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Figure 1: Tools for interactive editing: (a) widget for intuitive 3D modification; (b) 1D parameter texture revealing node displace-
ment; (c) future engineering workplace: autostereoscopic display and haptic input device.

ABSTRACT

Virtual prototyping is increasingly replacing real mock-ups and ex-
periments in industrial product development. Part of this process is
the simulation of structural and functional properties, which is in
many cases based on Finite Element Analysis (FEA). One promi-
nent example from the automotive industry is the safety improve-
ment resulting from crash worthiness simulations. A simulation
model for this purpose usually consists of up to one million finite
elements and is assembled from many parts which are individually
meshed out of their CAD representation. In order to accelerate the
development cycle, simulation engineers want to be able to modify
their FE models without going back to the CAD department. Fur-
thermore, valid CAD models might even not be available in prelim-
inary design stages. However, in contrast to CAD, there is a lack of
tools that offer the possibility of modification and processing of fi-
nite element components while maintaining the properties relevant
to the simulation. In this application paper we present interactive
algorithms for intuitive and fast editing of FE models and appropri-
ate visualization techniques to support engineers in understanding
these models. This includes new kinds of manipulators, feedback
mechanisms and facilities for virtual reality and immersion at the
workplace, e.g. autostereoscopic displays and haptic devices.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities—
Virtual device interfaces; I.3.6 [Computer Graphics]: Methodol-
ogy and Techniques—Interaction techniques; I.6.3 [Simulation and
Modeling]: Applications

Keywords: finite element modeling, interaction, manipulators,
autostereoscopy

1 INTRODUCTION

Almost every new design or model is created with the aid of com-
puters, and this is especially true in the automotive industry, where
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the computer superseded the drawing board many years ago. Com-
puter aided design (CAD) has evolved to an irreplaceable tool in the
daily work routine of a design engineer. This adoption of computer
technology in the development cycle matches its introduction into
the final production stage, e.g. by steering computerized numerical
control (CNC) machines.

However, the development cycle has been slowed down for a
long time by the need for experiments to prove the structural and
(aero-)dynamic performance of designed models. To carry out such
experiments, many expensive prototypes used to be built in a time-
consuming process. During the last two decades this procedure has
changed and an increasing number of test runs with real prototypes
is being replaced by virtual simulations. During its early days, the
finite element method helped the engineers to perform relatively
simple structural analysis. Thanks to the growing processing power
of modern parallel computers and to efficient algorithms it is nowa-
days possible to calculate complex non-linear and highly dynamic
processes like crash worthiness simulations within two or three
days. In general, such numerical simulations need a special prepa-
ration and simplification of the CAD model: the analytical surfaces
must be converted into an FE mesh. For this purpose, many conver-
sion algorithms (e.g. [5, 36]) have been developed, but they are far
from being perfect and most of them are tailored to a specific kind
of simulation or preservation of a particular model property. There-
fore, a lot of expert knowledge and manual work is still required to
preprocess these meshes in a manner such that the numerical sim-
ulation provides valid results. Some years ago, an improvement in
the numerical algorithms was introduced, which alleviated this task
by supporting individually meshed components instead of a single
consistent mesh for a whole car. This made it possible to exchange
only some parts without having to remesh the complete car model.
Additionally, the assembly of the different car components can be
reproduced more realistically by this approach due to the introduc-
tion of spotwelds or adhesive bondings. This change in the com-
putational workflow combined with other efficiency gains results
in a huge acceleration of the complete development cycle and even
allows for stochastic analysis of model variants.

New challenges arise with this approach. The engineers need
appropriate tools to create interconnections between the various car
components in a fast and easy way. These interconnections—e.g.
spotwelds—are usually placed at flanges, i.e. where the surfaces of
two or more components run parallel at a very small distance. Due
to meshing inconsistencies, sometimes adjacent materials may pen-
etrate or perforate each other at these flange areas. In general, au-
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tomatic detection, indication, and correction is possible, but, since
the adjustment operation can be ambiguous, manual modification
is needed. With the conventional approach, this means that the en-
gineer has to ask the CAD department for corrected components,
which have to be remeshed from scratch. Again, the engineer has
to deal with problems induced by imperfect meshing algorithms.
Therefore it can be very profitable to have a comfortable editor that
is able to manipulate FE meshes directly. This saves time and it
also offers the possibility to create variants of existing components
very fast—e.g. the integration of crimpings for structural stiffening.
To accomplish such editing operations we need to provide methods
that can be used by the engineer to select the three-dimensional
surface region he wants to interact with. During the editing op-
eration erroneous elements—i.e. elements that might induce mis-
leading or false results—should be detected and highlighted, and
once the modification is completed intelligent algorithms should
try to straighten out these errors without destroying the properties
and features of the part. In a final step, a restructuring of the af-
fected elements—comparable to a remeshing in situ—can resolve
the remaining errors. We will go into detail of the entire procedure
in section 3 and 4.

