
Light Collages: Lighting Design for Effective Visualization

Chang Ha Lee Xuejun Hao Amitabh Varshney

Department of Computer Science and UMIACS

University of Maryland at College Park

College Park, MD 20742

{chlee, hao, varshney}@cs.umd.edu

ABSTRACT

We introduce Light Collages – a lighting design system for effec-
tive visualization based on principles of human perception. Artists
and illustrators enhance perception of features with lighting that is
locally consistent and globally inconsistent. Inspired by these tech-
niques, we design the placement of light sources to convey a greater
sense of realism and better perception of shape with globally in-
consistent lighting. Our algorithm segments the objects into local
surface patches and uses a number of perceptual heuristics, such as
highlights, shadows, and silhouettes, to enhance the perception of
shape. We show our results on scientific and sculptured datasets.

CR Categories: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; I.3.8 [Computing Method-
ologies]: Computer Graphics—Applications

Keywords: Lighting design, scientific illustration, inconsistent
lighting, light placement, silhouette enhancement, proximity shad-
ows

1 INTRODUCTION

The last two decades have witnessed impressive advances in al-
gorithms for lighting simulation. However, effective lighting de-
sign has remained a challenge. Effective lighting design can con-
vey a large number of data features such as local surface ori-
entation, curvature, silhouettes, and fine texture. Current light-
ing design techniques include automatic placement of lights based
on user-specification of shadows and highlights [19, 20]. In-
verse lighting models have proven to be powerful in lighting de-
sign [3, 4, 7, 21, 22, 29]. Such models allow one to compute
the intensities of light sources from photographs, or in general,
user-specified light distributions. Recent advances in relighting are
based on linear superposition of light transport. Thus, one method
for lighting design involves compositing multiple images under
varying lighting. Akers et al. [1] have shown how image composi-
tion can be used with sophisticated, spatially-varying light mattes to
create compelling technical illustrations from a set of photographs
of an object.

Our interest in lighting design for effective scientific visualiza-
tion is inspired by research that examines the human perception of
art. Over two millennia ago Pliny the Elder described the tech-
nique of locally shading a surface fold to make it appear to rise
above the background [8]. Since then, similar local techniques
for lighting have been successfully used by artists and illustrators
to convey lighting and shading. What is interesting about these
techniques is that they convey a powerful impression of geome-
try, although the lighting across the surface is inconsistent. It is
even more interesting that although the geometry of perspective
has been well understood for the past five centuries, the geome-

(a) (b)

Figure 1: (a) Consistent lighting with four lights at the vertices of a
regular tetrahedron, and (b) a Light Collage rendering with 4 lights.
Material properties are the same for both renderings.

try of consistent lighting has been largely ignored in art. Thus, if
one were to apply the inverse lighting models that have been de-
veloped recently [3, 21, 29] to most paintings and illustrations, one
would find innumerable errors (some admittedly slight, but present
nonetheless) in their lighting and shading. However, not only have
these lighting errors passed virtually unnoticed by most untrained
human observers, lighting for such paintings is visually impressive
and sometimes even deeply compelling.

Artists use inconsistent lighting for a couple of reasons. First,
it is convenient. Consistent lighting is often not worth the effort
since hardly anyone notices it. Second, the artists can use incon-
sistent lighting to guide the viewer’s attention and enhance com-
prehensibility. Cavanagh [5] has suggested that our brain perceives
the shape-from-shading cues locally and does not use large regions
of the visual field for shape-from-shading analysis. In this paper
we explore the implications of globally inconsistent lighting for en-
hancing the visualization of scientific datasets. Inconsistent light-
ing, as used in art, might allow us to convey a better perception
of geometry than consistent lighting. Here we use this observation
in optimizing light placement to convey a greater sense of realism
when visualizing scientific datasets.

The main contributions of this paper are:

• Globally Inconsistent Lighting: This paper discusses a
method of local illumination that is locally accurate, globally
inconsistent, and yet presents more comprehensible render-
ings.

• Lighting Design: We discuss placement of multiple light
sources to enhance view-dependent visualization.

• Feature Enhancement: Silhouettes and shadows add impor-
tant details in technical illustrations. Here we show how sil-
houette and shadow lighting can be integrated into a local
illumination framework for enhancing features in scientific
datasets.

