
Interactive Design of Multi-Perspective Images

for Visualizing Urban Landscapes

Augusto Román Gaurav Garg
Computer Graphics Laboratory, Stanford University, CA∗

Marc Levoy

P1 P2

Figure 1: We visualize urban landscapes using a blend of adjacent
cross-slits images. The figure shows two user-specified cross-slits
cameras, represented by slit pairs WX-g and YZ-b. This parti-
tions the camera path WXYZ into three sections. The plane P1,
formed by the slit g and point X, represents the rightmost column
of pixels in cross-slits camera WX-g and their associated ray di-
rections. Similarly, P2 is the plane formed by slit b and point Y.
These two planes P1 and P2 intersect in line r, which becomes our
interpolating slit. The XY-r cross-slits pair becomes our interpo-
lating camera. Note that the interpolating camera has the same ray
directions on its edges as its neighboring cameras. This ensures
that the generated image contains no discontinuities.

Abstract

Multi-perspective images are a useful way to visualize extended,
roughly planar scenes such as landscapes or city blocks. However,
constructing effective multi-perspective images is something of an
art. In this paper, we describe an interactive system for creating
multi-perspective images composed of serially blended cross-slits
images. Beginning with a sideways-looking video of the scene as
might be captured from a moving vehicle, we allow the user to in-
teractively specify a set of cross-slits cameras, possibly with gaps
between them. In each camera, one of the slits is defined to be
the camera path, which is typically horizontal, and the user is left
to choose the second slit, which is typically vertical. The system
then generates intermediate views between these cameras using a
novel interpolation scheme, thereby producing a multi-perspective
image with no seams. The user can also choose the picture surface
in space onto which viewing rays are projected, thereby establish-
ing a parameterization for the image. We show how the choice of
this surface can be used to create interesting visual effects. We
demonstrate our system by constructing multi-perspective images
that summarize city blocks, including corners, blocks with deep
plazas and other challenging urban situations.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques; I.3.8
[Computer Graphics]: Applications; I.4.9 [Image Processing and
Computer Vision]: Applications

Keywords: cross-slits image, multi-perspective image, city block

∗e-mail:aroman|ggaurav|levoy@graphics.stanford.edu

1 Introduction

Visualization of cities and urban landscapes has been a theme in
western art since biblical times. The key problem in making these
visualizations successful is summarizing in a single image the ex-
tended linear architectural fabric seen at eye level along a possibly
curving or turning street, and doing so without introducing exces-
sive distortions. In this paper we address this problem. Possible ap-
plications include using these visualizations for in-car navigation,
an augmentation to online route mapping applications, and web-
based tourism information.

One possible approach to depicting the eye level urban fabric is
using wide angle or omnidirectional views around a single view-
point, typically captured at street corners. Omnidirectional cam-
eras [Nayar 1997] provide a possible optical solution for capturing
such views. Photo-mosaicing (the alignment and blending of multi-
ple overlapping photographs) is an alternative approach for creating
wide field of view images. These mosaics can be made by capturing
a part of the scene surrounding a single point by panning a camera
around its optical center [Chen 1995; Shum and Szeliski 2000].
However, such omnidirectional views are still perspective projec-
tions and therefore, objects at any considerable distance from the
camera become too small to be recognizable. A set of such views,
each taken at more closely spaced intervals along the street, over-
comes this limitation. However, such a set still fails to capture the
linear nature of most urban fabrics and its continuity as experienced
by a motorist or a pedestrian.

Another possible approach is to use pushbroom [Hartley and Gupta
1994; Peleg et al. 2000] or cross-slits imaging [Zomet et al. 2003].
A pushbroom image is defined as an image that is perspective in
one direction (e.g., vertically) and orthographic in the other while
a cross-slits image is an image which is perspective in one direc-
tion but is perspective from a different location in the other direc-
tion. The perspective structure of cross-slits cameras are the set
of all rays intersecting two fixed lines (slits) in space. For pushb-
room cameras, one of the slits is at infinity. In both cases, one is
free to select the placement of the slits. Changing these placements
strongly affects the visualization and the associated distortions as
we show later in our results. In the context of visualizing eye level
urban landscapes, we show that we can combine multiple cross-slits
images seamlessly to reduce distortions.

