
TetSplat: Real-time Rendering and Volume Clipping

of Large Unstructured Tetrahedral Meshes

Ken Museth∗

Linköping Institute of Technology

Santiago Lombeyda†

California Institute of Technology

Figure 1: Screen shots from interactive visualization of an unstructured 275Mb mesh with more than 5 million tetrahedra and 13 field values.
Our method is the first to guarantee real-time performance regardless of rendering hardware (here a P4 1.7GHz, Radeon 8700) and size of the
unstructured tetrahedral mesh. Images show real-time volumetric clipping by CSG intersection with a sphere probe (left), cutting plane (two
center) and a box probe (right).

ABSTRACT

We present a novel approach to interactive visualization and explo-
ration of large unstructured tetrahedral meshes. These massive 3D
meshes are used in mission-critical CFD and structural mechanics
simulations, and typically sample multiple field values on several
millions of unstructured grid points. Our method relies on the pre-
processing of the tetrahedral mesh to partition it into non-convex
boundaries and internal fragments that are subsequently encoded
into compressed multi-resolution data representations. These com-
pact hierarchical data structures are then adaptively rendered and
probed in real-time on a commodity PC. Our point-based rendering
algorithm, which is inspired by QSplat, employs a simple but highly
efficient splatting technique that guarantees interactive frame-rates
regardless of the size of the input mesh and the available render-
ing hardware. It furthermore allows for real-time probing of the
volumetric data-set through constructive solid geometry operations
as well as interactive editing of color transfer functions for an ar-
bitrary number of field values. Thus, the presented visualization
technique allows end-users for the first time to interactively render
and explore very large unstructured tetrahedral meshes on relatively
inexpensive hardware.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Constructive
Solid Geometry; I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types;

Keywords: Large volumetric data, tetrahedral meshes, real-time
visualization, point-based rendering, constructive solid geometry.

∗e-mail: museth@acm.org
†e-mail: slombey@cacr.caltech.edu

1 INTRODUCTION

A well studied and yet prevailing problem in scientific visualization
is the interactive rendering and exploration of large-scale volumet-
ric datasets. Most of this work has been devoted to volume render-
ing of large structured (i.e. regular) and often uniformly sampled
3D data-sets with trivial convex boundaries. This is a simple conse-
quence of the fact that structured volumetric data-sets are the ones
most typically encountered in scientific visualization. However, the
advances of computational multi-resolution techniques combined
with the ever increasing speeds of computing hardware have cre-
ated a growing need for new interactive visualization techniques
for unstructured (i.e. irregular) volumetric data-sets.

In this paper we focus on a new real-time visualization technique
for large unstructured tetrahedral meshes with multi-dimensional
field values and non-convex boundaries. The proposed method ren-
ders the massive volumetric data as opaque surfaces with CSG cuts.
This work should not be viewed as an alternative to the large body
of work on translucent rendering techniques for regular grids.

Our visualization framework, dubbed TetSplat to acknowledge
it’s source of inspiration (QSplat), was developed as an invaluable
tool for scientists at Caltech’s “ASCI/ASAP Center for Simulation
of the Dynamic Response of Material”. The focus of the research
at this center is the study of propagating shock-waves across tar-
get materials inside an exploding virtual cannister, using large-scale
coupled computational fluid dynamics (CFD) and solid mechanics
computations. The result of these simulated explosions are often
very large unstructured tetrahedral meshes with multiple field val-
ues (like density, pressure, temperature etc) which simply cannot
be directly rendered in real-time for fast inspection and validation.
As such the work presented in this paper grew out of a real need
for a flexible visualization tool that can run at interactive speeds on
inexpensive PCs. Few commercial or opensource products exist to-
day for rendering of large tetrahedral meshes (e.g. EnSightTMand
ParaView), but they require very expensive visualization hardware
(like shared memory supercomputers) to achieve interactive speeds.

Our approach is to use a combination of pre-processing with
lossy compression to build up compact hierarchical data structures
and fast point-based rendering with adaptive resolution to guaran-
tee real-time performance regardless of the size of the input mesh

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

433

vis
Note
Please see conference DVD for supplementary material.

and the available rendering hardware. This approach allows us to
make maximum use of our limited hardware resources. The pre-
processing can either be performed in parallel on the computational
CPU nodes that each store a fragment of the large tetrahedral mesh,
or alternatively on a single high-end workstation. The visualization
on the other hand can be performed on a desktop, or even laptop,
with or without dedicated graphics hardware.

1.1 Previous work
To the best of our knowledge there is no previous work that can
claim real-time performance for multi-resolution rendering and vol-
umetric clipping of large unstructured tetrahedral meshes. Hence,
relevant previous work is limited to publications on very different
approaches to visualizing tetrahedral meshes as well as selected
work on real-time techniques for rendering large surface meshes.
In fact, the previous work most related to ours (see below) has very
little, if anything, to do with visualization of tetrahedral meshes
since they describe real-time techniques developed for 2D meshes.

Foremost TetSplat is based on the excellent work by [18] which
describe a relatively simple but extremely efficient point-based ren-
dering technique for real-time visualization of large surface meshes.
Their method (QSplat) pre-computes a compact hierarchical data
structure from the input mesh which can subsequently be rendered
in real-time by adaptive point splatting. Specifically they use a hi-
erarchy of bounding spheres [17, 2] and normal cones [20] to allow
for fast visibility culling and level-of-detail control when travers-
ing an unbalanced quad-tree that serves as the multi-resolution data
representation of the surface mesh. However it should be noted that
the idea of using points for surface rendering [16, 13] and volume
rendering by splatting[15] predates QSplat.

