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ABSTRACT 
We present the definition and computational algorithms for a 

new class of surfaces which are dual to the isosurface produced by 
the widely used marching cubes (MC) algorithm.  These new 
isosurfaces have the same separating properties as the MC 
surfaces but they are comprised of quad patches that tend to 
eliminate the common negative aspect of poorly shaped triangles 
of the MC isosurfaces.  Based upon the concept of this new dual 
operator, we describe a simple, but rather effective iterative 
scheme for producing smooth separating surfaces for binary, 
enumerated volumes which are often produced by segmentation 
algorithms.  Both the dual surface algorithm and the iterative 
smoothing scheme are easily implemented. 

CR Categories and Subject Descriptors: I.3.5 [Computer 
Graphics]: Computation Geometry and Object Modeling – 
Surface, solid and object representations 

Additional Keywords: Marching Cubes, isosurfaces, triangular 
mesh, dual graph, segmented data, smoothing 

1 INTRODUCTION 
The marching cubes (MC) algorithm ( see [10], [11], [12] ) is a 

widely used technique for computing triangular mesh isosurfaces 
from discretely sampled volume data over rectilinear lattices.  
Here we introduce the concept of a dual surface.  This dual 
surface tends to eliminate the poorly shaped triangles often 

present in MC surfaces.  In a nutshell, we obtain this dual surface 
in the following manner.  First, we extend the concept of the MC 
surface to a patch version which eliminates the edges of the MC 
surface interior to voxels to obtain a surface, S, with polygon 
bounded patches where each vertex is included in exactly four 
patches.  Then for each patch of S there is associated a vertex of 
the dual surface.  The dual consists of quad patches which are 
connected in exactly the same manner as the connectivity of the 
vertices of the surface S.  See Figures 1 and 2. 
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Figure 2. The edges of the MC-Patch surface are in black, the 
vertices of the original MC surface are at the intersections of these 
polygon curves.  The edges of the dual surface, , are in white, 
where each one is associated with (appears to cross) an edge of 
the MC-Patch surface.  Every vertex of the original MC surface 
appears to be surrounded by a quad patch of the dual surface. 
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The 4*-network consists of the edges of the MC-Patch surface.  
An example is shown in the middle image of Figure 1.  There is 
considerable structure to the 4*-network in that it consists of a 
collection of three, mutually orthogonal planar curves.  Here we 
assume that kji ,,F≠α  which guarantees that each vertex is at the 
intersection of exactly two of these planar polygons.  Also, we 
assume that MC surface is without boundary so that none of its 
edges are in the boundary planes of the domain lattice.  These are 
not fundamental restrictions, but simply make the discussion here 
simpler not having to deal with special cases. 

In Section 2, we give the formal definition of the MC-Dual 
surface and details for computational algorithms.  Section 3 
contains several examples and applications of the MC-Dual 
surface.  Applying the ideas of the MC-Dual to the MC-Dual itself 
leads to a new surface which has the same edge connectivity as 
the original MC-Patch surface.  This is discussed in Section 4.  
The relationship of the present work to other research in the area 
is explained in Section 5. 

2 DUAL MARCHING CUBES 
We let MjFj ,,1L=  denote the patches of  and SIn order to proceed with a more rigorous definition of the dual, 

it will be useful to introduce some of the basic concepts of the MC 
algorithm and some notation associated with it.  Input to the 
marching cubes algorithm consists of a three dimensional array of 
values  
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denote the individual vertices which form the boundary of each 
patch.  The topology of  is captured in the list of index pointers  S 

( )zkyjxiFF kji ∆∆∆= ,,,,   
  ( ) Mn ,,1,21 LL =jjjj
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 representing samples of a function over a rectilinear grid 
consisting of lattice points 

 
( ){ }zyx NkNjNizkyjxiL ,,1;,,1;,,1,,, LLL ===∆∆∆= . 