Our main contribution is that we describe an interactive system
October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

537

vis
Note
Please see conference DVD for supplementary material.

Figure 2: This figure summarizes our algorithm for generating multi-perspective images. (a) First, we process each input video frame to
estimate the corresponding position and orientation of the camera. (b) Second, the user specifies the picture surface and any number of cross-
slits camera locations (the green and blue regions), thereby defining valid region (gray shading) on the picture surface. (c) For the remaining
regions (gray shaded), we automatically compute the interpolating cross-slits camera (yellow). (d) Within each camera, each planar fan of
rays (blue or green triangles) denote one line of pixels (typically vertical) in the final output image. To produce this image, these pixels must
be extracted from the appropriate frame of video, as described in section 4.4.

for constructing multi-perspective images from sideways-looking
video captured from a moving vehicle. The input to our system
is a set of video frames with known camera pose. The interface
then provides a set of tools that allow the user to define the picture
surface and place cross-slits cameras. Our system then automati-
cally computes an additional cross-slits camera between every pair
of adjacent user-specified cameras leading to a smooth interpolation
of viewpoint in the final multi-perspective image. Our system pro-
vides the tools necessary to minimize distortions and discontinuities
for creating good multi-perspective images for urban landscapes.
Using our system, a person can create a multi-perspective image of
a whole city block in a few minutes. The process is summarized in
figure 2 and also demonstrated in the accompanying video.

Section 2 describes related work on multi-perspective imaging,
while section 3 describes the multi-perspective representation that
we use. Section 4 covers our interactive multi-perspective image
design tool. We describe the input data, the design choices that we
made, the user interface of our interactive system and the image
rendering engine. We present our results in section 5 and present
our conclusions and future work in section 6.

2 Multi-Perspective Imaging

Multi-perspective images are nothing new in the art world. 10th
century Chinese paintings used multiple perspectives to depict
many religious sites in a single image without noticeable distor-
tions. More recently, the work of the cubists and M. C. Escher
explored combining multiple perspectives.

More recently there has been an interest in computer generated
multi-perspective imaging. The synthesis of multi-perspective im-
ages has been explored in Wood et al. [1997] and Rademacher
and Bishop [1998]. Their methods construct an image from mul-
tiple viewpoints mapped onto a 3D model as a texture to gener-
ate new images from a single viewpoint. Glassner [2000] explores
the use of multi-perspective imaging as an effective tool for illus-
tration or story telling. He includes a plugin for a 3D modeling
program that allows creating a multi-perspective image through a
two-surface parameterization. We find it more convenient to use
cross-slits images as fundamental modeling primitives (and ordi-
nary perspective images as a special case of cross-slits images) for

multi-perspective images. We have also found it important to be
able to specify the parameterization of the picture surface. Vallance
and Calder [2001] provide an in-depth analysis of the previous lit-
erature in multi-perspective imaging. They also describe an API to
facilitate rendering of multi-perspective images.

Most of the papers described so far use synthetic 3D data for il-
lustrating their results. Zheng [2003] generates route panoramas
from a moving video by taking the central column of pixels from
each frame and abutting them together. We will demonstrate how
non-central columns can be used for to create more effective visu-
alizations.

Seitz and Kim [2003] investigate how to generate multi-perspective
images from a moving video camera. They treat the captured video
as a stack of frames forming a 3D volume and then allow arbitrary
2D slices through this volume. While this method allows gener-
ation of almost any multi-perspective image that is possible given
the video volume, it is not clear what perspectives the resulting im-
ages represent except in special cases. For example, a slice through
the volume parallel to the first frame (essentially extracting a frame
from the volume) is a perspective image, a slice straight down the
volume is a pushbroom image, and a diagonal slice is a cross-slits
image. A non-linear slice through the volume will create a multi-
perspective image such as we create in this paper. However, it is
difficult to associate any general non-linear slice with its perspec-
tive structure in 3D. This in turn makes it hard to design a slice to
accomplish a particular task, such as displaying city blocks with
their varying facade depths. It is precisely this problem that we
address in this paper.