TetSplat is also inspired by the recent work of [1] on interactive
boolean operations between closed surfaces represented with sur-
fels (i.e. oriented points). They use balanced (i.e. regular) octrees
of the surfels to perform fast constructive solid geometry[7] (CSG)
operations. They also employ a simple but clever re-sampling tech-
nique to improve the rendering of surfels along the intersection
curve.

In the past few years there have been several graphics re-
lated publications using tetrahedral meshes, but most of this work
deals with incremental mesh simplification[12, 21, 4] and multi-
resolution modeling[22, 10] using regular tetrahedral meshes. In
fact, [5] states that there does not seem to be any work on multi-
resolution visualization of unstructured tetrahedral meshes pub-
lished prior to their recent publication. As they point out it is diffi-
cult, if not impossible, to generalize techniques developed specifi-
cally for structured meshes to unstructured tetrahedral meshes due
to non-convex boundaries and varying sizes of grids cells in the lat-
ter. [5] describes iso-surface mesh extraction from a compact multi-
resolution data structure of moderately sized unstructured tetrahe-
dral meshes built through edge collapses[4].

1.2 Contributions
We present a novel technique for interactive visualization of large
unstructured tetrahedral meshes. The features and benefits of our
visualization framework (dubbed TetSplat) can be summarized as:

• Real-time rendering of unstructured tetrahedral meshes re-
gardless of size and the available computing resources.

• Pre-processing of tetrahedral mesh to partition it into compact
hierarchical data structures of non-convex boundaries and in-
ternal fragments.

• Real-time volumetric clipping by means of CSG culling dur-
ing traversal and rendering of compact hierarchical data struc-
tures.

• Interactive editing of color transfer functions for an arbitrary
number of field values.

This work stands apart from previous work in several ways. None
of the methods discussed in the previous section are capable of real-
time rendering of large unstructured tetrahedral meshes. However
we would like to stress that the approach presented in this paper
is not intended as a replacement of all visualization techniques de-
veloped for moderately sized and/or structured tetrahedral meshes.
The interactive techniques mentioned in the previous section were
explicitly developed for real-time rendering and clipping of 2D sur-
face. As such our work can be viewed as a 3D extension of some of
the ideas presented in [18] and [1]. Specifically these technical ex-
tensions include different data structures optimized for the 3D mesh
and real-time rendering with new features such as CSG culling with
adaptive resolution of intersections and interactive color-mapping
of multiple field values.

2 PRE-PROCESSING OF THE TETRAHEDRAL MESH

The first stage of our visualization pipeline is the off-line pre-
processing of the large tetrahedral mesh to construct a compact
multi-resolution data structure that can efficiently be rendered and
clipped in real-time. This pre-processing in turn consists of three
logical steps. First we partition the input tetrahedral mesh into non-
convex boundaries and interior parts. Throughout the remaining of
this paper we shall refer to these parts respectively as the Shell
and the Solid. Next we use this Shell and Solid to derive corre-
sponding leaf nodes that are finally combined in two distinct hier-
archical tree structures to form the multi-resolution data represen-
tations. The subsequent sections describe the details of these three
steps of the pre-processing.

2.1 Partitioning the Input Mesh into the Shell and the Solid
Since we plan to use an adaptive rendering technique based on
splatting of opaque hierarchical bounding spheres we are faced with
two fundamental issues. The first one is how to derive bounding
spheres and normal information from the tetrahedral mesh, which
is the topic of the next section. The second issue, and equally im-
portant, is how to efficiently construct compact data structures from
these bounding spheres that can be interactively rendered at a de-
cent quality, while also allowing for clipping using a virtual CSG
probe. Part of the key to resolving this problem comes from the
basic but crucial premise that we are rendering opaque surfaces as
derived from topologically distinctive parts of the input mesh. The
non-convex boundary of the tetrahedral mesh can be treated as a
simple triangulated surface mesh with normals and multiple field
values defined at the associated vertices. However, the interior parts
of the input mesh will only be visible on the surface of the intersect-
ing CSG probe. Consequently, normal information needed for the
shading of the interior should be derived from the CSG probe itself
and not from the tetrahedral mesh. The corresponding data struc-
ture for the 3D interior mesh should also reflect the fact that the
topology is very different from the 2D boundary mesh. This all
suggests that we first partition the tetrahedral mesh into a Shell
and a Solid, as is described in Algorithm 1. Note that in order
to facilitate a better rendering of the CSG intersection between the
Shell and the Solid we also derive extra information indicating
whether a particular tetrahedron or triangle in the Solid is located
in the immediate proximity of the Shell boundary.
2.2 Deriving leaf nodes from the Shell and Solid

In order to construct hierarchical tree structures for real-time ren-
dering and clipping of the Shell and Solid, as defined in the previ-
ous section, we have to derive the leaf nodes from the corresponding
sub-meshes. Since the tree structures will be based on hierarchical
bounding spheres, we clearly need to define a center and a radius for

434

foreach (tetrahedra Tetk) do
Triki ← extract four triangles from Tetk;
Tri[4∗ k + i] ← sort indexes in vertex list of Triki ;

end
Sort Tri according to the indexed vertex list of each triangle;
foreach (triangle Triki ∈ Tri) do

Triki ← Tri[n];
if (vertex list of Triki = vertex list of Tri[n+1]) then

Triki ∈ Solid;

else
Triki ∈ Shell;
Tetk is a boundary tetrahedron;

end
end
foreach (triangle Triki ∈ Solid) do

if (Tetk is a boundary tetrahedron) then
Triki is a boundary triangle in the Solid;

else
Triki is an internal triangle in the Solid;

end
end

Algorithm 1: Pseudo-code for the partitioning of the input tetra-
hedral mesh into a triangular surface mesh called the Shell and
triangular solid mesh called the Solid. Tri is an array of all
triangles derived from the tetrahedral mesh.

each leaf node in addition to storing all field values of interest. It is
especially important to assign proper values for the radius in order
to avoid holes during rendering. Additionally, for the Shell leaf
nodes we need to define normal vectors. Below we shall present
different strategies to deriving this information from the Shell and
Solid.