2 PREVIOUS AND RELATED WORK

Lighting design has long been considered crucial in photography,
cinematic lighting and stage lighting. Lighting design for computer

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

281

Figure 2: Overview of our lighting design pipeline: The input model is segmented using a curvature-based-watershed method into a set of
patches. The light placement function models the appropriateness of light directions for illuminating the model. This is done by using the
curvature-based segmentation as well as the diffuse and specular illumination at every vertex. Lights are placed and assigned to patches based
on the light placement function. Silhouette lighting and proximity shadows are added for feature enhancement.

graphics involves specifying the parameters for light position, di-
rection, color, intensity, and the illumination model. Traditional
lighting design methods for graphics have been direct – they have
required a user to directly specify the lighting parameters. While
direct light specification is satisfactory, it often requires significant
expertise on the part of the user to adequately communicate the vi-
sual features of a graphics scene. Direct lighting design is often
iterative and time consuming. The user starts out by specifying an
initial set of lighting parameters and then visually evaluates the re-
sults. The lighting parameters are then changed iteratively till the
graphics rendering converges to a desired output. This is often a te-
dious process. The approach of Design Galleries [17] addresses this
by using several user-specified lighting parameters (excluding light
placement), generating a set of renderings with randomly placed
lights, and having a user browse and linearly combine the render-
ings that are desirable. The LightKit system [11] allows a user to
interactively adjust lighting to enhance visualization. This system
allows camera-relative lights that include a dominant light, head-
lights, and backlights. The system also allows the user to adjust the
light color and warmth of lighting.

Indirect lighting design methods use scene properties that are ei-
ther specified by a user or procedurally estimated. In user-specified
indirect lighting design, the user specifies the desired highlights or
shadows and the system then infers the light placement to achieve
them [6, 15, 19, 20, 23]. In procedural indirect lighting design, the
system automatically infers light placement and parameters by op-
timizing a set of perceptual criteria for a given view. Shacked and
Lischinski [24] derive light placement for up to two light sources
by optimizing a perception-based image quality objective func-
tion. Their objective function is comprehensive and includes six
terms that are based on shading gradients, pixel luminance statis-
tics, and illumination direction. Gumhold [10] has developed a
light-placement strategy by maximizing the illumination entropy as
measured from a rendered image. Based on user studies he has then
developed a perceptual entropy objective function that incorporates
a surface-curvature-based importance weighting.

Non-Photorealistic lighting differs from the above in that it does
not restrict itself to physically correct lighting and shading. Gooch
et al. [9] have developed a lighting model that uses luminance and
changes in hue to convey surface orientation, edges, and highlights.
Hamel [12] has developed a lighting model that incorporates five
components – standard lighting with shadows, rim shadow lighting,
curvature shading, transparency, and volume illumination. Sloan et
al. [25] have developed an effective method to transfer the shad-
ing from one object to another using a sphere (environment map)
as an intermediary. Anderson and Levoy [2] have used curvature-
and accessibility-based shading [18] to enhance the visualization of
cuneiform tablets. Vicinity lighting [26] improves upon the idea of
accessibility shading by using uniform diffuse lighting and occlu-
sion by local occluders.

Cinematography is a major application of lighting design. Kahrs
et al. [13] have summarized the lighting design approaches for com-
puter animation. Logical lights are motivated by actual sources of
light in a scene that the viewer can see or imply. For example, the
key light is used in a scene as the primary source of illumination.
In addition to logical lighting, cinematographers also use pictorial
lighting, just for enhancing the artistic aesthetics of the scene. For
example, fill lights are used to soften and fill the shadows, and back
or rim lights are used to separate the object from the background.

To the best of our knowledge, none of the previous work has
tried to 3D render the same object with multiple light sources with
each light source lighting a different region of the object. In fact,
the general advice seems to have been to illuminate objects with a
single light source that is placed above and to the left of the ob-
ject [27]. In this paper we introduce the idea of Light Collages
that involves lighting different regions of a 3D object with multiple
light sources to render it in a more visually comprehensible manner,
while retaining its traditional 3D-graphics-rendered look and feel.

3 LIGHT COLLAGES

The goal of our Light Collages framework is to assign local lights to
different regions of an object. Specifically, consider an object com-
posed of n surface patches P = {p1, p2, . . . , pn}. Let there be a set
of m unknown light sources L = {l1, l2, . . . , lm}. The problem we
solve here is: Given P , m, and a viewer position, generate L and
a mapping M that pairs each light l j ∈ L ,1 ≤ j ≤ m to a subset
of patches Pi ⊂ P that it lights, to best elucidate the local struc-
ture of the object. Each patch pi is assigned a primary light source
l j = M (pi). Here, obviously, what constitutes the best elucidation
is open to interpretation. We assume that conveying the local cur-
vature information is important. In fact user studies on light source
placement by Gumhold [10] have indicated that observers tend to
select light source directions that favor surface curvature elucida-
tion. In this paper, we only consider directional light sources.