In addition to making multi-perspective imaging practical, there
has also been much theoretical work on multi-perspective imaging.
Gupta and Hartley [1997] derive a projection model for pushbroom
cameras. Zomet et al. [2003] extend this in their work to model
cross-slits cameras. More recently, Yu and McMillan [2004] pro-
vide a General Linear Camera (GLC) model, which unifies the per-
spective, pushbroom and cross-slits cameras along with five other
camera models under one framework. Although GLC’s encompass
eight cameras, we currently restrict our system to these three, which
seem most useful for our task. Specifically, the subset of GLCs we
allow is that which can be created from a camera traveling in a path,

538

Figure 3: A hand-crafted multi-perspective image excerpted from Michael Koller’s Seamless City. Notice the distinct vanishing points at A
and C, even though these two streets are parallel, and the distortions in the depiction of building B. This image was constructed by aligning
and inter-cutting several ordinary perspective images. Artful placement of the cuts between images yields a composite image without evident
seams. However, this process undoubtedly requires great care and labor. Our paper introduces a novel user interface for semi-automatically
constructing images like this one (used with permission).

since the camera path naturally defines one slit of a cross-slits cam-
era.

The work that most closely resembles our own is that of an artist
Michael Koller [2004]. An excerpt from his work is shown in figure
3. Koller synthesizes a continuous visual image of the city of San
Francisco made by sequential photos of a walk through the city. In a
manual process he aligns, cuts and pastes these images next to each
other to form a final image. By making his cuts follow architectural
features in the scene, he produces perspectives that look correct
along the alleys and street intersections. Our work can be thought
of as a way to automate his approach, however our approach is not
as flexible as his. Unlike him, we only allow vertical cuts in input
images.

3 Multi-Perspective Representation

3.1 Multi-Perspective Paradigm

Multi-perspective images can be specified as a 2D manifold of rays
and the mapping from this manifold to a rectangular, regularly sam-
pled image as described in figure 5. The user specifies the manifold
of rays as a sequence of cross-slits cameras in the 3D scene, and
specifies the mapping to an image by placing a regularly sampled
picture surface in the scene. We find that distinguishing clearly in
our user interface between specifying the ray manifold and specify-
ing the mapping to the output image improves the intuitiveness of
our system.

The manifold of rays can be specified in several ways. For a pin-
hole camera, the manifold is the set of all rays passing through a
point. In an orthographic camera, the manifold describes all rays
in a single direction. Similarly, for a cross-slits camera the man-
ifold is described by all rays passing through two lines (or slits).
These are three of the eight 2D linear manifolds described by Yu
and McMillan [2004].

For our application, we choose to constrain the allowable set of
manifolds based on their applicability to urban landscapes and the
ease of specification for the user. Specifically, we restrict the space
of ray manifolds to cross-slits images. Doing so allows us to include
perspective and pushbroom images while at the same time enabling
the interpolation scheme described in section 3.2. The result is that
our final image can be represented as a mosaic of multiple cross-
slits images.

The picture surface defines the sampling of the manifold of rays
as well as their mapping to the final image, as shown in figure 5.
Traditionally, in a single perspective image, the picture surface is a
plane. However, we can reduce distortion in the output image by
allowing the picture surface to change orientation to accommodate
the storefronts.

Lastly, every point on the picture surface must be associated with a
ray from exactly one ray manifold. This ensures that the resulting
final output image has no missing regions.

3.2 Interpolating Two Cross-Slits Images

Associating regions of the picture surface with cross-slits cameras
naturally leads to the problem of how to handle unassigned regions
between them. Our system adds an additional cross-slits camera
between every two adjacent user-specified cross-slits cameras, re-
sulting in smooth interpolation. The process of computing the lo-
cation of the interpolating slit is described in figure 1. As shown in
the figure, the location of the interpolating slit is uniquely defined
by the geometry of the adjacent slits.

It should be clear from the figure that the insertion of these inter-
polating slits is independent of the picture surface chosen by the
user. Also, the camera path must be continuous but need not be
straight—the interpolating slit will depend only on the points X
and Y along the camera path. Note that this interpolation scheme is
not dependent on using the camera path as one of the slits. In fact,
this scheme will correctly interpolate any pair of cross-slits cameras
provided that the slit joining them is continuous.