Tetrahedra: For the Solid part of the tetrahedral mesh the first
obvious choice of a geometric primitive from which to derive the
leaf nodes is of course the individual tetrahedra. The center and
radius of the corresponding bounding sphere can then simply be
defined as the circum-center and circum-radius of the tetrahedra. If
a, b, c and d denote the coordinates in ℜ3 of the four vertices of a
tetrahedron the circum-center relative to vertex a is given by [19]

mtet =
|d−a|2A(b,c)+ |c−a|2A(d,b)+ |b−a|2A(c,d)

2

∣

∣

∣

∣

∣

∣

[b−a]x [b−a]y [b−a]z
[c−a]x [c−a]y [c−a]z
[d−a]x [d−a]y [d−a]z

∣

∣

∣

∣

∣

∣

, (1)

where we have introduced the following compact vector notation

A(u,v) = (u−a)× (v−a) (2)

and where for any vector u, [u]k denotes the kth component. The
circum-radius is then simply given by |mtet | and the absolute coor-
dinates of the circum-center are a + mtet . Since Eq. (1) is purely
a function of differences between coordinates the relative error in-
curred in the numerical computation is not influenced by the ab-
solute coordinates of the vertices. This is clearly an advantage
since the vertices are usually nearer to each other than to the ori-
gin. Eq. (1) is only unstable if the denominator is close to zero
which arises if the tetrahedron is nearly degenerate (i.e. flat or nee-
dle shaped). Whereas it is tempting to simply use more advanced
and stable algorithms to compute the determinant [8], that doesn’t

1) Needle 2) 3)

(a) Degenerate tetrahedra without large dihedral angles - so called nee-
dles - are removed by collapsing the shortest edges.

3)1) Spindle 2)

(b) Degenerate tetrahedra with a single large dihedral angle - so called
spindles - are removed by splitting the edge opposite to the large angle
and then collapsing the shortest edges.

2)1) Sliver 3)

(c) Degenerate tetrahedra with two large dihedral angles - so called
slivers - are removed by introducing a new vertex that subdivides both
edges containing the large angles and then collapsing the resulting
shortest edge.

2) 3)1) Cap

(d) Degenerate tetrahedra with three large dihedral angles - so called
caps - are removed by introducing a new vertex in the face opposite to
the three angles and then collapsing the resulting shortest edge.

Figure 2: Recipes for collapsing degenerate tetrahedra characterized
by the number of large dihedral angles (circular magenta arrows).
New edges and vertices are colored green and short edges that are
collapsed are colored red.

really address the fact that circum-spheres are generally not a very
meaningful choice of bounding primitive for long or flat degener-
ate tetrahedra. A better strategy in our implementation is simply
to remove the degenerate tetrahedra all together. This is primar-
ily motivated by the fact that degenerate tetrahedra have very small
volumes compared to their neighboring non-degenerate cells. Con-
sequently removing a degenerate tetrahedra by collapsing it into its
neighbors will introduce very small changes in the final point-based
rendering.

The degeneracy of the tetrahedra is quantified by their aspect
ratio which is defined as the minimum height divided by the maxi-
mum edge length. Degenerate tetrahedra can be classified accord-
ing to their shape as measured by the numbers of large dihedral
angles it contains. This leads to four characteristic shapes called
needles, spindles, slivers, and caps. Our strategy is to collapse de-
generate tetrahedra by a simple series of edge splits and removals as
described in figure 2(a) to 2(d). To ensure consistency it is recom-
mended to collapse the degenerate tetrahedra from the input mesh
before it is partitioned into the Shell and Solid.

Since tetrahedra are only present in the Solid the normal vec-

435

tors of the corresponding splats will be derived directly from the
CSG intersections. The data attributes on the other hand are read-
ily defined as averages of the values defined at the corresponding
vertices of the tetrahedra.

Triangles: For the Shell and Solid, we can alternatively use
the triangles as the geometric primitives from which to derive leaf
nodes. If a, b and c denote the coordinates in ℜ3 of the three ver-
tices of a triangle the circum-center relative to vertex a can conve-
niently be expressed as [19]

mtri =
|c−a|2A(b,c)× (b−a)+ |b−a|2(c−a)×A(b,c)

2 |A(b,c)|2
, (3)

where we have used the compact vector notation in Eq. (2). The
circum-radius is simply given by |mtri| and the absolute coordi-
nates for the circum-center are a + mtri. Note that Eq. (3) has the
same numerical characteristics as Eq. (1). It is also expressed in
differences of coordinates rather than the absolute values which
can potentially be very small, and the denominator also vanishes
when the triangles are near degenerate (i.e. vertices are co-linear).
Whereas there exist several methods for eliminating degenerate tri-
angles from surface meshes [3], a simpler and more consistent strat-
egy in our case is first to collapse all degenerate tetrahedra, using
the procedure described above, and then extract non-degenerate tri-
angles from that. For any remaining obtuse triangles we found
it sufficient to approximate the circum-center by the midpoint of
the longest edge and the corresponding circum-radius as half the
length.

