATIONS

In this section we provide implementation details and show some
results for the compatible triangulations algorithm. We apply the
method to isocontour adaptive grids, triangulate unstructured grids
and perform interval clipping. We begin by describing a simple
algorithm for ordered Delaunay triangulation.

4.1   Ordered Delaunay Triangulation
The point insertion algorithm introduced by [3] and [28] is a sim-
ple n-dimensional algorithm that can be readily extended to sup-
port ordered triangulations. The essence of the algorithm is that it
begins with an initial Delaunay triangulation (i.e., a bounding sim-
plex) into which points are inserted one at a time. As each point is
inserted, all simplices whose circumspheres contain the point are

Hm

∂P ci( )

fk
m

P ci( )

fk
m

Figure 2. Different orderings of degenerate points on octant
faces (divided 2:1) produces different triangulations.
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deleted. This leaves a star convex insertion cavity with faces of
dimension n-1. Each face of the cavity is connected to the point to
form new simplices. The process repeats for each point until all
points are inserted. The last step is to eliminate all simplices con-
nected to the vertices of the original bounding triangulation. The
remaining simplices form the Delaunay triangulation of the point
set P.

To treat degenerate points via
point ordering the basic in/out cir-
cumsphere test is modified as fol-
lows. Any point laying exactly on
the circumsphere is rejected as being
outside. In practice, this can be
implemented by reducing the radius
of the circumsphere by a small fac-
tor , typically on the order of 
or smaller (assuming that the cell
coordinates are in the unit cube parametric space). Thus points
injected early take precedence over degenerate points inserted later
in the triangulation process.

Delaunay algorithms based on floating point arithmetic such as
the point insertion algorithm described above are numerically sen-
sitive. Double precision is required, but even then small perturba-
tions in computing the circumcenter/circumsphere can cause
inconsistencies in the Delaunay triangulation, and eventual algo-
rithm failure. However, in the application described here, the num-
ber of points in  is small, typically on the order of tens of
points. Moreover, as described later in Section 4.4, points close to
one another and likely to cause numerically problems are merged.
Thus the small number of points, combined with attention to point
distribution, works well in practice. Further, in our implementation
we use an additional check to insure that all faces of the insertion
cavity are convex to the inserted point, and adjust the cavity as
necessary to insure that this is the case.

The method of point ordering is a memory intensive algorithm
that creates and destroys many tetrahedra, faces, and edges. To
obtain maximum performance, it is necessary to carefully manage
memory allocation and deletion. In our C++ class implementation,
a pool of memory is pre-allocated and reused each time a cell is tri-
angulated. Our implementation is less than 750 lines of executable
code, reflecting the simplicity of the algorithm. (The source code
is available in the VTK class vtkOrderedTriangulator available at
http://www.vtk.org.)

4.2   Isocontouring Adaptive Grids
Adaptive grids such as the branch-on-need-octree (BONO) [31] or
block-structured adaptive mesh refinement such as CHOMBO [1]
can be used to represent data at varying levels of resolution and
with low storage overhead. In such grids naive isosurface genera-
tion proceeds by visiting each terminal cell (i.e., octant or grid cell
at the highest level of resolution at that location in the grid) using
standard methods (e.g., marching cubes) to extract the isocontour
in the cell, ignoring the difference in subdivision level across
edges and faces. A typical result is shown in the lower left-hand
side of Figure 3 where cracks are clearly seen between portions of
the isosurface generated from different grid resolutions. In many
applications such visual artifacts may be ignored; however, in situ-
ations where further processing of the isosurface is desirable (e.g.,
smoothing or decimation) such cracks pose a significant problem
since the topology of the mesh is altered.