4 Interactive Multi-Perspective Image De-

sign Tool

In this section, we describe our system for interactive design and
rendering of multi-perspective images. Our system takes a set of
video frames (captured with a sideways-looking video camera) with
known camera pose as input and produces one composite multi-
perspective image as output. The system consists of a user interface
and a rendering engine.

4.1 Data Acquisition and Preprocessing

In our current implementation, data is captured using a Basler
A504kc high-speed camera which captures at 300 frames per sec-
ond. The high speed ensures dense image data while still main-
taining a reasonable driving speed (approximately 8-10 mph) for
the videos of commercial city blocks. Camera pose is then esti-
mated with a structure-from-motion (SFM) algorithm using Bou-
jou [http://www.2d3.com], a commercial software package. The
SFM also outputs partial 3D scene structure, which helps the user
in choosing cross-slits locations. We assume that the X-Z plane that
camera pose is estimated in corresponds to the real-world ground
plane.

539

Figure 4: This is a snapshot of our interface. The diagram at top is
a plan view of the scene. You can see the partial 3D scene structure,
picture surface, camera path, user-specified slits, interpolating slits
and a low-resolution preview image.

4.2 Design Choices

There are a number of restrictions that we place on our system.
We assume that the camera path in the input video lies on a plane
parallel to the ground plane. For each cross-slits image, the user
specifies one slit, and the camera path is assumed to be the second
slit. We assume that the user-specified slit is vertical (perpendicular
to the ground plane). This allows a simplified plan view to be used
in our user interface where the vertical slits are projected as points.

As shown in figure 5, the picture surface is a parametric surface
in 3D. We choose our picture surface to have vertical sides. The
restriction of vertical sides on the picture surface applies natu-
rally to urban facades on flat terrain. To aid the user in specify-
ing non-vertical sides of the picture surface, we provide piecewise-
continuous lines and quadratic splines. Quadratic splines are ap-
proximated as piecewise-linear segments to simplify rendering.
This allows our surface to be represented as a series of planar facets.
We constrain the sampling of the picture surface to be regular.

4.3 User Interface

Shown in figure 4, our interface provides both a design section in
which the user specifies the multi-perspective image and a preview
section that can provide rapid, low-resolution previews of the final
image. Once satisfied with the design, the system can output the
full resolution image.

To create a multi-perspective image, the user must define the pic-
ture surface, place all desired cross-slits cameras, and associate the
cameras with regions of the picture surface. Because of the lack
of natural intuition concerning these types of images, the interface
strives to present the design in terms of familiar concepts. With this
in mind, the user is shown the camera trajectory in plan view along
with any estimated scene structure in the form of a point cloud as
output by our SFM algorithm. The camera trajectory, as explained
in section 4.2, defines one of the two slits required for any cross-
slits image.

To define the picture surface in our interface, the user needs to only
draw a set of connected line segments in plan view. This is possible
because we restrict the picture surface to be vertical. To help fit the
picture surface to curved facades, segments of the picture surface
can also be toggled between straight lines and quadratic splines.

In plan view, the task of positioning user-specified slits involves
simply placing the slits as points and specifying their field of view.
The intersection of the field of view with the picture surface de-
fines the region of the picture surface associated with that slit. If
any segment of the picture surface is associated with more than one
user-specified slit, such as if two fields of view overlap, there no
longer exists a unique ray direction for points in that segment, and
therefore that is not a valid specification for a multi-perspective im-
age. As long as the fields of view do not overlap on the picture
surface, however, any number of user slits may be described. The
specified camera slits can also be toggled between slits located at
finite positions and slits located at infinity. Slits at infinity are repre-
sented by a directional line next to the selected point. Placing a slit
at infinity produces a pushbroom image. Similarly, placing the slit
directly on the camera path (thus intersecting both slits) produces
an ordinary perspective image.

Once any valid multi-perspective image is specified, the interface
immediately shows a set of example ray directions at several points
along the picture surface. The program also automatically displays
the interpolating cross-slits camera between any two adjacent user-
specified cameras as explained in section 3.2.

