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ABSTRACT

Hardware-accelerated direct volume rendering of unstructured vol-
umetric meshes is often based on tetrahedral cell projection, in par-
ticular, the Projected Tetrahedra (PT) algorithm and its variants.
Unfortunately, even implementations of the most advanced variants
of the PT algorithm are very prone to rendering artifacts.

In this work, we identify linear interpolation in screen coordi-
nates as a cause for significant rendering artifacts and implement
the correct perspective interpolation for the PT algorithm with pro-
grammable graphics hardware. We also demonstrate how to use
features of modern graphics hardware to improve the accuracy of
the coloring of individual tetrahedra and the compositing of the
resulting colors, in particular, by employing a logarithmic scale
for the pre-integrated color lookup table, using textures with high
color resolution, rendering to floating-point color buffers, and al-
pha dithering. Combined with a correct visibility ordering, these
techniques result in the first implementation of the PT algorithm
without objectionable rendering artifacts. Apart from the important
improvement in rendering quality, our approach also provides a test
bed for different implementations of the PT algorithm that allows
us to study the particular rendering artifacts introduced by these
variants.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, Bitmap and framebuffer opera-
tions; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

Keywords: volume visualization, volume rendering, cell projec-
tion, projected tetrahedra, perspective interpolation, dithering, pro-
grammable graphics hardware

1 INTRODUCTION AND PREVIOUS WORK

There are several approaches to direct volume rendering of unstruc-
tured meshes, e.g., ray casting and cell projection. However, most
implementations for OpenGL graphics hardware are based on cell
projection; more specifically, the Projected Tetrahedra (PT) algo-
rithm published by Shirley and Tuchman [18].

The PT algorithm exploits the triangle rasterization performance
of graphics hardware by decomposing the projected silhouette of
a tetrahedron into three or four triangles, as in Figure 1. Previous
research has focused on two aspects of this algorithm: the color
computation for these triangles [6, 14, 16, 19] and the computation
of a visibility ordering of the tetrahedra [2, 3, 10]. In this work, we
are not concerned with the latter and assume that a correct visibil-
ity ordering is available. In fact, we employ the extension of the
meshed polyhedra visibility ordering (MPVO) algorithm for non-
convex meshes suggested by Williams [22], which computes a cor-
rect ordering for most tetrahedral meshes.
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Figure 1: Classification of non-degenerate projected tetrahedra (top
row) and the corresponding decompositions (bottom row).

To compute the colors of triangles generated by the PT algo-
rithm, Shirley and Tuchman [18] suggested computing correct col-
ors only for the triangles’ vertices. Thus, the efficient linear in-
terpolation of vertex colors provided by graphics hardware can be
exploited. Unfortunately, this results in rendering artifacts even for
uniform attenuation coefficients as noted by Stein, Becker, and Max
[19]. Their solution was to interpolate the thickness and the average
attenuation coefficient of the projected tetrahedron for each frag-
ment by means of texture coordinate interpolation. Based on these
two interpolated values, the opacity of each fragment is determined
by a two-dimensional texture lookup. This opacity is either mod-
ulated with a constant color, or with an interpolated vertex color.
Unfortunately, the linear interpolation of the average attenuation
coefficient and the thickness is only correct for orthogonal projec-
tions and leads to rendering artifacts for perspective projections.

An efficient computation of the correct perspective interpolation
has been published by Heckbert and Moreton [7] and independently
by Blinn [1]. Moreover, correct perspective interpolation is usually
offered by modern graphics hardware supporting OpenGL. How-
ever, the perspective interpolation employed in OpenGL [17] can-
not directly cure this problem for the PT algorithm because it was
designed for an interpolation of values on triangles—not within
tetrahedra.