The orientation of splats derived from triangles is obviously triv-
ial if we use the normal vector of the triangle face, and data at-
tributes can simply be defined as averages of the values at the ver-
tices.

Vertices: As a last alternative we can derive the leaf nodes di-
rectly from the vertices of the mesh which is the strategy used
in QSplat [18]. The center and field values of the corresponding
bounding spheres are simply given by the coordinate and data at-
tributes of the vertices. However, unlike for tetrahedra and trian-
gles there is no intuitive and unique way to define the radius di-
rectly from the vertices since they contain no topology information.
Clearly, to avoid holes during rendering the radius must be large
enough that bounding spheres touch when the corresponding ver-
tices are connected by an edge. This suggests that we may sim-
ply use the topology information from the surrounding triangles or
tetrahedra to ensure overlapping splats. Consequently we can for
example define the radius to be the maximum of the circum-radius
of the triangles or tetrahedra touching the vertex, where the latter
is much more conservative than the former. Likewise the normal
vectors for the Shell can be expressed as a normalized average to
the face normals for the adjacent triangles.

2.3 Data-structures for the Shell and Solid

Having derived leaf nodes from the Shell and Solid the last step
in the pre-processing involve the actual construction of compact hi-
erarchical tree structures that can be mapped to a filesystem for ef-
ficient and adaptive traversal during the real-time rendering. Since
we plan to employ compression based on both hierarchical delta
encoding1and quantization we will first need to build up the tree
structures from the “raw uncompressed” leaf nodes. In the orig-
inal implementation of QSplat this tree structure was actually an
unbalanced quadtree2, i.e. a hierarchical tree of bounding spheres
with branching factors equal to 2,3 or 4. This seems justifiable

1Encoding based on relative values rather then absolute ones.
2Throughout this paper we use the (nonstandard) terms unbalanced

quadtree and unbalanced octree to denote trees where the degrees of internal
nodes can vary from two to respectively four or eight.

when dealing with triangulated 2-manifold meshes, like the Shell.
However the Solid is in fact a triangulated 3-manifold which sug-
gest that an unbalanced octree is a much better choice. As will be
demonstrated later this leads to both more compact data structures
as well as faster tree-traversal times when compared to an unbal-
anced quadtree for the Solid. The reason is obviously that the
average branching factor increases which reduces the number of
interior nodes and hence the corresponding memory footprint.

SolidNode ∗SolidTree::BuildTree(int i1, int i2)

{

if (i2 - i1<=8) return Merge(i1,i2);// merge leafs

int N=0, I[]={i1,-1,-1,-1,Split(i1,i2),-1,-1,-1,i2};

Branch : if (I[4+N]-I[N]>8) {// left: N=0, right: N=4

I[2+N] = Split(I[N],I[4+N]);

if (I[2+N]-I[N]>8) I[1+N]=Split(I[N],I[2+N]);

if (I[4+N]-I[2+N]>8) I[3+N]=Split(I[2+N],I[4+N]);

}

if ((N+=4)==4) goto Branch;

list<SolidNode ∗> new nodes;

for (int i=1, first=I[0]; i<=8; ++i) {

if (I[i]==-1) continue;

new nodes.push back(BuildTree(first,I[i]));// recursive

first=I[i];

}

return Merge(new nodes);// merge new nodes

}

Algorithm 2: Actual C++ code that implements the bottom-up
recursive construction of the unbalanced octree of the Solid.
The Merge function returns a new SolidNode defined as the
bounding-sphere of the input nodes. The Split function bi-sects
the array of input leaf nodes along the longest edge of the corre-
sponding axis-aligned bounding box and returns the index of the
middle leaf node.

As outlined in Algorithm 2 the unbalanced octree is build
bottom-up from the Solid leaf nodes derived in the previous sec-
tion. In short the algorithm constructs the tree by recursively group-
ing the bounding spheres in up to eight clusters who’s different at-
tributes are then combined to form new larger bounding spheres.
The grouping is implemented as a series of simple bi-sections of
the longest edge of the corresponding axis-aligned bounding boxes.
The sphere center and field values associated with each new internal
node are simple averages of it’s child nodes values. The “boundary
label” introduced in Algorithm 1 is combined using a binary or op-
erator and the radius is just derived from the bounding sphere of
the child spheres. The Shell tree is similarly constructed except it
is an unbalanced quadtree of nodes with additional normal vectors,
combined from child nodes by simple averaging, and no “boundary
label”.

Once the trees for the Shell and Solid are build, they are
compressed using different quantization schemes. It is relatively
straight forward to employ a top-down delta encoded3 of the posi-
tion and radius of each node since the associates bounding spheres,
by construction, are bounded by the corresponding values for the
parent sphere. As in [18] we quantize r to 13 discrete values of the
parent radius and the values of x,y,z are expressed as offsets from
the parent center and quantized to 13 values of the parent diam-
eter. Of all the possible combinations of these quantum numbers
only a subset actually satisfy the condition of hierarchical bound-
ing spheres which leads to discrete sets of x,y,z,r values that can be
encoded into a fixed table with a 13 bits lookup index. To minimize
the number of pointers required to traverse the trees during sub-
sequent rendering each node also encodes it’s number of children

3This simply implies that attributes of children are encoded relative to
the values of their parent.