4.4 Rendering Engine

Using an Intel 2.8 GHz Pentium4 machine, the low-resolution pre-
view image can typically be rendered in under a second. An effi-
cient rendering engine is necessary to provide this fast feedback to
the user.

The constraints imposed by our design choices allow us to simplify
and accelerate the rendering. Since each point on the picture surface
is associated with only one cross-slits camera, the final output im-
age is composed from several distinct, abutting cross-slits images.
Each cross-slits camera can span multiple facets of the picture sur-
face. Also, each facet may contain multiple cross-slits cameras. In
both cases, we render only a single cross-slits image onto a single
planar segment at a time. Each planar segment is parameterized by
(u,v). Finally, the restriction of vertical sides for the picture sur-
face and of vertical user-specified slits allows us to assign entire
columns of the final output image from a single input video frame.
For each cross-slits image on a planar segment, there is a mapping
between the (u,v) coordinates of the planar segment to the (s, t)
coordinates of the final output image, defining the sampling of the
picture surface. This can be seen in figure 5. The sampling on each
planar segment is regular in the u and v parameter directions.

A fast algorithm to render a single cross-slits image onto a single
planar surface is therefore the basic building block used in render-
ing. For each cross-slits image, we compute the mapping between
each input frame and the final output image. We then use this map-
ping to compute which pixels will actually contribute to the final
output image and warp only those pixels.

u
v

Picture Surface

Multi-Perspective Image

Manifold of rays

y
z x

t
s

Figure 5: The ray manifold is the set of rays in space. The sampling
of these rays and the mapping to the output image can be specified
by a picture surface with a 2D parameterization of its 3D surface.

540

User-specified slit at infinity (pushbroom)Camera path (fixed slit) Picture surfaceExample ray directions

(a)

User-specified slits (perspective)Camera path (fixed slit) Picture surfaceExample ray directions

(b)

Figure 6: This example shows
how manipulation of the per-
spective structure of the image
can be used to generate a multi-
perspective image with reduced
distortion. The diagram below
each is a plan view of the scene,
with the input video camera mov-
ing along the indicated path and
looking upwards. The picture sur-
face in both (a) and (b) is fixed at
the facade of the storefronts. (a)
is a traditional pushbroom image
generated by specifying a vertical
slit at infinity with all the ray di-
rections being parallel. The re-
sulting image has the familiar dis-
tortions associated with a pushb-
room image: objects in front of
the picture surface (e.g. trees)
are compressed horizontally, and
objects behind the picture surface
are expanded (the view down the
alleyway). (b) has been gen-
erated using multiple cross-slits.
By placing selected user-specified
slits atop the camera path, ordi-
nary perspective views are gener-
ated in the vicinity of the trees and
alleyway. This enhances the real-
ism of the image while still main-
taining the extended field of view
of the pushbroom.

The main point is that we do not pre-warp the input images. Instead,
we calculate the necessary warp and warp only the small region
from each input image. This speeds up rendering to the point that
if all images can be preloaded into RAM, previews can be rendered
at interactive rates even for thousands of input images.

We now describe the process of computing the homography from an
input video frame to the output image for a single planar segment.
We use the convention of using bold for vectors (lowercase) and
matrices (uppercase). Points in different coordinates systems are

x =
[

x y z 1
]T 3D point in world coordinate system

in which camera pose is estimated
u =

[

u v 1
]T 2D point in the coordinate system of

the planar segment of the picture sur-
face

p =
[

p q 1
]T 2D pixel location of a single input

video frame
s =

[

s t 1
]T 2D pixel location of the final multi-

perspective image

Let the origin of the planar segment in world 3D homogeneous co-
ordinates be the 4x1 vector o. Let w and h be 4x1 vectors defining
the width and height extent of the segment. Then, the mapping from
a point u (for all 0 ≤ u,v ≤ 1) on the planar segment of the picture
surface to a corresponding world point x is given by

x = u w+ v h+o

=
[

w h o
]

u
v
1

= Q u

In general, a point in the world coordinate system x is mapped into
a particular input video frame i by the relationship:

p = K [Ri | ti]x

given the camera intrinsics K, the rotation matrix Ri, and the trans-
lation vector ti. Substituting for x, we obtain the relationship be-
tween the planar segment and the input video frame:

p = K [Ri | ti]Q u

With our restriction of regular sampling on the planar facets, we
map the segment to a rectangular region of the final output image
using only translation and scaling. Note that this choice of mapping
is arbitrary. We can now define the relationship between this planar
segment of the picture surface and the final output image as:

s =

a 0 c
0 b d
0 0 1

u = M u

or equivalently
u = M−1 s

541

User-specified slit Camera path (fixed slit)Picture surface

(a)

User-specified slits
Camera path (fixed slit)

Picture surface

(b)

Figure 7: This example shows
how our system can be used
to generate effective multi-
perspective images of deep
plazas. The picture surface in
both (a) and (b) is fixed at the
facade of the building on the left.
(a) is a traditional pushbroom
image generated by specifying
a vertical slit at infinity. This
causes the deep plaza on the right
to stretch horizontally, leading to
apparent smearing due to limited
resolution. In (b), by blending
between two almost perspective
views on the right (one for the
tree and one for the building) and
the same pushbroom view on the
left results in a better visualiza-
tion. In our multi-perspective
image, some unwanted curving
is introduced into the walkway
at the center of the image. This
walkway is in fact straight.

where c and d define the origin of the rectangular region on the final
output image and a and b define the width and height of the region
respectively.

We can then obtain a direct relationship between each input video
frame i and the final multi-perspective image as

p = K [Ri | ti]QM−1 s

Using this formulation, all of the intermediate matrices reduce to a
single invertible 3x3 matrix that we call H, giving

p = H s

s = H−1 p

The matrix H defines the homography between an input video
frame and a portion of the final multi-perspective image corre-
sponding to one planar segment of the picture surface.

With the mapping from each input video frame to the final output
image, each pixel on the final output image will have multiple input
frames overlapped onto it. We must now choose which input frame
to select for each pixel. For our cross-slits images, one of the slits
is fixed—the camera path. The second, vertical slit is either a user-
specified or interpolated slit. We project a point on this vertical slit
through each input video frame onto the final output image.

Picture
surface

Camera path

Slit

Figure 8: The slit is pro-
jected through each cam-
era onto the picture surface.
The region closest to each
projection is assigned to the
corresponding camera.

To compute this, we take the 3D point on the second slit that in-
tersects the ground plane, xg, project it onto the input video frame
(pg), and then use the homography derived above to project the
point onto the final output image (sg). For a particular input video
frame i, the image of xg through that camera’s center of projection
maps to

pg = K [Ri | ti]xg

sg = H−1 pg

As shown in figure 8, for each column of the final output image, we
then select the input frame with the closest projected point sg and
warp the pixels from that frame that correspond to the output image
column.

5 Results

We tested our system on several videos of city blocks taken under
different challenging scenarios. We first examine a scene with a
relatively flat facade and straight camera path. Figure 6(a) shows a
short section of a pushbroom representation of this scene. A pushb-
room image is perspective in one direction (vertical in our case) and
orthographic in the other direction (horizontal). Under this pro-
jection, only objects lying on the picture surface can be rendered
faithfully. In our example, the picture surface is placed at the store
facade. As expected with such a parameterization, trees (which are
closer than the facade) are horizontally compressed while the view
down the alleyway (which is farther) is expanded. By interactively
manipulating the perspective structure of the image, we can reduce
these distortions as shown in figure 6(b). Using our user interface,
we achieve this by specifying ordinary perspective cameras near

542

(a) (b)

Camera path
(fixed slit)

User-specified slit
at infinity

User-specified slit
at infinity

Interpolating slit

Picture surface
(with example ray directions)

(c)

Camera path
(fixed slit)

User-specified slit
at infinity

User-specified slit
at infinity

Interpolating slit

Picture surface
(with example ray directions)

(d)

Figure 9: Our visualization of a street corner with perpendicular storefronts. (a) shows the multi-perspective image generated by our system
for the choice of picture surface shown in (c). (b) shows the multi-perspective image generated by our system for the choice of picture surface
shown in (d). The picture surface in (c) conforms to the actual storefront whereas it has been artificially curved in (d) using our interactive
system. Note that the slits are at the same location in both the setups. (a) gives the impression that the storefront is continuous and there is
no corner. By altering our picture surface we introduce an artificial pinching effect in the multi-perspective image shown in (b). This helps
emphasize that it is a corner without causing severe distortions.