Another well-known disadvantage of the method by Stein et
al. [19] is the restriction of the attenuation coefficients to linear
functions within each tetrahedron. This problem was addressed
by a software-based computation for arbitrary attenuation trans-
fer functions published by Max, Hanrahan and Crawfis [13]. The
availability of hardware-supported three-dimensional texture maps
allowed Röttger, Kraus, and Ertl [16] to implement a generalization
of this method in graphics hardware. This technique is now known
as pre-integrated cell projection. The basic idea is to employ lin-
ear interpolation of texture coordinates to interpolate the thickness
of the tetrahedron and the scalar data value on the front and back
faces of the tetrahedron for each fragment. Hardware-accelerated
three-dimensional texture mapping is then exploited to perform a
lookup of the color for a particular fragment. Note that this particu-
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lar implementation of pre-integrated cell projection by Röttger et al.
is also restricted to orthogonal projections and generates rendering
artifacts for perspective projections. Pre-integrated cell projection
was further improved [6, 14]; however, the artifacts caused by per-
spective projections were never addressed.

An alternative to cell projection is ray casting in unstructured
meshes. The basic algorithm for traversing cells of a tetrahedral
mesh along viewing rays and an implementation in software were
published by Garrity [5]. More recently, Weiler et al. [20, 21] pub-
lished a cell projection algorithm based on the idea of ray casting
single tetrahedra in graphics hardware and a hardware-based im-
plementation of a pre-integrated variant of Garrity’s algorithm us-
ing floating-point color buffers. With respect to rendering artifacts,
there are two advantages of the ray casting approach in contrast to
the PT algorithm: the use of floating-point precision to composite
colors and the absence of any interpolation errors due to perspec-
tive projection. In order to achieve a similar rendering quality with
the PT algorithm, we derive the correct perspective interpolation for
projected tetrahedra and discuss its implementation with the help of
programmable graphics hardware in Section 2.

For the coloring of individual tetrahedra, Weiler et al. [20]
employed a pre-integrated lookup table implemented by a three-
dimensional floating-point RGBA texture. Unfortunately, the lack
of trilinear interpolation in these textures and the limited resolu-
tion result in rendering artifacts. Our solution to these problems is
the use of textures with 16 bits per color component and the imple-
mentation of a logarithmic scale for the pre-integrated lookup table.
These enhancements are described in Section 3.

While the compositing of color contributions is performed with
floating-point precision by most ray casters, hardware-accelerated
cell projection with programmable graphics hardware has been re-
stricted to 8-bit fixed-point color components until recently. Even
the currently available hardware support for floating-point color
buffers does not allow us to blend small, overlapping triangle prim-
itives without rendering artifacts. Since the PT algorithm tends to
generate many small triangles, it is prone to these artifacts. In Sec-
tion 4, we show how to avoid them at the cost of rendering perfor-
mance. Moreover, we present an alternative approach for 8-bit color
components similar to the alpha dithering technique suggested by
Williams, Frank, and LaMar [23, 11].

A comparison of the common rendering artifacts of implemen-
tations of the PT algorithm is given in Section 5. The rendering
performance of our enhanced variants of the PT algorithm are also
discussed in this section. Section 6 presents our conclusions and
plans for future work.

2 PERSPECTIVE INTERPOLATION

Before discussing the interpolation of vertex attributes with per-
spective correction for the PT algorithm in Section 2.2, we will
introduce our notation and derive the required equations.

2.1 Interpolation in Normalized Device Coordinates

Our notation is based on the OpenGL specification [17]; in partic-
ular, the homogeneous coordinates of a vertex vo in object space

are denoted by (xo,yo,zo,wo)
T

. Assuming wo is not equal to 0,
this four-dimensional vector represents a three-dimensional vec-

tor (xo/wo,yo/wo,zo/wo)
T

. The model-view matrix M maps a

vector vo from object space to a vector ve = (xe,ye,ze,we)
T in

eye space, i.e., ve = Mvo. The mapping from eye space to clip
space is performed by the projection matrix P: vc = Pve with

vc = (xc,yc,zc,wc)
T

. Finally, we define the normalized device co-
ordinates as the components of the four-dimensional vector vd =

eye point

view plane

vd
H1L

vd
H2L

f HvoL
vc

H1L

vc
H2L

0 1 wc
H1L wc

H2L wc

Figure 2: The projection of a linear function f (vo) onto the view
plane results in a nonlinear function. In the depicted case of a linear

color interpolation between vertices v
(1)
c and v

(2)
c , the center point

between v
(1)
c and v

(2)
c and its color are not projected to the center

point between v
(1)
d and v

(2)
d as illustrated by the centered dashed line.