3.1 Surface-Curvature-based Segmentation

We use a surface-curvature-based segmentation of an object to bet-
ter elucidate the object shape. The segmentation of an object is a
classical area of research in computer vision and image processing.
Recent work in computer graphics discusses how polygonal meshes
may be segmented to yield visually intuitive segmentation [14].
Any of the vast number of segmentation algorithms can be used for
object segmentation at this stage depending on what the goals of the
segmentation-based lighting design are. In this paper, we segment
the object into patches based on local curvature. For this, we first
compute the mean curvature at each vertex of the input mesh as the
average of its two principal curvatures, which are computed using

282

Figure 3: The watershed algorithm: First, we assign unique labels
(patch IDs) to local minimums. Next, imagine that we place a drop
of water at a vertex. The water drop will flow to the local minimum.
We assign the label of the local minimum to the vertex where the
water-drop was placed. We repeat this for each vertex.

Taubin’s method [28]. We then use a simple watershed algorithm
based on Mangan and Whitaker’s method [16].

Mangan and Whitaker’s method segments a mesh into patches
such that each patch has a largely similar curvature and is sur-
rounded by regions of drastically different curvature. Their method
proceeds by finding vertices with local curvature minima and using
these as seeds for growing new patches. The method then iteratively
assigns vertices to these patches. A path of steepest descent is com-
puted from each unassigned vertex till it reaches a seed vertex with
a local curvature minimum. The vertex is assigned to the patch cor-
responding to this seed vertex. A watershed depth is computed for
each patch based on the minimum difference in curvature values
between a boundary vertex and the seed vertex for that patch. Since
this phase of the algorithm results in over-segmentation, it is fol-
lowed by a patch-merging phase in which patches whose watershed
depth is below a threshold depth are merged. This is shown in Fig-
ure 3. The segmentation can be increased or decreased by respec-
tively lowering or raising the threshold depth. This is shown in Fig-
ure 4. Figure 5(a) shows the distribution of the curvature over the
Pelvis model and Figure 5(b) shows the results of our segmentation
of the object into multiple surface patches: P = {p1, p2, . . . , pn}.
Each patch is a collection of triangles with similar curvature values.

(a) (b) (c)

Figure 4: Segmentation of Pelvis model at different thresholds: For
all models in this paper, we use 7.5% of the range of curvature
difference as a threshold. Figures (a), (b), and (c) show a low level
(3.0%), a middle level (7.5%), and a high level (25%) segmentation,
respectively.

3.2 Light Blending and Normalization

As discussed earlier, our Light Collages framework illuminates lo-
cal surface patches with globally inconsistent lighting. A straight-
forward implementation of this idea results in sharp visual discon-
tinuities across patch boundaries that are lighted differently. Such
shading discontinuities are disconcerting especially when they oc-
cur in absence of shape discontinuities. To alleviate such visual
artifacts we blend illumination from neighboring patches. As men-
tioned earlier, every vertex i in a patch p j is illuminated by light
M (p j). The illumination at a vertex i is a weighted sum of illumi-
nations from the primary lights for all the patches N j that neigh-
bor patch p j: N j = {pk | ∂ p j ∩ ∂ pk 6= /0}, where ∂ p j denotes the

(a) (b)

Figure 5: In (a) we show curvature distribution on the surface. Con-
vex regions are shown brighter and concave regions are darker. Figure
(b) shows the results of our curvature-based segmentation.

boundary of patch p j . Let the primary light for patch pk ∈ N j be
given by lk = M (pk). Let the weight of vertex i with respect to the
primary light of patch pk be based on the distance function d() of
vertex i from the boundary ∂ pk and be given by:

wik ∝
1

1+d(i,∂ pk)

We note that the distance d(i,∂ p j) is zero for a vertex inside or
on the boundary of the patch p j . Therefore, the weight of vertex i
in patch p j , wi j = 1.

Let the illumination at vertex i due to light lk be given by Ii(lk).
Then the total illumination at vertex i in patch p j will be given by

Ii = ∑k wikIi(lk), where pk ∈ N j . The distribution of the blending
weights at vertices around a patch is shown in Figure 6.