Modern graphics hardware can support these preprocessing
methods by using textures to highlight e.g. problematic regions or
to compare various modelling states. The latter can be used also to
compare the states before and after an automatic or manual modifi-
cation. Recent developments in display technology like autostereo-
scopic displays can help the engineers to understand complex or
twisted car components, too. Moreover, in CAD it is often easy to
estimate the actual position and orientation of a certain part relative
to its surrounding components, since the model is very detailed.
The FE model on the contrary has been reduced to its important
or supporting parts only, and is quite coarsely meshed compared to
CAD. Therefore, it is sometimes quite difficult to estimate the cor-
rect alignment of a single part that might seem to float in the air.
Here, stereo rendering can improve the understanding of the sim-
ulation model and we will present a solution for the workplace in
section 5.1.

Even though proper visualization of FE models can support the
understanding of the structure and quality of a mesh, it is still dif-
ficult to carry out editing operations with six degrees of freedom
(DOF) using devices like a mouse supporting only two-dimensional
input [15]. In section 5.2 we will address hardware that is able to
provide 6 DOF input and how to use it for interaction and intuitive
modification. We will focus on haptic devices, which additionally
supply a feedback mechanism that can be used to prevent the gen-
eration of illegal elements or perforation of nearby car components.

This paper starts by providing some previous work in the fol-
lowing section and rounds off with some results and conclusions
(section 6).

2 RELATED WORK

Many interaction methods, especially the ones implemented for
CAD, are geared towards traditional design jobs and many of them
try to copy the working methods used at a drawing board, even if
they are expanded with high precision and numerical input. An-
other approach allows the engineers to build their complex con-
structions from simple geometric primitives. Neither of them is
suitable for interaction with FE models. Especially in preliminary
design stages there is a need for fast and intuitive methods to adjust
the FE mesh instead of accurate and more complicated alignment
operations like it is done in CAD.

Therefore, we focused on intuitive interaction techniques, keep-
ing them simple and laconic and requiring only one or two mouse
clicks, a behavior which is also suggested by [19]. [11] showed how
to remove perforations and penetrations of interfering parts auto-

matically and how to connect individually meshed components by
interactively placing spotwelds or adhesive bondings along curved
flanges. As mentioned above, a fully automatic solution cannot be
always provided for ambiguous tasks. [10] suggested to use directly
manipulated free-form deformation to edit such problematic areas
manually. However it uses spline volumes for deformation which
predefines the final deformation and the interaction is steered by
sliders and buttons. A better approach are three-dimensional wid-
gets that can be used to control the modification in situ. SGI’s In-
ventor [33] demonstrates with its manipulators how to use widgets
for 3D interaction. A first step in using 3D widgets for modifi-
cation instead of limiting them to camera and object interaction
has been presented by [7]. However, they have only rarely found
their way into editing tasks and not at all into the field of FE mesh
modification. [8] developed a high-level framework providing 3D
widgets for general interaction purposes. Although intuitive, this
framework is too over-engineered and extensive for manipulation
of surfaces, and its area of application lies within complex interac-
tion with static or animated objects. Surface editing with various
3D widgets was presented by [13], who combined selection of the
editing region and manipulation into the same step which results in
a somewhat confusing operation. A solution using simple and in-
tuitive 3D glyphs was presented by [27], but it lacked support for
direct manipulation.

Our recent approach to simple and at the same time versatile
modification of FE meshes uses mouse drags as input and a vari-
ety of basis functions to describe the deformation of the surround-
ing surface. It is similar to the approach presented in [4], which
was developed independently and which works on triangulated sur-
faces. For smoothing the mesh after the modification step, various
algorithms have been developed, most of them based on relaxation.
The most common method is Laplacian smoothing, a simple re-
cursive method where the nodes are directly displaced depending
on the neighbors they are connected to. This method has been im-
proved and extended by several authors to fit some special needs,
e.g. [36, 5]. Another technique is the so-called optimization-based
smoothing where the nodes are moved depending on the minimiza-
tion of a special distortion metric. Also combinations of both tech-
niques were presented, e.g. [9]. A more detailed overview is given
in [2, 6]. A third approach is physically based smoothing as pre-
sented e.g. in [22] where the edges in the mesh are represented by
springs and the corresponding force depends on the ratio between
the desired and the actual edge length. This approach is quite sim-
ilar to the one we developed in this paper. As we have to deal with
both quadrilaterals and triangles, we also have the condition that
the diagonals of the quadrilaterals should be equal, so – in compar-
ison to [22] – springs are added there too, but their desired length is
adapted to be