To address this problem, the method of compatible triangulation
is employed by modifying the isocontouring algorithm as follows.
Each cell through which the contour passes is tetrahedrized by
injecting the corner, edge, and face vertices required to match the
neighboring grid levels (e.g., Figure 1). The vertices are numbered
with a unique integer id, which can be generated based on a logical
subdivision of the domain, or can be synthetically generated
according to a recursive tree traversal. Once the tetrahedra are gen-
erated, each tetrahedra is isocontoured using marching tetrahedra
[27]. Because the triangulation is compatible, the isosurface is
crack-free with no T-junctions. Note that the entire D does not
need to be triangulated, only those cells through which the contour
surface passes. The crack-free result is shown in the right hand
side of Figure 3. 

4.3   Triangulation of Unstructured Grids
Unstructured grids used in finite element analysis often consist of
cells of mixed topology such as hexahedra, wedges and pyramids.
Tetrahedrization of these meshes must produce triangulations that
are compatible across face neighbors. The method of compatible
triangulation works well for such situations as long as the triangu-
lation is performed in parametric space. Figure 4(a) is an example
of a heterogeneous finite element mesh that has been tetrahedral-
ized using this method. Note that the parametric mapping of each
face must be consistent between all cell types that may share that
face (i.e., are face neighbors). That is, a triangle face mapped in
parametric space for a given cell type must be similar to the match-
ing triangle face in the neighboring cell otherwise the resulting tri-
angulation may be incompatible.

The method of compatible triangulations has also been used to
tessellate cells of higher-order basis. The p-method in finite ele-
ment analysis approximates the solution field and/or cell geometry
with quadratic, cubic, or even mixed/arbitrary order basis. In appli-
cation, the order of the (typically polynomial) basis is modified in
response to an error metric to accelerate numerical convergence.
Unfortunately, visualizing the results on such cell types is poorly
supported by current visualization tools since they typically pro-
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ε 10 9–

P ci( )

Figure 3. Crack-free isosurface generation in an adaptive mesh
refinement (AMR) grid such as that depicted by the image at top.
On the lower left, naive isocontouring algorithms produce cracks
between differing levels of resolution. On the lower right, compatible
triangulations produce crack-free, watertight surfaces. (The thin
blue lines show the outline of different blocks in the AMR grid.)
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vide representations for up to quadratic basis (and occasionally
cubic basis). Current ad-hoc approaches address this problem by
subdividing higher-order cells into a pre-specified set of linear
cells. This may result in the generation of too many or too few
cells. We have successfully employed the method of compatible
triangulations to adaptively subdivide the cells as described by the
following.

Similar to the 2D method of [7], the process begins with an ini-
tial coarse tetrahedrization of the mesh similar to that of Figure 4.
(Meshes that have cell types of non-tetrahedral topology are pre-
tessellated into tetrahedra. The ordered triangulator can be used for
this task if necessary.) Then for each initial tetrahedron, an error
metric is evaluated on each of the six edges. If for a particular edge
the error exceeds a user-specified criterion, the edge is marked for
subdivision and a new point is generated at the mid-point of the
edge. Then the ordered triangulator is used to generate a new tetra-
hedrization of the original tetrahedron (the generation is performed
in parametric space). Up to ten points may be injected (four verti-
ces and up to six mid-edge points). The new tetrahedra are then
recursively processed and the algorithm continues until the error
metric satisfies the convergence criterion. Figure 5 shows the
result of this algorithm applied to a quadratic finite element using
the method of compatible triangulations. 

4.4   Interval Tetrahedrization and Clipping

As defined by [17], an isosurface for the scalar field in three
dimensional space is given by  and the interval vol-
ume lies between two isosurfaces . Clipping is
defined by the half-sided operation . It is possible to
transform the volume interval into the half-sided clipping function

 by using the equation:

There are two approaches to clipping cells to produce an interval
volume using the method of compatible triangulations. The first is
to triangulate each cell, and then clip the resulting tetrahedra using
standard techniques. The second, which we use in practice, is to
generate cell edge intersections from the clipping function and add
them to  prior to ordered Delaunay triangulation. Intersec-
tion points are given a unique id based on which D edge was used
to generate them. Then all tetrahedra with vertices marked “out-
side” the clip function are deleted. (As vertices are inserted into the
triangulation they are marked “outside”, “inside”, and “on” the
clip surface.) This leaves those tetrahedra inside the clipped
region. To avoid numerical problems with the Delaunay triangula-
tion due to tetrahedral slivers or pancakes, edge intersection points
that are close to nearby cell points are merged with the cell points.
Typically a merge tolerance of one one-hundredth of the edge
length is used.