Figure 6: Visualization of weights for blending illumination from a
patch. The dark area in the middle shows the patch, and the pro-
gressively whiter colors outside the patch show the weight values
diminishing away from the patch boundary.

The overall brightness of a rendered image is perceptually im-
portant. It is desirable to avoid rendering an object with too much
brightness since it tends to diminish the discriminability amongst
object features. To achieve a balanced rendering brightness we
normalize the illumination as computed above with the blending
weights for a given vertex. Thus, the final illumination formula for
a vertex i in patch p j with neighbors N j is given by:

Ii =
∑k wikIi(lk)

∑k wik

, pk ∈ N j, lk = M (pk)

4 PROCEDURAL LIGHTING DESIGN

Lighting design is a very broad area that involves specification of a
number of lighting parameters such as number and type of lights,
their placement, and their colors. Here we focus on light placement
and assignment of lights to surfaces. We assume that all the lights
are white and directional. Our lighting design proceeds in two in-
terleaved phases. In one phase we identify the placement of a light
and in the other phase we assign the light to appropriate patches.

283

4.1 Light Placement

Humans use several visual cues to comprehend shapes and dis-
tinguish among objects. One of the important features of shapes
is their curvature. Curvature influences the illumination gradient
across the surface. We use a combination of local lighting mod-
els to enhance the appearance of high-curvature areas of an object
from a given viewpoint. The reflectance of an object consists of
three components: ambient, diffuse, and specular. The ambient
color does not vary across an object. The diffuse color varies ac-
cording to the Lambertian law. The illumination component that
changes the fastest is specular. A specular highlight on a shiny sur-
face can easily vanish with even small perturbations of the viewing
direction, surface normal, or light direction. For an object with high
curvature, the specular highlight is useful as it can result in a sharp
curvature-based highlight, and thus help illustrate object detail.

Figure 7: Finding good light directions: For a given viewing direc-
tion, a weight function for each surface point is added to the light
placement function defined in the directional space (shown here by
the large circle). The value of the light placement function in a di-
rection is related to the appropriateness of placing a light along that
direction.

Let us consider a simple example with two points A and B on
which we would like to place specular highlights (Figure 7). If we
have the freedom to place a directional light source along any di-
rection, we would like to place that light source in a direction that
maximizes the possibility of having highlights on points A and B.
By using the view direction, the shape, and the material properties
of points A and B, we can infer the light directions that will cause
specular highlights to appear on them. Using the reciprocity princi-
pal, this is equivalent to shooting a ray of light from the viewpoint
to the points A and B, and having that light specularly reflect out
to the environment. The specularly reflected rays will result in a
distribution around the direction of mirror reflection. This is shown
in Figure 7. The red blobs on the upper left region of the circle
represent the probability density function (PDF) of the reflected ray
along those directions. The total probability of a specular highlight
can be computed by the sum of the individual PDFs, as shown by
the green curve. Thus, following the reciprocity principal, if we
were to place a light source in the direction where the green curve
has the largest value, we would get the best highlights at both the
points A and B for the given view position.

Figure 8: Computation of specular weight function for a vertex with
normal~ni and curvature intensity ci: Let ~R be the reflection of viewing
direction ~V at vertex i. This means that the light placed along ~R
maximizes the specular illumination at vertex i. Specular weight
function S(i,~l) is defined as the fall-off function around ~R weighted
by curvature.

We extend the above ideas to define a light placement function

P(
−→
l) that models the appropriateness of placing a light in the di-

rection
−→
l . Such a light placement function should include contri-

butions from both specular as well as diffuse illumination. We next
discuss how we compute the specular- and the diffuse-illumination-
based factors that will go towards defining the overall light place-
ment function.

As before, let P be the set of surface patches for an object.

Let −→v be the view vector,
−→
l be the light direction, and

−→
h be the

halfway unit vector along the direction
−→
l +−→v . Further, let κi be

the mean curvature and −→n i be the normal vector at a vertex i on the
surface. We define the specular weight function S for the vertex i

with the light along
−→
l with a shininess s as:

S(i,
−→
l) =| κi | (

−→n i ·
−→
h)s

Given a view direction, we compute S(i,
−→
l) for each vertex i

and for a set of uniformly distributed light directions
−→
l . In our

implementation we use 12K uniformly distributed directions
−→
l .