√
2 times longer than the edges of the element. Most

of these algorithms have been developed for smooth or even closed
surfaces, but in the case of car parts there are boundaries and often
holes or edges within the surface. Additionally, in order to preserve
the significance of the simulations, it is important that the nodes
really lie on the surface originally modeled in CAD. This is why
the most important improvement in our relaxation technique is that
these features (boundaries and edges on the surface) as well as the
surface itself are preserved.

To assist the understanding and modification of three-
dimensional models we propose the use of autostereoscopic dis-
plays which provide some sort of immersion at the workplace with-
out the need for glasses. Recently, many solutions have been pre-
sented, e.g. [25, 24, 29] and starting this year there is an autostereo-
scopic display for notebooks available on the market [14]. Since
stereoscopic representations need the scene to be processed twice,
we combine the native support of our application for autostereo-
scopic displays with hardware-optimized rendering of a simplified
car model without any loss in quality as presented earlier [26].
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Concerning input for 3D interaction and editing various devices
and ideas exist. [34] use two mice as input, but most people find it
odd and difficult to handle a mouse with their non-dominant hand,
and controlling two mice at the same time will not gain broad ac-
ceptance by engineers. [32] introduced 6 DOF input for 3D edit-
ing and they also suggest 3D stereo rendering for better perception.
However, their system has been designed for character animation
and not technical modeling, which has different goals and needs
concerning the type of interaction, handling, and visual feedback.

With the growing selection of haptic input devices [21] more di-
rect and intuitive ways to handle and edit surfaces become possible,
as well as providing feedback by interactively checking for colli-
sions [17, 18] while performing the modification. An approach for
simple interaction with the environment using haptic devices has
been presented by [20]. It also uses 3D widgets to give feedback
to the user, but does not cover manipulation. The future workplace
that is being proposed in this paper (see Fig. 1(c)) has already been
partially implemented by [35], who use haptic input and feedback
for simple design tasks, and [3], who combine autostereoscopic pre-
sentation with a haptic device for interaction with virtual objects,
but they focus on planning of space mission operations in virtual
environments and not on editing of surfaces.

In the following sections we show how we extended this vast
body of knowledge by our own ideas to significantly improve the
intuitive modification of FE meshes. By implementing our algo-
rithms into the commercially available preprocessing application
scFEMod [28] we have made this functionality available for pro-
ductive use in the CAE departments of major German car manufac-
turers.

3 SELECTING AND EDITING IN 3D

Unlike [13] we decided to split the modification process into two
consecutive steps. First, the user defines the specific elements or
nodes he wants to edit using a simple selection mechanism, and
then he performs the actual manipulation itself.

3.1 Selection Mechanisms

The easiest way to implement a selection mechanism, from the pro-
grammers point of view, is to provide a text box, where the user
can enter the unique labels of the nodes. Surprisingly, some en-
gineers know their datasets so well, that they prefer this cryptic
method over anything else. Therefore, we also implemented such
a dialog, but we extended it with boolean and range selection op-
erations for improved convenience. However, in order to deal with
the increasing circulation of new models and changing node IDs,
we suggest to use a much more intuitive method, usually utilized
for selection in two-dimensional paint programs. There the user
can drag the mouse, encircling the pixels he wants to select with a
freehand curve and release the button to complete the action. In our
application the engineer can draw a freehand line on the screen (see
Fig. 2(a)), thereby cutting a sort of pyramidal frustum out of the 3D
scene. To guarantee that the polygon is always closed, the start and
end points are always connected (thin line in Fig. 2(a)). All nodes
of the FE mesh that lie inside the pyramidal frustum are marked
as selected and are highlighted via a white octahedron accordingly,
as seen in Fig. 2(b). Occluded nodes are rendered transparent, so
that at any time all selected nodes can be seen. To decide whether
a node is outside or inside the freehand frustum we do not need to
perform an expensive calculation in 3D, it suffices to project the
nodes into two-dimensional screen space and test the coordinates
against the freehand outline. This can be done very fast using the
point containment test in [23].