The process produces valid tetrahedrizations because the cell
faces are convex and clipping produces at most one intersection
per edge that is necessarily connected to other edge intersection
points by straight lines. Cutting a convex face with one or more
lines leaves convex pieces, which are in turn are triangulated cor-
rectly because the ordered Delaunay triangulation will always tri-
angulate convex pieces in a unique, and compatible manner.

Figure 6 shows an example of clipping various cell types includ-
ing tetrahedron, hexahedron, triangular prism (wedge), pyramid
and an octant with one face subdivided 2:1. In Figure 7 clipping is
applied to three volume datasets—a synthetic implicit function of
resolution 1003, a CT scan of a human head of resolution 2562 by
94 slices, and an industrial CT scan of a turbine blade at resolution
5122 by 300 slices—to produce tetrahedral meshes. Table 1 shows
the number of tetrahedra produced in each model and the time to
produce the tetrahedrization. 

Figure 4. Triangulation of a mixed
cell type unstructured grid. On the
left, an exploded view of four cell
types consistently triangulated.
Above, a triangulation of a large,
mixed cell type unstructured grid.

Figure 5. The method of com-
patible triangulations used to
tessellate a higher-order finite
element basis (in this case a
quadratic isoparametric ele-
ment). The tessellation is driven
by a function of the edge length
and variation in solution values.
The tessellation is performed in
parametric space.
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⎜
⎛
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Figure 6. Clipping cells. Red
vertices are inside the clipped
portion of the cell. Various cell
types including hexahedron, tet-
rahedron, wedge, pyramid and a
2:1 subdivided octant are shown
in sample clip configurations.
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4.5   Template Generation for Performance
The ordered triangulation technique is inherently slower than tech-
niques based on table lookup such as that described by [17]. How-
ever, it is possible to obtain nearly the same performance as these
faster, templated techniques by using the ordered triangulator to
generate templates on the fly, caching each template after genera-
tion, and then reusing the cached template. Indeed, we have found
that generating templates is often easier to implement than manual,
a priori creation of templates. For example, the octant configura-
tion of Figure 1 requires  distinct combinations (here eighteen
points define the convex point set –a large number of tem-
plates to manually generate and store in a pre-computed template
table). Using template generation, it is possible to specify the num-
ber of stored templates and retain the most frequently used ones to
minimize memory resources devoted to template storage.

To generate templates using ordered triangulations, two pieces
of information are required: a template type and index. The tem-
plate type refers to the topology of the template (e.g., an octant
with one edge subdivided 2:1 for a total of nine points). The tem-
plate index is a permutation index computed as a by product of the
sorting operation. That is, when the initial point set  is sorted
to produce the ordered point set , a point pi in position i in

the unsorted list  will end up in position j in the list .
The resulting swap from position i to its final position j is used to
compute the template index as

(3)

where  is the number of positions the point moved during
sorting.

Once generated, the template index is stored with the list of tet-
rahedra that it generates in a data structure providing constant or
logarithmic time lookup such as an STL map. (In some applica-
tions the large number of possible templates discourages the use of
constant time data containers such as vectors or linear arrays.)
Later, when a cell of the same type and template index is encoun-
tered, the template is retrieved and the tetrahedra are produced
directly from the template definition.

Table 1 shows the relative timings to produce the interval tetra-
hedrizations of the implicit function, human skull and the turbine
blade data sets.

4.6   Parallel Implementation
The ordered triangulation method scales well in parallel applica-
tion because minimal boundary information is required between
cells. Each cell requires that its vertices have a unique, global point
id. These ids can often be determined implicitly, for example a vol-
ume extent is enough to determine all the point ids for the voxels
contained in that extent. This reduces the need to broadcast point
ids across all processors.