 
The cube or voxel with the diagonal from ( )zkyjxi ∆∆∆ ,,  to 

 is denoted by ijk .  For a given 
threshold value, 
( ) ( ) ( )( zkyjxi ∆+∆+∆+ 1,1,1 ) B

α , the MC algorithm produces a triangular mesh 
surface which separates the lattice points with α>F kji ,,  from 
those with α≤F kji ,, .  The basic strategy consists of producing 
fragments of the surface one voxel at a time.  The triangles 
produced for a particular voxel depend upon the 
case/configuration of this voxel.  These cases are determined by 
the relationship of the value of the field function at a lattice point 
and threshold value.  The 256 (= 2^8) cases are grouped into a 
total of 23 configurations with the equivalence relationship of a 
rigid rotation.  Representers of these equivalence classes are 
shown in Figure 3. 

where each adjacent pair of indices (including cyclic pairs) 
indicates an edge of S.  And now a simple but important 
observation.  Since each vertex, iV , of S lies on an edge of the 
lattice and since each edge of the lattice has exactly four voxels 
that share this edge we know that each vertex, iV , of S has exactly 
four patches which touch (contain) it.  This topology 
(neighbourhood connectivity) of the surface fragments, can be 
represented with a list of 4-tuples 

 
 ( ) Niiiii L,1,,, 11100100 =  (3) 
 

where this indicates that iV  is common to 
11100100 iiii  and 

these four fragments are connected in a circular fashion with the 
two pairs of fragments 

,,, FFFF

( )
1100 ii  and ,FF ( )

10
,01 iFiF  are connected 

diagonally as shown in  Figure 4.   
And now we introduce a space of MC-Patch surfaces by 

allowing the vertices to slide any where along their respective 
edges of the lattice L.  We denote this collection of surfaces as 
( )χX , where χ  is an enumerated volume consisting of a 

distinguished subset of L.  The edges joining a point in χ  to 
points not in χ  are the same edges containing the vertices of the 
MC surface.  That is,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C14 C11 C10 C13 C12 

C15 C19 C16 C17 C18 

C9 C8 C7 C6 C5 

C4 C2 C3 C1 C0 

C20 C22 C21 

 
 ( ){ }αχ >∆∆∆= ijkFzkyjxi :,,  (4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Qi11

Qi0

1

Qi00 
Qi10 

Figure 4. Four adjacent patches of the MC-Patch surface and 
the edges of the associated quad patch of the MC-Dual surface. 

 
 
 Figure 3. The configurations of the MC-Patch method. 
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Definition: Let S is be in ( )χX  then  is a surface comprised 
of a collection of quad patches with the following properties 

◊S

 
1) For each patch   of S there is a vertex j  of the dual 
surface, , lying in the interior of the voxel contianing . 

jF Q
◊S jF
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◊S
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2) For every vertex iV  of the the marching cubes surface, S, there  
is one quad patch i  of .  The vertices of the quad patch are 
the vertices that associate with each of the four patches of S  that 
have V  in common. 
 
3) For every edge of S there is an associated edge of .  The 
edge of S lies in the voxel face intersected by the associated edge 
of the dual surface .  ( In the images of Figure 2, these 
associated edges appear to instersct.) 

 
This definition is summarized in the following table 

 
 

 
  

 
Dual Surface  

Voxel Patches:  
 
          
 

Vertices: 
 

 
 

Vertices: 
 
          V  
 

Quad Patches: 
 

 
 

Table 1: The vertices of the dual surface, , have the connective 
of the patches of S and the vertices of S have the connectivity of 
the quad patches of . 

S

◊S
 

In a manner similar to defining ( )χX  by allowing the vertices 
of a specific surface to vary along its edges, we define the space 
of dual surfaces, ( )χ◊

◊
 by allowing the vertices, jQ , of the 

specific surface  to be anywhere in their respective voxels.   S
Again, we summarize up to this point.   

1) The topology (connectivity of vertices or patches) for both 
( )χX  and ( )χ◊  is completely determined by the enumerated 

volume χ  consiting of a subset of the vertices of the lattice L.   
2) If we say that two vertices are connected provided there is an 
edge joining them and that two patches are connected if they have 
a common edge, then the following hold:  The connectivity of the 
vertices of ( )χX  is the same as the connectivity of the patches of 

)(χ◊  and the connectivity of the vertices of ( )χ◊  is the same as 
the connectivity of the patches of ( )χX .   
3) There is a one-to-one correspondence between the edges of 

( )χXS∈ and .  The edge joining two vertices of S 
corresponds to the common edge to their associated quad patches. 