The user can choose whether he wants to select all the nodes
inside the selection frustum of a component or if he only wants to

(a) (b) (c)

(d)

Figure 2: Freehand Selections: (a) encircling nodes; (b) selection
without occlusion test, hidden nodes are rendered transparent; (c) se-
lection originated from a subtraction operation; (d) selection of a
region delimited by features.

select the currently visible nodes. The latter can be implemented by
shooting rays into the scene for every potential node candidate and
checking for occlusion. This can be accelerated by rendering the
car model with a unique color assigned to every element. We can
then check the pixels in the neighborhood of the 2D coordinate of
a potentially selected node for their colors or rather element labels.
If none of these elements is adjacent to the node then it is occluded,
otherwise we can continue with the more precise ray intersection
test. For better convenience the user can add or subtract new se-
lections to/from the existing ones, e.g. the selection in Fig. 2(c) has
been achieved by selecting the node cluster with occlusion culling
enabled and then deselecting the nodes in the center via subtraction.

For cases where the engineer wants to edit a complete segment
of a component we implemented another selection mode, where the
user clicks onto a part and all nodes belonging to the same region
are selected at once. Such regions are delimited by features of the
part, e.g. sharp edges as seen in Fig. 2(d). For further details on
robust feature detection on FE meshes see [26].

3.2 Mesh Modification

The simplest editing operation is a collective parallel translation on
a group of selected nodes. But in 3D even this cannot be accom-
plished as in 2D, where mouse movement can be mapped directly
to a corresponding translation. Given 2D-only input, e.g. a mouse,
3D interaction with three or more DOF has to be split into multiple
2D movement actions. In our application we use the manipulator
widget seen in Fig. 3(a) and Fig. 1(a). It consists of a disk and an ar-
row. The user can either click on the disk as in Fig. 3(b) and drag it
around, whereby the displacements are constrained to the surface of
the finite elements, or he can drag the arrow and shift the selection
along the local surface normal like in Fig. 3(c). During interaction,
the active part of the widget is highlighted in green and the modi-
fied surface is rendered as wire frame representation (white lines in
Fig. 3(b) and 3(c)). The FE surface then is updated when the user
releases the mouse button.

In most cases, simple parallel translations are not flexible
enough. We implemented another approach that offers the possi-
bility of much more complex deformations and which contains par-
allel translations as a special case. The interaction is kept as simple
as before, but instead of moving all nodes along the same vector, we
introduce a weighting function that describes the position of a se-
lected node relative to the border of the selection and to the position
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(a) (b) (c)

Figure 3: Manipulator for 3D movement: (a) neutral appearance
when initially locked to node; (b) disk for movement on surface se-
lected; (c) arrow for displacement along local normal selected and
lifted by dragging with the mouse.

where the user started dragging. If di,border denotes the geodesic
distance of a certain node i to the border of the selected region and
di,origin the geodesic distance of the node to the point where the user
grabbed the surface, then the weight wi can be calculated by

wi =
di,border

di,origin + di,border
. (1)

The range of values of all wi is guaranteed to be within [0,1]. If
we use these weights directly to scale the displacement vector we
derive by the mouse movement along the widget arrow, then we
obtain a deformation shaped like a cone or pyramid—depending on
the shape of the selection. But the user can also choose from a vari-
ety of basis functions, e.g. when the engineer chooses a remapping
of the weights similar to a Gaussian then he is able to achieve a
result as shown in Fig. 4(a). Here, the Gaussian is flattened in the
centerpiece, whereby the amount is configurable, and applied only
along one dimension. In the perpendicular direction the weights are
ignored and set to constant 1 instead.

Rotations can be achieved by first defining the rotation axis and
then describing an arc with the mouse that defines how much the
selected region should be twisted (Fig. 4(b)). Furthermore, you can
see that the rotation is performed to its whole extent at the free
ending without any weighting function applied. Here, free endings
are areas between the axis of rotation and border segments where
the boundary of the car component and of the selection match ex-
actly, e.g. the left half of the component shown in Fig. 4(b). If the
user wants to leave the free ending fixed he can accomplish this by
deselecting the outer row of nodes. This behavior in treating free
endings applies not only to rotations but also to displacement oper-
ations and it is quite intuitive and enables many different kinds of
modification. E.g. it is very easy to elongate a certain section of a
car component just by defining the section to be streched by select-
ing its nodes and then dragging at the free border of the selection.