A

B

C

E

F

Camera Path Picture Surface 1

(a)

A B C E F
Sampling for Picture Surface 1

showing constant s,t lines in u,v

(b)

A B D E F
Sampling for Picture Surface 2

showing constant s,t lines in u,v

(c) (d)

Figure 10: This figure explains how our choice of a curved surface and a non-uniform sampling strategy achieves a pinching effect at the
corners seen in figure 9(b). In (a), picture surface 1 conforms to the storefront. To achieve the pinching effect in this case we would need to
stretch the image at C. This would mean non-linearly mapping the picture surface uv coordinates to the final output image st coordinates as
shown in (b) to maintain continuity in the image. We achieve the same effect by instead using a curved surface as shown in (d) but sampling
according to the strategy in (c). This solves the problem of nonlinear vertical sampling, but now requires adjusting the horizontal sampling.
This can be easily done by using the control polygon to define the horizontal mapping from 3D xyz to u but still mapping to s linearly. If the
control polygon corresponds to the storefront, then a brick on the wall will not appear to be stretched horizontally.

regions of significant depth variation such as the trees and the al-
leyway. This creates an image that is more natural looking in these
areas. To keep the image continuous, the system inserts interpolat-
ing cameras between the user-specified cameras.

Another example that illustrates the benefit of manipulating ray di-
rections based on scene geometry is shown in figure 7. The scene
consists of a building with flat facade on the left and a very deep
plaza on the right. By choosing multiple cross-slits as shown in
figure 7(b) we can get a more recognizable image than figure 7(a).

The ability to specify curved picture surfaces allows us to conform

the picture surface to the natural architecture of a corner. An exam-
ple of this is shown in figure 9(a). This type of image is impossible
to create with a traditional single, planar picture surface.

Although this allows us a summary view of both sides of the corner,
the apparent size of facade is constant throughout the image. We
can more naturally represent what a motorist or pedestrian would
see if we stretch the image near the corner, producing a pinching
effect as shown in figure 9(b). This is a nonlinear effect and would
require sampling of the picture surface as shown in figure 10(b).
Instead, we achieve this effect by curving the picture surface as
shown in figure 9(d) and adjusting the horizontal sample density

543

(a) Perspective image (b) Integration on picture surface (c) Synthetic focus image

Figure 11: Here we show a prelim-
inary extension of our algorithm to
generate synthetically focused im-
ages. By integrating over an angu-
lar arc for each point on the pic-
ture surface as shown in (b), we
can simulate a large 1D aperture fo-
cused at the picture surface. (c) is
an example of such a synthetically
focused image with the focus fixed
at the plane of the facade. Note that
the tree present in (a) is blurred out.

as shown in figure 10(c) by using the control polygon. This is a
departure from the earlier imposed regular sampling on the picture
surface. This sampling adjustment is performed automatically by
our program and is explained in figure 10.

6 Conclusions and Future Work

While most people generally have a good idea of what a photo-
graph will look like when shown a diagram of the camera position
and orientation relative to a scene, this intuition does not exist for
multi-perspective images. The choice of 2D manifold of rays, the
placement of the picture surface and the sampling of the surface
constitute a design problem. We provide a user interface which
helps develop an intuition for the perspective structure of multi-
perspective images as well as generates effective visualizations of
urban landscapes.

One limitation of our system is that we allow only regular sampling
on the picture surface (and the automatic adjustment of horizontal
sampling density illustrated in figure 10). We do not allow any user-
specified sampling strategies. One can imagine sampling the image
more densely in the center than toward the edges, resulting in a fish
eye like effect. Also, the enforcement of vertical slit orientation, a
limitation imposed by our user interface, implies that the user in-
terface cannot accurately depict changes in elevation such as hills.
Similarly, the user interface does not permit altering the orienta-
tion of the picture plane from vertical. Finally, we choose to allow
representing only three of the eight GLCs from Yu and McMillan
[2004]. It would be interesting to incorporate these other cameras
into our design tool.