( )χ◊∈◊S

 
The way we have presented and described the MC-Dual 

surface,  seems to indicate that it is necessary to compute the 
surface S and then from this surface compute the dual surface.  
While for some applications, this might be desirable, it is not 
necessary and it is certainly possible to directly compute the dual 
surface.  Analogous to the configuration of Figure 3, for the 
computation of S, we have Figure 5 for .  Each configuration 
of Figure 5 indicates the number of vertices of  each 
configuration produces and how these are connected to the 
vertices of neighboring voxels.  The determination of the 
connectivity is through the edges.  Each quad patch emanating 
from a vertex intersects the edge as shown in the figure.  This 
edge is connected to the vertex of the adjoining voxel whose patch 
intersects this common edge.  An examination of this figure will 
reveal that it is carefully constructed so as maintain the same face 

connectivity of lattice points on the ambiguous faces ( see [11] ). 
With two distinguished lattice points on opposing corners, we 
have chosen arbitrarily, but consistently, to separate these lattice 
points.  

◊S

◊S
◊S

 
 

◊

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The configurations for the construction of the MC-Dual 
surface, . S

Simple splatting algorithm for rendering a dual surface: If no 
post processing, requiring the topology information, is needed and 
if all that is required is to render the dual surface then it is possible 
to do a simple algorithm based upon simply visiting each edge of 
the lattice edges that has a sign change and render the patch 
associated with it.  For simplicity, assume that the value of a dual 
vertex is the centroid of the midpoints of the edges associated 
with this vertex.  We simply look at each of the four voxels which 
share this edge, determine which patch the edge lies in for this 
voxel and its configuration and compute (or look up) the value of 
its dual vertex.  Having done this for all four voxels which share 
this edge, we simply then render the quad patch and move onto 
the next lattice edge with a sign change. 

3 EXAMPLES OF MC-DUAL SURFACES 
This first example illustrates 

rather typical results of 
comparing the original MC 
surface and the MC-Dual.  The 
data set is freely available at  
www.volvis.org.  It has a field 
function defined over a 

178256256 ××  lattice and 
represents a CT scan of the 
SIGGRAPH 1989 teapot with 
small version of the AVS 
lobster inside. 

In Figure 6, we compare the smooth shaded rendering of the 
MC surface with that of the MC-Dual surface.   The big difference 
is in the specular reflection.  The MC surface has many long thin 
triangles and these lead to abrupt changes and near discontinuities 
in the highlights.  The MC-Dual surface tends to diminish this 
negative aspect of MC surfaces.  Figure 7 illustrates this same 
improvement, but with a different example.  
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Figure 7. The top, right image is the MC isosurface and the 
bottom, right image is the MC-Dual surface.  Note the near 
discontinuities of the highlights in the MC isosurface which are 
diminished with the use of the MC-Dual surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While it is possible to improve somewhat the smooth rendering 
of the MC surface by using alternative methods of computing 
estimates of the normal vectors (see [4] ) this problem of long thin 
triangles is really a phenomena of the uniform sampling of the 
field function used by the MC algorithm which is diminished by 
the use of the dual surface.  

The next example illustrates a rather different aspect and 
application of the MC-Dual surface.  Here we have an enumerated 
volume of size 512x512x200 where each voxel edge is 
approximately .02 inches.  This data is typical of data resulting 
from the application of segmentation algorithms to scanned 
medical data, ( See Hu et al. [6] ).  The original field function 
values, ijk  (which played a key role in the segmentation process) 
are no longer relevant for isosurface or rendering computations 
since there is no threshold value, 

F

α , so that 
 

( ){ }αχ >∆∆∆= ijkfoot Fkkyjxi :,, . 
 

Without additional information or assumptions, we can obtain a 
rendering of this enumerated volume by displaying the separating 
midpoint surface.  We show this surface and a zoom-in in Figure 
8.  The midpoint surface is rather blocky, making it difficult to 
discern shape information.  The dual is also a separating surface 
that makes no assumptions about the values of the field function, 
but, as is shown in the bottom image of Figure 8, is much 
smoother and reveals much better shape information.  