436

byte[0] byte[1] byte[2] byte[3] byte[4] byte[5]

Boundary

13
bits

Field value #2

3
bits

Grand children

15
bits

File value #1

1
bit

of children

15
bits

x, y, z, and r

1
bit

= 48 bits

Figure 3: Example of the bit-layout of a single Solid node with en-
coded with two field values. This node occupies a total of 48 bits
or 6 bytes. This encodes quantized values of the three spatial coor-
dinates, the radius of the bounding sphere, it’s number of children
(max 8), a single bit indicating the presents of grand children, the
two quantized and normalized attributes and finally a bit identifying
whether its a boundary node or regular node. The byte-ordering is
little-endian (i.e. least-significant byte is stored at the lowest memory
address) and the bit-ordering is such that the most-significant-bit is
stored at the leftmost position within each byte).

using 3 bits4 as well as a single bit to indicate whether all children
of this node are leaf nodes. Unlike in QSplat we do not encode
rgb colors for the node attributes. Instead we wish to allow for the
end user to interactively edit transfer functions associated with each
of the multiple field values in order to conveniently highlight inter-
esting regions of the mesh during visualization. To facilitate this
we first normalize each scalar field value to [0,1] and then quantize
them using a lookup table. For the data-sets studied in this paper
we found that 15 bits was sufficient to represent all the relevant field
values. Figure 3 shows an example of the actual bit-layout of a 6
byte Solid node with two field values. Our current implementation
of the pre-processing allows the user to select an arbitrary number
of the field values which are quantized and appended to the bit-
string illustrated in Figure 3 as 2 extra bytes per field value. Finally
we note that Shell nodes have an extra 2 bytes which hierarchi-
cally encodes the normal vector (14 bits) and width of normal cone
(2 bits), see [20, 18].

As the very last step of the pre-processing the compressed hier-
archical data structures are flushed out to the filesystem as a single
binary data streams. We employ the same strategy for the file layout
as QSplat, meaning the trees are saved in breath-first order to best
facilitate a fast top-down multi-resolution rendering that will be de-
scribed in detail in the next section. Since we use unbalanced trees
for both the Shell (quadtree) and Solid (octree) pointers need to
be embedded into the data structures to allow for fast traversal of
the trees. This is implemented by inserting a 4 byte int pointer for
each group of parents to the first node of the their group of chil-
dren. Note that the relative memory overhead from the inclusion of
these extra 32 bit pointers is much less for the Solid then for the
Shell. Though the Solid is typically several orders of magnitude
larger then the Shell, the average branching factor of the former is
also expected to be twice as high as for the latter leading to fewer
internal nodes and hence pointers.

As a final comment to the pre-processing we emphasize that
it is readily parallelized when the tetrahedral mesh is partitioned
onto multiple computational nodes. Each cpu node simply runs it’s
own pre-processing of the tetrahedral mesh fragment, followed by
a cleanup process to trim away triangles from the Shell’s that are
shared between the fragments and instead add them to the Solid’s.
The assignment of the boundary label (see Algorithm 1) to the tetra-
hedra and triangles in the Solid subsequently has to be updated to

4Since we use an unbalanced octree for the Solid and a branch is ter-
minated once a leaf node is reached the 3 bits encode the numbers 0, 2, 3,
4, 5, 6, 7 and 8.

be consistent with the trimmed Shell. In the very final step all the
sub-trees from multiple fragments are merged into single Shell
and Solid trees by combining the bounding spheres of the root
nodes of each fragment.

3 INTERACTIVE VISUALIZATION ALGORITHMS

After the pre-processing has dumped the compressed hierarchical
data structures for respectively the Shell and Solid, the time has
finally come for the actual interactive visualization. To avoid first
having to load in these data structures into the (often limited) physi-
cal memory of the visualization CPU node, we use the OS-provided
mmap function to map the files to virtual memory. The advantage
to this strategy is that we make more efficient use of the available
physical memory by only loading the parts of the data structure that
are actually rendered during the tree traversals. Additionally, since
both trees are stored breath-first this progressive loading gives us
fast recursive refinements.

TraverseTree(input node);
Global: δr is the minimum regular splat size in pixels;
Global: δb is the minimum boundary splat size in pixels;
if current frame-rate is too low then

increase δr and δb smoothly;
TraverseTree(root node);

end
foreach children of the input node do

if child doesn’t pass culling tests then ignore this child;
S←screen size of bounding sphere of child;
if child is a leaf node then

render child as a splat of size S pixels;

else if child is a regular node and S < δr then
render child as a splat of size δr pixels;

else if child is a boundary node and S < δb then
render child as a splat of size δb pixels;

else
TraverseTree(child)

end
end

Algorithm 3: Pseudo-code for the relatively simple traversal al-
gorithm of the bounding-sphere tree structures. This code also
illustrates how frame-rate control is obtained by adjusting the
minimum pixel splat sizes, δr and δb. Note that in the current
implementation δr and δb are only allowed to decreased after a
fully completed tree traversal has lead to too high frame-rates.

The overall algorithm used to traverse the hierarchical tree struc-
tures of the Shell and Solid is outlined in Algorithm 3. The two
key components are the culling tests, that are the topic of the next
two sections, and the frame rate control by means of adaptive re-
finements. As shown in the pseudo-code, the algorithm employs
a simple feedback mechanism for the frame rate to dynamically
adjust the minimum allowed pixel sizes of a splat as measured in
screen space. As will be explained in Section 3.2, it is useful to de-
fined two such minimum pixel splat sizes in order to obtain better
fidelity of intersections between the Shell and Solid.