Regarding future work, all of our examples have an effectively infi-
nite depth of field (assuming pinhole cameras for input). By averag-
ing multiple input video frames projected onto the picture surface,
we can simulate a synthetic aperture as discussed in Vaish et al.
[2004]. This results in an extremely shallow depth of field image.
Vaish et al. [2004] show this effect for planar picture surfaces. By
specifying a curved picture surface, we extend this effect to non-
planar picture surfaces. However, in our case the aperture is only
1D, whereas the apertures in [Vaish et al. 2004] are 2D. Figure 11
shows a preliminary result for a planar picture surface.

Finally, one can imagine a system that automatically places the
cross-slits based on the 3D structure of the scene to obtain a re-
sult similar to that seen in figure 6(b). Further extensions could
include relaxing the constraint of mosaicing the cross-slits images
with only vertical cuts. Allowing arbitrary cuts can help achieve
the quality found in Koller’s work [Koller 2004]. Furthermore, one
could define a minimum error cut similar to Efros and Freeman
[2001].

Acknowledgments: We would like to thank Sarah Harriman, Neel Joshi, Dan
Morris, Jeff Klingner, and Austen McDonald for proofreading various versions of the
draft. This work was supported by grants from Google Inc., National Physical Science
Consortium, the Alfred P. Sloan Foundation, and the Reed-Hodgson Stanford Graduate
Fellowship.

References

CHEN, S. E. 1995. Quicktime VR: An image-based approach to
virtual environment navigation. In Proc. SIGGRAPH, 29–38.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In Proc. SIGGRAPH, 341–346.

GLASSNER, A. S. 2000. Cubism and cameras: Free-form optics
for computer graphics. MSR-TR-2000-05.

GUPTA, R., AND HARTLEY, R. I. 1997. Linear pushbroom cam-
eras. IEEE PAMI 19, 9, 963–975.

HARTLEY, R. I., AND GUPTA, R. 1994. Linear pushbroom cam-
eras. In Proc. ECCV, 555–566.

KOLLER, M., 2004. Seamless city. http://www.seamlesscity.com.
NAYAR, S. K. 1997. Catadioptric omnidirectional camera. In Proc.

CVPR, 482–488.
PELEG, S., ROUSSO, B., RAV-ACHA, A., AND ZOMET, A. 2000.

Mosaicing on adaptive manifolds. IEEE PAMI 22, 10, 1144–
1154.

RADEMACHER, P., AND BISHOP, G. 1998. Multiple-center-of-
projection images. In Proc. SIGGRAPH, 199–206.

SEITZ, S. M., AND KIM, J. 2003. Multiperspective imaging. IEEE
Computer Graphics and Applications 23, 6, 16–19.

SHUM, H.-Y., AND SZELISKI, R. 2000. Construction of
panoramic image mosaics with global and local alignment. IJCV
36, 2, 101–130.

VAISH, V., WILBURN, B., AND LEVOY, M. 2004. Using plane
+ parallax for calibrating dense camera arrays. In Proc. CVPR,
2–9.

VALLANCE, S., AND CALDER, P. 2001. Multi-perspective images
for visualisation. In Proc. Visual Information Processing, 69–76.

WOOD, D. N., FINKELSTEIN, A., HUGHES, J. F., THAYER,
C. E., AND SALESIN, D. H. 1997. Multiperspective panora-
mas for cel animation. In Proc. SIGGRAPH, 243–250.

YU, J., AND MCMILLAN, L. 2004. General linear cameras. In
Proc. ECCV, 14–27.

ZHENG, J. Y. 2003. Digital route panoramas. IEEE MultiMedia
10, 3, 57–67.

ZOMET, A., FELDMAN, D., PELEG, S., AND WEINSHALL, D.
2003. Mosaicing new views: The crossed-slits projection. IEEE
PAMI 25, 6, 741–754.

544