Figure 6. The top two images are the MC surface on the left and 
the MC-Dual surface on the right.  A blow-up in the two middle 
images illustrates the near discontinuities of the highlights of the 
MC surface and the improvement gained with the MC-Dual surface.   
The bottom two images show the grids for these two regions of the 
surface. 
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Figure 8. The top image and middle zoom-in illustrate an 
enumerated volume footχ  with a midpoint surface. The MC-Dual, 
which is also a separating surface that tends to be smoother, is 
shown in the bottom image. 

4 DUAL OF THE DUAL 
In this section, we describe a specific mapping from a MC-Dual 

surface ( )χ◊∈R , back to a MC-Patch  surface, ( )χXR ∈+ .  For 
each edge of the lattice with a sign change there is an associated 
quad patch of R.  We define to be the surface of +R ( )χX  whose 
vertices are the intersections of the quad patches of R with the 
edges of the lattice L.  For this we will require that whatever quad 
patch is used, it must have the property that it always intersects its 
associated edge of the lattice.  For the examples presented here, 
we use a quad patch comprised of two triangles.  There are 
potentially two possible ways to triangulate a quadrilateral.  We 

consider the projection of the quad patch boundary onto the plane 
perpendicular to the edge associated with the quad patch.  See 
Figure 9.  If this planar quadrilateral is convex then either 
diagonal is acceptable.  If it is not, then one of the points is in the 
triangle formed by the other three.  This point is joined to its 
opposing point to form the diagonal.  The intersection point is 
then computed using barycentric coordinates.  Under some 
circumstances and modifications, it is also possible to use a 
bilinear quad patch, but we forego the details of this now.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The definition of the two-triangle quad patch requires 
the choice of the diagonal based upon the footprint configuration. 

Definition: Let ( )χXS∈ , then the Dual-of-the-Dual is 
 

( )+◊= SSν . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. The Dual-of-the-Dual operator, . νν SS →:

 
In the case of the centroid and two-triangle quad patch there are 

some smoothing effects of −ν operator which are illustrated by 
polygon version example of Figure 11. 

S◊

Sν

S 

( )χ◊( )χX

ν 
+ 

◊ 

We denote the iterative repetition of this operator by ( ) νν 2SS =
ν

, and so ( ) ( )νν 1+= nn SS
ν

.  Iteration of the 
−ν operator leads to a sequence of surfaces possibly converging 

to a limiting surface  
 

νν ∞

∞→
= SS n

n
Lim

ν∞S

 
 
where, we call this limiting surface, , the fixed-point shroud 
of χ .  This is called a fixed-point surface because the 
−ν operator does not affect this surface.  That is,  

 
 

( ) ννν ∞∞ = SS . 
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(b) (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11. Image (a) is the midpoint curve and (b) is the dual 
curve.  The dual-of-the-dual is shown is image (c).  The ν-operator 
maps (a) to the smoother (c). 

An example of a Fixed-Point Shroud is shown in Figures 12.  In 
Figure 13, we show results for a random initial separating surface. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. The upper image is the Fixed-Point Shroud, , for 
the enumerated volume of the data of Figure 8.  The lower image is 
a zoom-in of the dual of this surface, ( .  . 

ν∞S

)◊∞ν

ν∞

S

 
 
 
 
 
 

 

(c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Top image utilizes random values on the edges of the 
lattice of the enumerated volume as an initial surface.  The Dual-of-
the-Dual of the random surface is the middle image and the bottom 
image is the result of 13 iterations of the ν-operator applied to the 
random initial surface which has nearly converged to the Fixed-
Point Shroud, . S

In Figure 14, we show some results of the present method 
applied to segmented MRI data (see Hu et al. [6] ).  Rather than 
use a zoom-in, we have used a down-sampled version of the 
actually data set so that the effects of the ν-operator are more 
apparent. 
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5 SUMMARY AND REMARKS  
 