An extension to our modification widget might be dragable shad-
ows as proposed in [16]. There, an object casts shadows onto multi-
ple planes and the user can either interact with the object or with the
shadows. The interaction with the objects shadows is easier because
the movement is limited to a 2D plane. Applied to our manipulator
it might increase its precision, but it is not clear where the shadow

(a) (b)

Figure 4: More complex modifications: (a) creating a bulge; (b) ro-
tation with free ending.

planes should be located for a good and intuitive navigation. The
surface of the FE mesh itself can serve as a shadow plane, but on
the other hand an additional shadow is more confusing the user than
a helpful facility for interaction in some special cases.

4 MESH OPTIMIZATION

Editing a mesh inevitably leads to displaced nodes, which might
result in extreme angles between edges, or edges that vary too
much within one element. Because of this the elements may be-
come of poor quality for later computations. For FE methods
“good elements” means quadrilaterals and, where triangles cannot
be avoided, equilateral triangles.

4.1 Visualizing Erroneous Elements

To give the engineer instantaneous feedback about the quality of
the current FE mesh, the numerically relevant properties of each
element are checked during the modification operation. Erroneous
elements are highlighted immediately by using red glyphs which
correspond to the error type. Critical elements are marked with
yellow glyphs. An example for erroneous elements can be found
in Fig. 3(c), where quadrilateral elements have been warped, i.e.
where not all nodes of an element lie within the same plane. When
warping occurs, the quadrilateral is bent around its two diagonals
and we symbolize the larger of both bending angles by a thicker
diagonal, respectively. The glyphs and types of other common FE
defects are depicted in Fig. 5.

(a) (b)

(c) (d)

Figure 5: Various finite elements marked as erroneous: (a) edge too
short; (b) angle too large (in triangle); (c) angle too large (in quadri-
lateral) and bad edge length ratios; (d) many adjacent triangles.

4.2 Relaxation

After editing the mesh it may be necessary to make the mesh suit-
able again for numerical simulations. So the positions of the nodes
have to be adjusted e.g. by relaxation. In our application we use a
relaxation model based on a spring-mass model, where the edges
of the mesh as well as the virtual diagonals of the quadrilaterals
are represented by springs. Only solving the resulting ordinary dif-
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(a) (b) (c)

Figure 6: Comparing mesh relaxation methods: (a) original mesh;
(b) hierarchically relaxed mesh; (c) non-hierarchically relaxed mesh.

ferential equation (ODE) system would lead to good elements, but
the features of the underlying surface would be mostly lost, i.e. the
bordering line would change as well as edges in the surface, and the
surface itself would also get flattened.

To avoid such artifacts we introduced some control mechanisms:
after calculating the new position of each node we compare this po-
sition to the original surface. Boundary nodes and nodes on surface
edges are only moved along their specific line, nodes that define
corners on such lines are not moved at all, and the new coordinates
of inner nodes are projected onto the originally modeled surface.
As we do not have the parametric representation of the surface but
only the mesh, we interpolate the original surface and the surface
feature lines on which we project the nodes. Since relaxing the
mesh by solving the ODE system with these boundary conditions
for one whole part with 500–1000 elements takes up to one or two
minutes on a standard PC, we developed an algorithm that produces
similar results but with interactive performance (Fig. 6): The mesh
is relaxed hierarchically starting at a node selected by the user e.g.
in the region of highest irregularity. For each step all neighboring
nodes displaced beyond a user-defined threshold are taken into ac-
count for the next step, until no new nodes get moved. In the next
steps only this region will be relaxed once more. As this relaxation
method depends on the starting node it can be applied several times,
but the result only changes slightly after the first few times. To give
the engineer more control it is also possible to restrict the relaxation
to a group of selected nodes.

For evaluation of the editing operations that have been per-
formed, visual feedback is provided: A one level undo function
has been implemented, with a toggle for direct comparison. Ad-
ditionally our application can be started in a multiple view mode,
where the user can have two windows with synchronized views. In
one the user can keep the original model and in the other he can
perform modifications on the corresponding part. In this multiview
mode it is also possible to map the differences between the two
parts via 1D textures (see Fig. 7). With these textures either the
node displacement caused by relaxation (Fig. 7(b) and Fig. 1(b)),
or the distance of the relaxed nodes to the original surface can be
mapped (Fig. 7(c)). In general, an engineer does not want to cope
with the displacement of single nodes and therefore the latter visu-
alization is the more significant one, as it shows how the surface
has changed by the relaxation. This kind of texture mapping can
also be used to visualize distances between arbitrary parts to detect
e.g. penetrating flanges [11]. The distance calculation is based on a
bounding volume hierarchy [12] and therefore performs very well.