Table 1 shows the results of the implicit function, head and tur-
bine blade data sets run with two, four, and eight processors. The
parallel system consists of eight dual processor, Windows 2000
nodes connected via gigabit ethernet and MPI communication.
Each node was configured with 1 gigabyte memory with 800-MHz
processors. A simple load balancing scheme subdivided the vol-
ume across the processors. As the table shows, the blade was par-
ticularly unbalanced due to extra work required to process the
larger dovetail section, while the symmetric implicit function is
well balanced and scales linearly with the number of processors.
Note also as the models became larger the work required to man-
age the output (including some swap effects) overshadowed the
benefits of templates versus the ordered triangulator. In general,
templating improved performance up to an order of magnitude.

5   CONCLUSIONS AND FUTURE WORK

We have modified the 3D Delaunay triangulation to produce com-
patible triangulations of spatial decompositions. The modification

18!
P ci( )

Figure 7. Clipping results for the
function, head and blade mod-
els. Top left, an interval volume
is produced for an implicit func-
tion. Top right, a tetrahedrization
of the human skull from a medi-
cal CT dataset. The resulting tet-
rahedral mesh is suitable for
computational analysis. Lower
left, a tetrahedrization of a tur-
bine blade from an industrial CT
scan produced over 24 million
tetrahedron.

P ci( )
Ps ci( )

P ci( ) Ps ci( )

index i j– i

i
∑=

i j–

Example # Tets

 Time To Clip (Normalized by Fastest Elapsed Time)

1 CPU 2 4 8

OT Template OT Template OT Template OT Template

implicit function (1003) 2,001,311
94.69 9.17 48.38 4.56 24.46 2.11 12.32 1.08

(46.75) (4.22) (22.32) (2.00) (11.47) (1.00)

skull (2522 by 94) 3,315,906
167.44 31.79 83.66 12.44 44.05 5.44 32.83 3.4

(82.24) (12.09) (38.49) (4.94) (6.78) (1.37)

turbine blade (5122 by 300) 24,695,233
(too big) 747.46 388.95 476.22 161.59 295.32 65.02

(739.84) (381.72) (209.15) (76.11) (10.95) (10.67)

Table 1. Clipping examples with one and more processors. Different times (maximum elapsed time per processor) are presented depending on
whether or not template generation and caching is used to accelerate the ordered triangulator (OT). Times are normalized by the fastest elapsed
time to show relative speed (fastest time was 3.4377 seconds). Times in parenthesis are the minimum elapsed time on a processor to show rel-
ative load balance on processors.
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requires the use of a unique, sortable labeling of each point in
order to resolve ambiguous cases when the Delaunay property is
incapable of distinguishing between triangulations. The method
can be used in any spatial decomposition where the cells of the
decomposition are convex with planar faces; or where cells can be
mapped and triangulated in a canonical space with convex shape
and planar faces. The method is general and simple: it can be eas-
ily employed by providing a list of point containing both coordi-
nates and a unique id. Furthermore, minimal boundary information
is required so the algorithm can be parallelized in a scalable man-
ner.

The method described here is general although not as fast as
algorithms based on case tables or templated triangulation rules.
However, such rules are difficult to create and implement in all but
the simplest spatial decompositions consisting of regular structure
and a simple cell types (e.g., a volume or a structured grid with a
homogeneity of hexahedral cells). Indeed, our method has used to
generate case tables on the fly where the most common templates
are generated and cached while the less common configurations
are delegated to using the compatible triangulation algorithm.

This method can be extended to higher dimensions, since the
Delaunay triangulation is inherently an n-dimensional algorithm.
In addition, concave cells, or cells with non-planar faces, can be
treated as well by using constrained Delaunay triangulations.
However, this introduces a great deal of complexity into the algo-
rithm, diminishing one of its key features, which is simplicity.
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