 5.1 Relation to Other Work in the Area 
 In this section, we discuss how the present techniques relate to 

others in the literature.  We first note that meshes dual to the 
general triangular mesh produced by the MC algorithm are really 
quite different than the dual meshes we have described here which 
are dual to the MC-Patch surfaces.  This includes the methods of 
Ohtake and Belyaev [14] which is motivated by the observation 
that a tangential surface element that is tangential to an implicit 
surface has a better chance to approximate it than ones that 
interpolate to it.  They use the dual mesh of the general triangular 
mesh produced by the MC method and additional subdivision to 
gain better approximations to features 

 
 
 
 
 
 
 
 
 
 
 The cuberille method was first described by Herman and Liu 

[5] and later Chen et al. [1] discussed methods for estimating 
normals for displaying these surfaces.  The cuberille method is 
described in terms of voxels belonging to objects and not lattice 
points as we have used here, but considering the voxels with 
lattice points being the centers of our voxels we have an 
equivalent context.  Within this context, the boundary surfaces of 
the cuberille method can be computed per voxel using the scheme 
indicated in Figure 15.  Gaubin [15] has noted that the resulting 
surfaces are not proper two-dimensional manifolds in that several 
quad patches can share an edge and mentions ( see Kalvin [8] ) 
the possibility of regularizing these surface to manifolds by 
inserting vertices and duplicating edges with a shrinking type of 
approach.  This would be different than the table-look-up 
technique we have described here and could possibly be viewed as 
shrinking the surface fragments of Figure 14 to those of Figure 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The edges of the cuberille produced surfaces are subsets of the 

edges of SurfaceNets ( see Frisken [3] ) which include one vertex 
per surface cube.  A surface cube of this method is defined to be 8 
voxel neighbors not all of the same binary value indicating 
inclusion of the segmented object.  Vertices are joined across cube 
faces and a spring model is used to compute the actual final 
location of each vertex.  Subsequently triangles join the vertices 
leading to surfaces that can be rendered.  A related method is that 
of Whitaker [16] which he describes as a “reformulation of the 
technique of constrained elastic surface nets” and level sets are 
used to estimate surfaces of minimal area.  

 
 
 
 
 
 
 
 
 
 
 Ju et al. [7] describe their method with: “This method is an 

interesting hybrid of the EMC method and the SurfaceNets 
method.  It uses the EMC method’s feature vertex rule for 
positioning all vertices of the contour while using the SurfaceNets 
method to determine the connectivity of these vertices.”  Here, 
EMC refers to the method of Kobbelt et al. [9].  

 
 
 
 
 
 In some applications, for example where the rendering of the 

surface is the only aspect of interest, the lack of the manifold 
property ( of the three previously mentioned methods) may not be 
an important problem, but where surface intrinsic properties are 
needed (e. g. normals, curvature, etc. ) or where any post 
geometric processing of surfaces is done (simplification, 
multiresolution, etc.) then the manifold property is important.  The 
separating surfaces described here have this manifold property. 
This comes at the expense of dealing with more than one vertex 
per voxel.  If the configurations C6, C7, C10, C12, C13, C15, and 
C18 never occurred, then a much simpler approach could be 
taken, but these configurations do occur is most applications.  We 
have found that typically these configurations comprise about 
1.3% of all configurations C1 to C22.  

 
 
 
 
 
 
 
 
 

Figure 14. The top image is the midpoint separating surface for 
an enumerated volume which results from a segmentation 
algorithm ( see Hu et al. [6] ) applied to MRI data.  The middle 
image is the MC-Dual surface of the midpoint surface and the 
bottom image is the dual of the Fixed-Point Shroud.  We have used 
a down-sampled version of the original data for this example so the 
effects of the new method are more apparent. 
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5.3 Additional Remark  
 If a configuration C16 or C19 ( see Figure 3 and Figure 5 ) 

share a common ambiguous face, then we get a dual surface 
where two edges become coincident.  The surface is still a two 
manifold in that no edge is shared by more that two quad patches.  
This can be viewed as a situation where a topological tunnel has 
geometrically collapsed.  This phenomenon is a result of the 
decision to be consistent with the MC topology given in Figure 3 
to always separate the opposing vertices on the ambiguous faces.  
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