3.1 Visibility Culling Tests
During the process of actually traversing the hierarchical trees, see
Algorithm 3, we perform fast on-the-fly table lookups to effectively
decompress the attributes of the bounding spheres. Subsequently

437

these attributes are used in a set of important culling tests that allow
us to very effectively skip branches of the trees that are not visible
during rendering. As we shall see in the next section volumetric
clipping can also be implemented as a so-called CSG culling test.
For now we focus on the visibility culling tests.

View-frustum culling: If a bounding sphere is completely out-
side the viewing frustum, defined from the current camera position,
that node and all it’s children are ignored. If the bounding sphere
intersects any of the planes of the view-frustum we subdivide it by
traversing to it’s children. If on the other hand the bounding sphere
in completely inside the view-frustum this type of culling test will
be disabled for all it’s children.

Back-face culling: For the Shell, we hierarchically encoded
normal vectors and bounding normal cones, which allows for fast
elimination of branches of the Shell tree where all nodes are point-
ing entirely away from the current camera position. However, the
Solid nodes have no normal information since it depends on the
current shape and position of the CSG probe used for volumetric
culling (see next section). Consequently we cannot perform hierar-
chical back-face culling during traversal of the Solid tree. Instead
we simply perform back-face culling before we render the individ-
ual Solid splats using the normals derived from the CSG probe.

Occlusion culling: Since our rendering primitives are point
based it is unfortunately very hard to efficiently perform hierarchi-
cal occlusion culling during tree traversal. Instead we leave the
occlusion culling to the graphics hardware by simply enabling the
z-buffer algorithm.

3.2 Adaptive Volumetric Clipping by CSG Culling

Since all splats are rendered as completely opaque, it is important to
allows the end user to dynamically clip the Shell and Solid in or-
der to explore the interior parts of the volumetric data set. Else only
the Shell would be visible during rendering. It is also important
that this volumetric clipping can be integrated efficiently into the
rendering algorithm such that real-time performance is still guaran-
teed. The solution is surprisingly simple; use a virtual CSG probe
to introduce hierarchical inside-outside culling tests during the tree
traversals. The virtual probe can in principle be any user-defined
solid geometry on which fast inside-outside tests can be performed.
Clearly probes defined from implicit signed distance functions are
particularly convenient since they also give us information about
the shortest distance to the probe as well as normal vectors defined
as the gradient. As we shall soon see this feature turn out to be
very useful for improving the rendering of the resulting CSG inter-
sections. The actual implementations of these ideas differ for the
Solid and Shell data structures as will be explained below.

CSG culling of Solid: If a bounding sphere is not intersect-
ing the surface of the probe, it and it’s subtree are discarded and
not processed further. Else, we continue traversing that branch of
the Solid tree until a splat size is reached corresponding to the
minimum allowed pixel splat size for the current type of node. As
emphasized in Algorithm 3 we define separate minimum pixel splat
sizes for boundary nodes (δb) and regular internal nodes (δr). This
distinction is very important since it enables us to adjust the reso-
lution of Solid splats along the intersection curve with the Shell.
By enforcing δr > δb ∼ 1 we can significantly reduces the appear-
ance of silhouettes along the intersection curve due to crossing and
overlapping splats from the Shell and Solid. Furthermore, since
the boundary bit of a parent Solid node is defined as the logical or
of the boundary bits of it’s child nodes, this simple technique auto-
matically leads to a smooth adaptive resolution of the Solid splats
as they get closer to the intersection curve, see Figure 4. Finally,
as very few Solid spheres are located along the Shell/probe in-
tersection curve, this improved adaptive rendering typically has an
insignificant computational overhead.

InsideOutside Probe Edge

Figure 4: Illustration of adaptive splatting to improve volumetric clip-
ping by CSG intersection of a virtual probe (center dotted line) with
the bounding spheres. Note how the radii of the spheres decrease as
they get closer to the edge of the probe. The CSG culling can the
summarized as: Shell spheres inside (white) are discarded whereas
Shell spheres outside (yellow) are rendered. Solid spheres that are
not intersecting the probe are all discarded. Intersecting spheres of
both types (blue) are offset as describe in the text and rendered.

To further improve on the rendering of the Solid we project the
bounding spheres onto the surface of the probe. This projection is
implemented as an offset of the center, c, of the bounding sphere
along the local normal vector, n, derived from the probe. The dis-
tance of this offset is given by the signed shortest distance, d, from
c to the probe, where the sign convention of d is positive distances
inside the probe, i.e. n points inwards of the probe. This all amounts
to the following simple expression for the new center of the bound-
ing spheres c− d n. This trick effectively prevents visually annoy-
ing popping effects of the Solid splats when the resolution (i.e.
splat sizes) change significantly to maintain interactive frame-rates.

CSG culling of Shell: If a bounding sphere is completely in-
side the probe, the node and it’s children are not rendered. For
bounding spheres that are completely outside the probe, CSG
culling is disabled for this branch of the tree and it’s children are
rendered only if they are leaf nodes or have a splat size ≤ δr. If on
the other hand a bounding sphere is intersecting the surface of the
probe it will be rendered if it is a leaf node or the splat size ≤ δb
- else we traverse with CSG culling enabled. As for the Solid
discussed above, this technique allows us to render the CSG in-
tersection curve at a higher resolution (defined through δb), but at
the same time achieve a smooth transition to the remaining parts of
the Shell rendered at a lower resolution (defined through δr), see
Figure 4. To further improve the outline of the CSG intersection
and reduce the appearance of silhouettes we also offset the sphere
center of the boundary nodes before they are rendered. Using the
same symbols as above this projection reads as c− (r +d)n where
r is the radius of the bounding sphere.