The use of specular highlights alone is not desirable, as shown
by Gumhold [10]. In addition to specular lighting, we would also
like to consider diffuse lighting when computing the light place-
ment function to guide us in light source placement. Since ob-
servers have found curvature to be informative in lighting design,
we have designed our diffuse lighting component to adapt to the
local curvature on a patch-by-patch basis. Figure 5(a) shows a vi-
sualization of curvature distribution. We define the curvature in-
tensity ci at a vertex i to be its normalized mean curvature, i.e.
ci = (κi −κmin)/(κmax −κmin), where κi is the mean curvature at
vertex i, and κmax and κmin are the maximum and minimum val-
ues of the mean curvature among all the vertices of the input mesh,
respectively. For a vertex i with normal vector −→n i, let D be the
set of light directions whose diffuse color is same as the curvature
intensity ci.

D = {
−→
d |

−→
d ·−→n i = ci}

We define the diffuse weight function D(i,
−→
l) for vertex i in the

direction of
−→
l such that the diffuse illumination at vertex i is sim-

ilar to the curvature intensity ci. We compute it as the upper enve-

lope (maximum) of the dot product between
−→
l and all

−→
d ∈ D :

Figure 9: Computation of diffuse weight function for a vertex with
normal ~ni and curvature intensity ci: First, (a) we define the set

of light directions ~d ∈ D for which ~ni · ~d = ci. These directions ~d
are shown by green arrows. If we were to place a light along any
~d ∈D , the diffuse intensity at this vertex ~ni · ~d will be proportional to
ci. Figure (b) shows the cosine fall off about each direction ~d ∈ D ,

computed as the dot product of an arbitrary vector ~l with ~d, for
all ~l. (c) The diffuse weight function D(i,~l) is the upper envelope
(maximum) of the functions shown in Figure (b).

284

(a) (b)

Figure 10: The light placement function P(~l) is computed in Figure
(a) by adding diffuse and specular weight functions. Figure (b) shows
the flowchart of the process for light placement and assignment.

D(i,
−→
l) = Max

−→
d ∈D

−→
l ·

−→
d

The light placement function can be computed as the sum of
specular and diffuse weight functions over all surface points. For

any light direction
−→
l the value of the light placement function

P(
−→
l) along that direction is given by:

P(
−→
l) = ∑

i

(S(i,
−→
l)+D(i,

−→
l))

4.2 Assignment of Lights to Patches

We use the light placement function P(
−→
l) to select the best m lights

L = {l1, l2, ..., lm}, as follows. We identify the light direction
−→
l

that maximizes P(
−→
l). We select this to be the direction of the

first light l1. We then identify the patches which will be lit by the
light l1. For any light lk ∈ L and patch p ∈ P , let Sp be the set of
points that are on p. We define a function E(p, lk) that measures the
similarity of the illuminated intensity Ii for vertices i in the patch p
(as defined in Section 3.2) to its curvature intensity as:

E(p, lk) = ∑
i∈Sp

(Ii(lk)− ci)
2

So, for the first light l1, we compute E(p, l1) for every p ∈ P ,
and if E(p, l1) is less than a threshold τ (currently we use τ = 0.15),
l1 is assigned to p, i.e. M (p) = l1. We deduct the contributions of
the vertices in the patches lit by this light l1 from the light placement
function. Then we again identify the light direction that maximizes
the updated light placement function, and select that to be the di-
rection of the second light source l2. We repeat this process until m
lights are selected. Figure 11 shows the lighting with one, two, and
four lights. Patches that are not lighted are shown dark without any
blending with the neighboring patches.

After we have chosen m light sources, most of the patches will
be lit by some light source. However, some patches may remain
unlit. For each unlit patch, one of the m light sources is assigned
to it using the function E(p, lk) defined in the previous section. For
each patch p, E(p, lk) is computed for all m lights, and the light lk
which minimizes E(p, lk) is assigned to p.

M (pi) = Argmin
lk∈L

E(p, lk)

Figure 12 shows the light directions for some of the patches.

(a) (b)

Figure 12: (a) Rendering of the pelvis model in which each surface
patch is lighted by one out of 8 directional light sources. Figure (b)
is enlarged view of the region selected by the rectangle in Figure (a)
and shows the primary light directions for some of the patches. The
blue stripes show the boundaries between patches.