4.3 Mesh Restructuring

Although very powerful, relaxation does not always eliminate all
errors in the mesh. Particularly in cases such as when a part gets
elongated too much or the user creates a deep buckle, relaxation
alone will not be able to produce a valid FE mesh. In these cases

(a) (b)

(c) (d)

Figure 7: Comparing mesh relaxation methods: (a) original mesh;
(b) node displacement from original to non-hierarchically relaxed
mesh (< 1mm transparent, > 5mm red); (c) euclidean distance be-
tween non-hierarchically relaxed mesh and original (< 0.05 mm trans-
parent, > 1mm red); (d) difference between hierarchically and non-
hierarchically relaxed mesh (< 1mm transparent, > 5mm red).

we find the elements that were the worst ones before the relaxation
procedure and try to fix them by a local restructuring. It can be seen
as a kind of remeshing, but confined to the direct vicinity of an er-
roneous element, which guarantees to prevent unnecessary changes
in the FE structure. E.g. it is easy to repair warped quadrilaterals—
introduced in section 4.1—by splitting each into two triangles along
their “thick” bending diagonals. Clean-up operations for various
other mesh defects are listed in Fig. 8 according to the errors shown
in Fig. 5. The operation presented in Fig. 8(d) usually is one of
the last steps and tries to conjoin triangles into quadrilaterals. This
decreases the number of triangles that might be produced by previ-
ous repair operations. Finally, the neighborhood of erroneous ele-
ments is relaxed once again. If the resulting mesh still is not suffi-
ciently well shaped for numerical simulation the algorithm contin-
ues the restructuring also on less critical elements. This procedure
is repeated until an FE mesh valid for crash worthiness simulations
evolves, and experience shows that the algorithm converges very
fast.

5 VIRTUAL REALITY AT THE WORKPLACE

As discussed before, stereographic projection can support engineers
while working on complex FE models and recent display technol-
ogy allows the engineer to get this 3D illusion without the need
for special glasses. Combined with an input device providing more
than two degrees of freedom this environment can be considered an
immersive workplace.
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(a) (b)

(c) (d)

Figure 8: Finite elements from Fig. 5 have been fixed: (a) edge is
collapsed to common node; (b) triangle and adjacent quadrilateral is
divided; (c) stretched and adjacent elements are divided; (d) adjacent
triangles are merged if possible.

5.1 Autostereoscopy

In recent years many solutions for autostereoscopic impression
have been developed. Most of them use a prism system or thin
blades to bend or block the pixel columns of a standard TFT dis-
play in a way that alternating columns can be seen either with the
left or with the right eye. The display we use (see Fig. 1(c)) con-
tains a prism mask to bend the rays and it also has a dual-camera
system which tracks the position of the user’s eyes. An embedded
processor interprets the eye position and controls the position of
the prism mask, which can be displaced horizontally by servo mo-
tors so that it is guaranteed that each eye will see the right column.
Fig. 9 illustrates the top view of the optical paths.

To drive such a display, a pair of stereographic images has to be
rendered vertically interlaced into the frame buffer. Most graphics
card manufacturers provide drivers for this purpose, but generally
either only for their high-end graphics boards or for WIN32-based
platforms only. To circumvent these problems we implemented na-
tive support for autostereoscopic displays in scFEMod. An alter-
native to native support is presented in [31], which we extended to
support also autostereoscopic displays.

A fast and easy solution to achieve the alternating distribution of
the two images is to use a matching stencil mask, render the image
for one eye, change the stencil test to the appropriate setting and
render the scene again for the other eye (for further details on how
to set up the camera parameters for correct stereographic projection
refer to [31]). On some architectures the rendering might perform
better when the stencil test is disabled for the first pass. This works
well as long as one does not want to render thin lines e.g. a wire
frame representation of the car model. Especially bevel lines will
not be reproduced very well, as the stencil mask will block some
pixels (Fig. 10(a)) and as a result the user will see an interrupted
line as depicted in Fig. 10(b). Our approach to solve this prob-
lem, which additionally produces much better quality when full
scene anti-aliasing is enabled, halves the resolution of the view-
port and renders narrowed images of the scene. The two images
can be stored on the graphics card using texture memory and dis-
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Figure 9: Principle of an autostereoscopic display [29].

tributed among the columns by rendering textured lines. Again,
on certain architectures it may perform better if for the first im-
age a different strategy is chosen, e.g. distributing the columns via
glCopyPixels. Fig. 10(c) shows the corresponding result using
this method and in Fig. 11 and 1(c) one can see autostereoscopic
rendering of a car model.