Figure 5: Interactive renderings of respectively the Shell, Solid and
the composit of both. Note the missing bottom part inside the Shell
due to back-face culling. The CSG probe is simply a cutting plane.

438

S
h
e
l
l

 (v
er

tic
es

)
S
h
e
l
l

 (t
ri

an
gl

es
)

Solid (tetrahedra) Solid (triangles)Solid (vertices)

Interactive Idle (finest) Interactive Idle (finest) Interactive Idle (finest)

Figure 6: The left and right part of each image show respectively
the interactive and idle (i.e. finest) resolution of the model. In the
top row of the matrix the Shell is derived from vertices and in the
bottom row the Shell is derived from faces. In the left column the
Solid is derived from cells, in the center column the Solid is derived
from vertices and in the right column the Solid is derived from faces.

4 RESULTS

We present results from interactive visualization of two unstruc-
tured meshes exceeding respectively 5 million and 2 million tetra-
hedra, both with 13 field values. We were able to demonstrate real-
time data exploration of both full data-sets, allowing for interactive
rendering, color manipulation, and probe clipping while sustaining
any frame rate desired.

Table 1 lists different performance data from the pre-processing
of the larger data-set, the“cannister”. Note that the combined pre-
processing to construct the compact data structures of the Shell
and Solid always took less than 5 minutes on a medium sized
PC. All the images shown are rendered using fast but un-aliased
OpenGL points (i.e. squares) as the splatting kernel for the bound-
ing spheres. Figure 5 shows separate renderings of the Shell and
Solid. Note the missing bottom part inside the Shell due to back-
face culling. Figure 9 shows renderings with different fixed mini-
mum pixel splat sizes and Figure 7 shows different CSG probes and
color transfer functions applied interactively to the cannister data-
set. Figure 6 shows the same model rendered with splats derived
from different geometric primitives. Clearly the triangles produce
the highest resolution models, but vertices and the tetrahedra also
lead to relatively good renderings with significantly smaller mem-
ory footprints (see Table 1). Figure 8 illustrates the importance of
the adaptive CSG culling discussed in the previous section. Without
our proposed adaptive rendering along the edge of the CSG probe,
disturbing silhouettes from intersecting splats will pop up during in-
teractions with the data-set. Finally Figure 10 shows different CSG
cuts of a smaller data-set from a so-called “Taylor impact” simula-
tion.

The use of an unbalanced octree, as oppose to an unbalanced
quadtree for the Solid, reduced the memory consumption by more
than 25% for the cannister data set. In fact this number increases
with the number of field values encoded into the data structure. The
frame-rates for a fixed resolution improved by approximately the
same amount depending on the resolution and extend of volumet-
ric clipping. The average branching factors of the corresponding
Solid trees were respectively 2.9 and 5.3.

5 CONCLUSIONS AND FUTURE WORK

We have presented TetSplat, a framework for interactive visualiza-
tion of very large tetrahedral meshes with multiple field values. The
approach is based on point-splatting and CSG culling with guaran-
teed real-time performance regardless of the size of the input mesh
and the available rendering hardware. Though our method was ex-
clusively demonstrated on unstructured tetrahedral meshes the ap-
proach easily generalizes to any unstructured solid mesh type as

Figure 7: Interactive volume clipping and editing of color transfer
functions for different field values. The three different types of vol-
umetric clipping probes are: (left to right) plane, sphere and box.

Figure 8: Left: regular (i.e. uniform) rendering of CSG edge with
δr = δb = 10 pixels. Note the silhouettes form intersecting splats.
Right: our improved adaptive rendering with δr = 10 pixels and δb = 1
pixel. See Algorithm 3 and Section 3.2 for definitions of δr and δb.

long as it’s possible to consistently define attributes like position,
radius and normal vectors for the splats that serves as leaf nodes in
the bounding-sphere hierarchical tree structures.

As mentioned before the tetrahedral meshes we have studied
were partitioned on multiple compute nodes due to the tremendous
numerical challenges involved in solving the CFD simulations on
the mesh. We have already made use of this for the pre-processing,
but we are currently working on parallelizing the rendering as well.
This will remove the bottleneck involved in condensing very large
fragments onto a single rendering node and allow for much higher
resolutions for any given frame-rate.

We would also like to explore alternative compression schemes
for the hierarchical encoding of node attributes in our tree struc-
tures. Currently we use simple bit-fixed quantization which is
simple to implement and allows for very fast on-the-fly decoding.
However variable length encoding like Hauffman-coding [14] could
potentially lead to much more compact data structures.

As a final remark we would like to stress that we do not claim to
have invented the “silver bullet” for visualizing unstructured tetra-
hedral meshes. In fact the work presented in this paper is not even
intended as a replacement to existing visualization techniques of
medium sized tetrahedral meshes. Rather it should be seen as a

Figure 10: Different CSG cuts of data-set from a “Taylor impact test”
consisting of a metallic cylinder impacting a rigid wall. The data has
2,175,488 tetrahedra with 13 attributes on 385,165 vertices. Solid

has 4,395,648 leaf nodes and Shell has 89,344 leaf nodes.