5 FEATURE ENHANCEMENT

5.1 Silhouette Lighting

Silhouettes are important for defining the boundary of objects. A
well-defined silhouette makes an object easier to comprehend and
makes its shape more distinguishable. In cinematography, back-
lights are used for separation of foreground from background.
Backlights are traditionally placed behind the object generating a
thin rim of light around the silhouette of the object. Backlights
are also referred as rim, hair, or separation lights. In particular,
the lights at the three-quarters-back position are called as kicker
lights [13].

To make the objects stand out from their background, we would
like to produce a dark silhouette for a bright background and a
bright silhouette for a dark background. To enhance the contrast
between a silhouette and its background, we use a simple fall-off
formula weighted by ωs = (1−−→n i ·

−→v)u, for adding an additional
silhouette light at vertex i with normal −→n i and view direction −→v .
The results of incorporating black silhouette lighting appear in Fig-
ure 13. We compute the silhouette-enchanced illumination as the
linear blend of the silhouette lighting Hi weighted by ωs and the
existing illumination: (1−ωs)Ii +ωsHi.

(a) (b) (c)

Figure 13: Light Collages rendering (a) without, and (b), (c) with
silhouette lighting. In this figure, (1−~ni ·~v)

u is used as the silhouette
light’s weight factor. The silhouette lighting Hi is black to make
near-silhouette regions dark since the background is bright. (b) and
(c) show different levels of silhouette enhancement with u = 4 and
u = 2 respectively.

5.2 Proximity Shadows

Shadows present a very important visual cue. Carefully placed
shadows can greatly enhance features and make spatial relation-
ships between regions clearer. As an example, it may be difficult
to distinguish two surface patches if they have similar illumination
but different distances from the viewer and overlap in space as seen
by the viewer. If however, the front patch casts a visible shadow on
the back patch, then the viewer will have no ambiguity in recogniz-
ing their spatial relationship. Two visible patches that overlap in a
given view, but are at different distances from the viewer will re-
sult in a depth discontinuity in the computed depth map. The depth

285

(a) (b) (c)

Figure 11: Partial surface lighting with (a) first light, and (b) first two lights, and (c) four lights. The red arrows show the light directions. The
dark regions in (a) and (b) are the patches which are not lit by current partial lights. No blending is used here.

discontinuity usually occurs along one or more curves as shown
in Figure 14 (a). We use proximity shadows to show the relative
distances between the two overlapping patches if their depths are
within a predefined threshold value.

First, we identify the depth discontinuity curves by comparing
the value of each pixel in the depth map with its neighbors. We
then generate a shadow light direction for each depth discontinu-
ity curve by using the depth gradient. We compute the per-pixel
depth gradient by using the central differences method that exam-
ines the depth variations in the immediate vicinity of a pixel. We
then average the per-pixel depth gradient over all the pixels of a dis-
continuity curve to arrive at an average value of the depth gradient
for the curve. The shadow light direction is determined by rotating
the viewing direction by a small angle θ towards the average depth
gradient of the depth discontinuity curve as shown in Figure 15.
Finally we use the shadow light direction in a shadow map to cast
proximity shadow for the depth discontinuity curve. This process
is repeated for all the depth discontinuity curves.

During the generation of local proximity shadows, we have to
be aware of one possible problem – a narrow region might have
depth discontinuity on both of its sides. If we cast shadows of this
region on both surfaces that are behind, it can produce a somewhat
disconcerting effect as shown in Figure 17(b). For such situations
one can use any heuristic that consistently picks one side of the
region over the other. Examples of such heuristics may include
picking the side of the discontinuity region that is on the left and
the top, or pick the side of the discontinuity region that has more
surface points on the discontinuity curve and use it to cast shadows
as shown in Figure 17(c).

6 RESULTS AND CONCLUSIONS

We have implemented the Light Collages system in OpenGL. The
visualization results using our system can be seen in Figures 18 –

(a) (b)

Figure 14: (a) A set of adjacent points whose depth differences
with neighbors are greater than a threshold forms a discontinuity
curve in the depth map. The arrows show the average gradients of
discontinuity curves. Figure (b) shows the proximity shadows casted
by the discontinuity curves in (a).

Figure 15: The placement of a light for proximity shadow: At each
depth discontinuity curve of the depth map, a light for the proximity
shadow is placed by rotating a vector to the viewer at an angle θ

along the direction of the local gradient.

(a) (b)

Figure 16: Rendering (a) without, and (b) with proximity shadows.