The eye position acquired by the two built-in cameras can be
read out via a serial port. The position is given with respect to the
center of the monitor and can be used for simple tracking and the
transformation of the presented model can be updated accordingly.

(a) (b) (c)

Figure 10: Rendering a line: (a) stencil mask (gray) blocks pixels
during rasterization; (b) the prism system of the display widens the
pixels and the user sees a dotted line through his left eye; (c) correct
result (users view through prisms) by distributing half-sized viewport
on odd-numbered columns.

5.2 3D and Haptic Editing

As already discussed, 3D editing using 2D input devices is quite
problematic. A Spacemouse [1] provides input with six degrees of
freedom. It has established itself as easy to use interaction device,
but it is too inaccurate for editing purposes. Haptic devices, which
have been developed over the past years, also provide input of 6 or
even more DOF. Specifically, we use a Phantom Desktop [30] seen
in Fig. 1(c). The user interacts with the model by holding a pen-like
device with a button. Currently we are investigating how such an
input device can be used for interactive and intuitive editing. The
pen can be represented on-screen by a corresponding virtual pen
in the 3D scene and its point can be used to interact with the FE
surface. Thanks to the Phantom’s many degrees of freedom it is
easy to navigate to the desired node, press the button and perform
almost arbitrary translatory and rotatory modifications on the se-
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Figure 11: FE model of a car rendered for display on an autostereo-
scopic monitor (data courtesy of BMW AG).

lected set of nodes. For selecting the nodes a 2D mouse is still the
best interaction device, but the 3D widget presented in section 3.2
can be replaced completely by the virtual pen making our editing
operations even more intuitive to control.

Another advantage of these devices is their ability to provide
haptic feedback. This can be useful to prevent the pen from per-
forating the FE surface by generating appropriate forces in case of
a collision. This behavior makes it easier for the user to grab a node
lying on that surface and it also aids to avoid perforation of other
parts during modification of the mesh. Additionally, force feed-
back can be employed to let the engineer perceive more and more
resistance with increasingly worse element quality. To implement
a fast collision detection one can either use the library provided by
the manufacturer [30] or develop one of its own [17, 18]. We want
to try another approach and use high-resolution distance volumes.
This will allow us to have collision detection and corresponding
forces very fast and in constant time, i.e. independent from the num-
ber of surface elements. Memory consumption will be a challenge,
but hierarchical approaches seem to be very promising to handle
this task.

6 RESULTS AND CONCLUSIONS

Fig. 12 shows a simple, yet typical example for a problem that an
engineer often faces. In the original model, seen in Fig. 12(a), the
violet component perforates the orange part. Our application de-
tects the erroneous area and visualizes it by marking the region
with an alerting texture (Fig. 12(b)). Since it is a clearly defined
perforation, it can be resolved automatically as shown in Fig. 12(c).
In Fig. 12(d) it can be seen how the engineer performs a stretching
operation by dragging the 3D widget proposed in this paper. Erro-
neous elements are detected interactively and marked with appro-
priate glyphs, in this case two elements have a bad aspect ratio—yet
not too critical for a valid numerical simulation—and one element
contains an angle that is too large. Our preprocessing tool is able to
repair these elements by locally restructuring the FE mesh and au-
tomatically inserting new elements (Fig. 12(e)) without the need for
remeshing the whole part. Then the mesh is smoothed by using our
relaxation approach, which guarantees that features—e.g. chamfers
and sharp edges—are preserved. To compare the new mesh with the
starting mesh one can use distance mapping as mentioned before.

We developed these methods in direct cooperation with engi-
neers at the BMW AG. Most of our algorithms are no longer proto-
types and have been transfered to the commercially available crash
worthiness preprocessing tool scFEMod. Therefore, the techniques
we presented in this application paper are already being used widely
by several German car manufacturers and their subcontractors. Due

to their simplicity the presented methods have been quickly ac-
cepted and the engineers are now able to solve many mesh-related
problems on their own without the need for an additional loop
through the CAD department. Generation of new variations of ex-
isting FE components—e.g. elongations or creation of stiffening
corrugations and folds—is now possible using intuitive 3D wid-
gets. Errors in the mesh that might appear during these editing
operations are detected reliably and on-the-fly by our algorithms.
Relaxation or local element restructuring can then be used to repair
critical mesh regions. Although it is not possible to fix all kinds
of meshing errors, our methods are nevertheless very powerful and
successfully produce valid FE meshes in general. The texturing ca-
pabilities of standard graphics cards can be used to visualize the
differences between various design stages, or to display erroneous
regions of an FE mesh. This highlighting technique can be used
also to proof that our methods for mesh repair and smoothing do
not impair the surface and do preserve important features.