439

Table 1: Table of data from the pre-processing of the cannister data set with 5,378,048 tetrahedra, 974,127 vertices and 3 scalar values pr
vertex. Original size of this unstructured tetrahedral mesh is 204Mb. Times are reported in minutes (on a single 1.7GHz PC) and combine
derivation of Shell and Solid. “branching” denotes the average branching factor for the corresponding Shell and Solid trees. With 3 field
values the sizes of the individual Shell and Solid nodes are respectively 10 and 8 bytes.

Shell Solid
Primitives time leaf nodes total nodes branching size (Mb) leaf nodes total nodes branching size (Mb)
Tetrahedra 3.1 – – – – 5,378,048 6,628,594 5.3 55.2
Vertices 2.8 154,310 229,319 3.0 2.4 819,817 1,003,607 5.5 9.7
Triangles 4.1 308,608 462,807 2.8 4.8 10,601,792 13,253,693 5.1 109.2

pixels
fps

splats

pixels
fps

splats

pixels
fps

splats

pixels
fps
splats

pixels
fps
splats

29
24.9

19355

16
10.5

41038

11
7.1

66798

7
3.5

134620

1
2.5

252112

Figure 9: Renderings with different fixed splat pixel sizes. Top row shows the full model and bottom row is a closeup. Frame rates are listed in
units per second on a P4 1.7GHz, Radeon 8700.

point-based alternative in situations where real-time rendering for
fast inspection of large meshes is of outmost importance. We ac-
knowledged that there may be situations where the tradeoffs related
to using point-based rendering as oppose to polygon rendering is
just not acceptable. One of the biggest disadvantages of our method
is actually that it does not work very well for small meshes since the
individual splats will often be visible. This problem could be ad-
dressed with a hybrid method where we switch to polygon render-
ing when the splat-size is large enough to cause aliasing. However
it will obviously not be trivial to integrate this idea into our current
real-time renderer with CSG clipping.

REFERENCES

[1] B. Adams and P. Dutré. Interactive boolean operations on surfel-
bounded solids. In Proc. SIGGRAPH 2003, pages 651–656. ACM,
2003.

[2] J. Arvo and D. Kirk. An Introduction to Ray Tracing, chapter A Servey
of Ray Tracing Acceleration Techniques. Academic Press, 1989.

[3] Mario Botsch and Leif Kobbelt. A robust procedure to eliminate de-
generate faces from triangle meshes. In Vision, Modeling, Visualiza-
tion 2001, pages 283–289. University of Stuttgart, November 2001.

[4] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno.
Simplification of tetrahedral volume with accurate error evaluation. In
Proc. Visualization 2000, pages 85–92. IEEE, 2000.

[5] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno.
Selective refinement queries for volume visualization of unstructured
tetrahedral meshes. IEEE Trans. on Visualization and Computer
Graphics, 10(1):29–45, 2004.

[6] C. Dachsbacher, C. Vogelgang, and M. Stamminger. Sequential point
trees. In Proc. SIGGRAPH 2003, pages 657–662. ACM, 2003.

[7] J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics (2nd ed. in C): principles and practice. Addison-Wesley
Longman Publishing Co. Inc., 1996.

[8] S. Fortune. Numerical stability of algorithms for 2d delaunay triangu-
lations. International Journal of Computational Geometry and Appli-
cations, 5(1-2):193–213, 1995.

[9] T. Funkhouser and C.Sé quin. Adaptive display algorithm for interac-
tive frame rates during visualization of complex virtual environments.
In Proc. SIGGRAPH 1993, volume 27, pages 247–254. ACM, 1993.

[10] T. Gerstner and R. Pajarola. Topology preserving and controlled topol-
ogy simplifying multiresolution isosurface extraction. In Proc. Visu-
alization ’00, pages 259–266. IEEE, 2000.

[11] A. S. Glassner, editor. Graphics Gems, chapter Triangles. Academic
Press, 1990.

[12] M. H. Gross and O. G. Staadt. Progressive tetrahedralizations. In
Proc. Visualization ’98, pages 397–402. IEEE, 1998.

[13] J. P. Grossman and W. Dally. Point sample rendering. In Eurographics
Rendering Workshop, pages 181–192. EA, 1998.

[14] D. Hauffman. A method for the construction of minimum redundancy
codes. In Proc. IRE, volume 40, 1952.

[15] D. Laur and P. Hanrahan. Hierarchical splatting: A progressive re-
finement algorithm for volume rendering. In Proc. SIGGRAPH 1991,
pages 285–288. ACM, 1991.

[16] M. Levoy and T. Whitted. The use of points as a display primitive.
Technical Report TR85-022, Stanford, 1985.

[17] S. M. Rubin and T. Whitted. A 3-dimensional representation for fast
rendering of complex scenes. In Proc. SIGGRAPH 1980, pages 110–
116. ACM, 1980.

[18] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point ren-
dering system for large meshes. In Proc. SIGGRAPH 2000, pages
343–352. ACM, July 2000.

[19] J. R. Shewchuk. The geometry junkyard. http://www.ics.uci.edu/ epp-
stein/junkyard/circumcenter.html.

[20] L. Shirman and S. Abi-Ezzi. The cone of normals technique for fast
processing of curved patches. In Proc. Eurographics 1993, volume 12,
pages 262–272. EA, 1993.

[21] I. J. Trotts, B. Hamann, and K. I. Joy. Simplification of tetrahedral
meshes with error bounds. IEEE Trans. Visualization and Computer
Graphics, 5(3):224–237, 1999.

[22] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral frame-
work for visualizing regular volume data. In Proc. Visualization ’97,
pages 135–142. IEEE, 1997.

440