19. In Figure 18(a)–(c) we show the result of lighting the skull
model by consistent lighting with 1, 2, and 4 lights, and (d)–(f)
show the results by Light Collages rendering with 1, 2, and 4 lights.
We have used the same lighting and material properties for gen-
erating all the six images. As you can see in (a)–(c), the specular
highlight from consistent lighting will sometimes cause large bright
areas on flat regions, while highlights from our methods ((d)–(f))
are only on highly curved regions. This helps elucidate geometry
details. The proximity shadow cast by the upper cheek bone in
Figures 18(d)–(f) nicely illustrates the depth relationship between
these two regions of the skull. In Figure 19(a) we show the result of
lighting the pelvis model lighted with the best 8 lights determined
by our system. Figures 19(b) and (c) progressively add silhouette
lighting and proximity shadows to the Figure 19(a).

We have introduced Light Collages as a system for automatic
lighting design for effective visualization of scientific datasets. Our
method relies on using multiple light sources that can be used for
accurate local lighting on surfaces, with possible global inconsis-
tencies. The human visual system is remarkably adept at inferring
shape from largely local cues, and hence our system, even with
global lighting inconsistencies can produce comprehensible render-
ings. We have shown how our method can incorporate silhouette

286

(a) (b) (c)

(d) (e) (f)

Figure 18: Lighting for Skull: (a)–(c) use consistent lighting and (d)–(f) use Light Collages. (a) Lighting by one light at viewer, (b) Lighting
by 2 lights at front vertices of a tetrahedron, (c) Lighting by 4 lights at front vertices of a cube. (d) Light Collages rendering using 1 light, (e)
2 lights, and (f) 4 lights.

(a) (b) (c)

Figure 19: Light Collages for Pelvis: (a) Lighting by 8 lights, (b) Adding silhouette lighting to the previous image, and (c) Adding proximity
shadows to the previous image.

287

(a) (b) (c)

Figure 17: Avoiding Conflicts in Proximity Shadows: (a) Disconti-
nuity curves are along the both sides of the mast. The patch for the
mast is the common patch of the two depth-discontinuity curves. (b)
The discontinuity curves at both sides of the patch result proximity
shadows on both sides of the region. (c) Proximity shadows on both
sides can be corrected by eliminating one of them.

lighting as well as proximity shadows to further elucidate the local
structure of the scientific datasets. We believe our method greatly
improves the visualization while retaining the look and feel of tra-
ditional 3D graphics illumination models.

In addition to the visual appearance, interactivity is essential for
the perception of 3D shapes. We have not yet worked to optimize
the running times of our Light Collages system. We plan to use
spherical-harmonics-based representations to efficiently compute
the light placement function for use in an interactive system. In
this paper we have assumed the lights are directional. Generaliz-
ing our approach to point light sources or perhaps even area light
sources would be an interesting direction for future work. Our cur-
rent work does not take into account variations in color or material
properties and this should be useful to consider as well. In addi-
tion to lighting design for a single object, automatically designing
lighting environments for a scene with multiple objects should be
useful.

ACKNOWLEDGEMENTS

We would like to thank Martin Reddy, Tony DeRose, and Patrick
Cavanagh for inspiring us to explore lighting design with multiple
and inconsistent lights. David Jacobs, David Mount, and Young-
min Kim have helped in significantly improving the presentation of
ideas in this paper. We would also like to acknowledge the anony-
mous referees for their exceptionally thorough reviews for this pa-
per that have led to a much better presentation of our results. This
work has been supported in part by the NSF grants: IIS 00-81847,
CCF 04-29753, and CNS 04-03313.

REFERENCES

[1] D. Akers, F. Losasso, J. Klingner, M. Agrawala, J. Rick, and P. Han-

rahan. Conveying shape and features with image-based relighting. In

IEEE Visualization 2003, pages 349 – 354, 2003.

[2] S. Anderson and M. Levoy. Unwrapping and visualizing cuneiform

tablets. IEEE Computer Graphics and Applications, 22(6):82–88,

November/December 2002.

[3] R. Basri and D. Jacobs. Lambertian reflectance and linear subspaces.

In Proceedings of the Eighth International Conference On Computer

Vision (ICCV-01), pages 383–390, July 9–12 2001.

[4] B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflection func-

tions from surface bump maps. In Maureen C. Stone, editor, Com-

puter Graphics (SIGGRAPH ’87 Proceedings), volume 21(4), pages

273–281, July 1987.

[5] P. Cavanagh. Pictorial art and vision. MIT Encyclopedia of the Cog-

nitive Sciences, pages 644–646, 1999.