New hardware approaches for immersive workplaces like au-
tostereoscopic displays and haptic input devices are not yet ac-
cepted by the industry. On one hand, this might because of the im-
perfections of these novelties, e.g. most autostereoscopic displays
have a rather low resolution, which is additionally halved due to
the display method. On the other hand, these devices are still very
expensive. Our application is pushing into the direction of a broad
usage of such technology and some engineers at BMW AG are al-
ready considering to equip some workplaces with these devices.
We expect to encourage this trend when our application provides
full support for haptic editing of FE models in a 3D environment.

In this application paper we demonstrated that there is a need for
new modification methods for FE meshes and we presented solu-
tions that can be operated intuitively. Glyphs and textures can be

(a) (b)

(c) (d)

(e) (f)

Figure 12: Various stages of repairing and editing a finite element
model: (a) original mesh with perforating materials; (b) perforating
parts are textured red; (c) perforations and penetrations are removed;
(d) user performs a modification and erroneous elements are marked
interactively; (e) element errors are fixed automatically; (f) relaxation
smooths mesh whilst conserving features.
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used to pinpoint erroneous or critical regions. Experience shows
that our approach helps to vastly accelerate the development cycle
in the automotive industry. It also shows that including modern 3D
technology in this process can help to manage the discussed engi-
neering task and that it is the right step towards the future work-
place. We will continue our work on this field of research in close
cooperation with the engineers, and we will investigate if it is rea-
sonable to transfer our knowledge into other fields of engineering
applications.
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[8] J. Döllner and K. Hinrichs. Object-oriented 3D Modeling, Animation
and Interaction. The Journal of Visualization and Computer Anima-
tion, 8(1):33–64, 1997.

[9] L. Freitag. On combining laplacian and optimization-based mesh
smoothing techniques. AMD Trends in Unstructured Mesh Genera-
tion, 220:37–43, 1997.

[10] N. Frisch and T. Ertl. Deformation Of Finite Element Meshes Us-
ing Directly Manipulated Free-Form Deformation. In Proceedings of
Seventh ACM Symposium on Solid Modeling and Applications 2002,
pages 249–256, 2002.

[11] N. Frisch, D. Rose, O. Sommer, and T. Ertl. Visualization and Pre-
processing of Independent Finite Element Meshes for Car Crash Sim-
ulations. The Visual Computer, 18(4):236–249, 2002.

[12] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical
structure for rapid interference detection. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques,
pages 171–180. ACM Press, 1996.

[13] C. Grimm and D. Pugmire. Visual interfaces for solids modeling. In
ACM Symposium on User Interface Software and Technology, pages
51–60, 1995.

[14] J. Harrold, A. Jacobs, G. J. Woodgate, and D. Ezra. Performance of a
Convertible 2D and 3D Parallax Barrier Autostereoscopic Display. In
Proceedings of the SID, 20th International Display Research Confer-
ence, 2000.

[15] K. Herndon, A. van Dam, and M. Gleicher. Workshop Report: Chal-
lenges of 3D Interaction. SIGCHI Bulletin, 26(4), 1994.

[16] K. P. Herndon, R. C. Zeleznik, D. C. Robbins, D. B. Conner, S. S.
Snibbe, and A. van Dam. Interactive shadows. In Proceedings of the
5th annual ACM symposium on User interface software and technol-
ogy, pages 1–6. ACM Press, 1992.

[17] D.E. Johnson and P. Willemsen. Six Degree-of-Freedom Haptic Ren-
dering of Complex Polygonal Models. In 11th Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems (HAP-
TICS’03), pages 229–235, 2003.

[18] D.E. Johnson and P. Willemsen. Accelerated Haptic Rendering of
Polygonal Models through Local Descent. In 12th International Sym-
posium on Haptic Interfaces for Virtual Environment and Teleoperator
Systems (HAPTICS’04), pages 18–23, 2004.

[19] J. Johnson. GUI Bloopers: Don’ts and Do’s for Software Developers
and Web Designers. Morgan Kaufmann Publishers, 2000.

[20] R. Komerska and C. Ware. Haptic Task Constraints for 3D Interaction.
In 11th Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems (HAPTICS’03), pages 270–277, 2003.

[21] S. D. Laycock and A. M. Day. Recent developments and applications
of haptic devices. Computer Graphics Forum, 22(2):117–132, 2003.
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