[6] A. C. Costa, A. A. de Sousa, and F. N. Ferreira. Lighting design: A

goal based approach using optimization. In Rendering Techniques ’99,

pages 317–328. Springer Wien, 1999.

[7] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and

M. Sagar. Acquiring the reflectance field of a human face. In Kurt

Akeley, editor, SIGGRAPH 2000, pages 145–156, 2000.

[8] E. H. Gombrich. The Heritage of Appelles. Oxford: Phaidon Press,

1976.

[9] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic

lighting model for automatic technical illustration. In Michael Cohen,

editor, SIGGRAPH 98, pages 447–452, 1998.

[10] S. Gumhold. Maximum entropy light source placement. In Robert

Moorhead, Markus Gross, and Kenneth I. Joy, editors, IEEE Visual-

ization 2002, pages 275–282, 2002.

[11] M. Halle and J. Meng. Lightkit; a lighting system for effective visual-

ization. In IEEE Visualization 2003, pages 363 – 370, 2003.

[12] J. Hamel. A New Lighting Model for Computer Generated Line Draw-

ings. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Ger-

many, 2000.

[13] J. Kahrs, S. Calahan, D. Carson, and S. Poster. Pixel cinematography:

A lighting approach for computer graphics. In SIGGRAPH Course

Notes, 1996.

[14] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy

clustering and cuts. ACM Transactions on Graphics, 22(3):954–961,

July 2003.

[15] J. K. Kawai, J. S. Painter, and M. F. Cohen. Radiooptimization - Goal

Based Rendering. In Proceedings of (ACM SIGGRAPH) ’93, pages

147–154, 1993.

[16] A. P. Mangan and R. T. Whitaker. Partitioning 3d surface meshes

using watershed segmentation. IEEE Transactions on Visualization

and Computer Graphics, 5(4):308–321, 1999.

[17] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson,

J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall,

J. Seims, and S. Shieber. Design galleries: a general approach to

setting parameters for computer graphics and animation. SIGGRAPH

97, 31:389–400, August 1997.

[18] G. Miller. Efficient algorithms for local and global accessibility shad-

ing. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94,

pages 319–326, 1994.

[19] F. Pellacini, P. Tole, and D. P. Greenberg. A user interface for in-

teractive cinematic shadow design. ACM Transactions on Graphics

(Proceedings of SIGGRAPH 2002), 21(3):537–546, 2002.

[20] P. Poulin and A. Fournier. Lights from highlights and shadows. In

David Zeltzer, editor, Computer Graphics (1992 Symposium on Inter-

active 3D Graphics), volume 25 (2), pages 31–38, March 1992.

[21] R. Ramamoorthi and P. Hanrahan. A signal-processing framework for

inverse rendering. In Eugene Fiume, editor, SIGGRAPH 2001, pages

117–128, 2001.

[22] Y. Sato, M. D. Wheeler, and K. Ikeuchi. Object shape and reflectance

modeling from observation. In Turner Whitted, editor, SIGGRAPH

97, Computer Graphics Proceedings, pages 379–388, August 1997.

[23] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Greenberg. Paint-

ing with light. In James T. Kajiya, editor, Proceedings of SIGGRAPH

93, pages 143–146, August 1993.

[24] R. Shacked and D. Lischinski. Automatic lighting design using a per-

ceptual quality metric. In A. Chalmers and T.-M. Rhyne, editors, EG

2001 Proceedings, volume 20(3) of Computer Graphics Forum, pages

215–226. Blackwell Publishing, 2001.

[25] P.-P. Sloan, W. Martin, A. Gooch, and B. Gooch. The lit sphere: A

model for capturing NPR shading from art. In B. Watson and J. W.

Buchanan, editors, Proceedings of Graphics Interface 2001, pages

143–150, 2001.

[26] A. J. Stewart. Vicinity shading for enhanced perception of volumetric

data. In IEEE Visualization 2003, pages 355 – 362, 2003.

[27] T. Strothotte and S. Schlechtweg. Non-Photorealistic Computer

Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann,

San Francisco, 2002.

[28] G. Taubin. Estimating the tensor of curvature of a surface from a poly-

hedral approximation. In Fifth International Conference on Computer

Vision, pages 902–907, 1995.

[29] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumina-

tion: recovering reflectance models of real scenes from photographs.

In Alyn Rockwood, editor, SIGGARPH 99, Computer Graphics Pro-

ceedings, pages 215–224, August 1999.

288