(xd ,yd ,zd ,1)T
obtained by a “perspective division” from vc, i.e,

vd = vc/wc.

For the derivation of the perspective interpolation1, we have to
consider linear functions in object space. In homogeneous co-
ordinates, any scalar function f (vo) that is linear in the three-
dimensional coordinates xo/wo, yo/wo, and zo/wo is of the form

f (vo) = cx
xo

wo
+ cy

yo

wo
+ cz

zo

wo
+ cw = c ·

vo

wo

with a constant four-dimensional vector c =
(

cx,cy,cz,cw

)T
. Note

that the projection to normalized device coordinates will turn this
linear function into a nonlinear function as illustrated in Figure 2.

Assuming wc is not equal to 0 and the matrix product PM has an
inverse, we can also write:

f (vo) = c · (PM)−1PM
vo

wc

wc

wo
.

With the constant vector c′ =
(

(PM)−1
)T

c and the equality
PMvo/wc = vd we obtain

f (vo)
wo

wc
= c′ ·vd .

This equation implies that f (vo)wo/wc is a linear function of the
normalized device coordinates xd , yd , and zd . Therefore, given any
function f (vo) that is linear in the three-dimensional coordinates
xo/wo, yo/wo, and zo/wo, we may linearly interpolate values of
f (vo)wo/wc in normalized device coordinates.

An important example is f (vo)≡ 1. Since 1 is constant, it is also
a linear “function” of xo/wo, yo/wo, and zo/wo. In this particular
case, the result from above implies that wo/wc is a linear function
of xd , yd , and zd ; therefore, we may linearly interpolate values of
wo/wc in normalized device coordinates.

These results were exploited by Heckbert and Moreton [7] and
independently by Blinn [1] for the perspective interpolation of at-
tributes between vertices, e.g., color or texture coordinates. If two
vertices are connected by a line, the corresponding attributes of the
two vertices define a linear function on the line segment. Analo-
gously, if three vertices are connected by a triangle, the correspond-
ing attributes define a linear function on the triangle. The domain

1Compare Equations 3.4 and 3.6 in the OpenGL 1.5 specification [17].
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co
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Figure 3: Decomposition of the tetrahedron (ao,bo,co ,do) into three
smaller tetrahedra corresponding to the triangles generated by the PT
algorithm for class 1a (see Figure 1). The new vertex to is determined
by the intersection of triangle (ao,co ,do) with the extension of the
line from the eye point to bo. The three tetrahedra are (ao,bo,co, to),
(co,bo,do, to), and (do,bo,ao, to).

of these linear functions f (vo) may be extended to the whole three-
dimensional object space without any complications. The projec-
tion of these functions is, however, not linear in normalized device
coordinates (see Figure 2). Therefore, instead of linearly interpolat-
ing vertex attributes, the values of f (vo)wo/wc and wo/wc are inter-
polated separately for each vertex, and these values are interpolated
linearly in normalized device coordinates for each fragment. The
value of f (vo) is then reconstructed by one division per fragment:

f (vo) =

(

f (vo)
wo

wc

)

interpolated
(

wo

wc

)

interpolated

.

Assuming wo is equal to 1 (or at least all wo’s are the same for all
vertices), this leads directly to Equations 3.4 and 3.6 in the OpenGL
1.5 specification [17].

2.2 Interpolation for Projected Tetrahedra

The original PT algorithm [18] decomposes the (non-degenerate)
projection of a tetrahedron into three or four triangles (see Fig-
ure 1), computes colors for all triangle vertices, and employs
hardware-accelerated triangle rasterization to interpolate the frag-
ment color. Note that a correct perspective interpolation of colors
is impossible for this algorithm because each rasterized fragment
corresponds to a viewing ray segment through the tetrahedron with
a range of wc coordinates instead of a single wc coordinate.

Instead of decomposing the projection of a tetrahedron into three
or four triangles, we can also decompose the tetrahedron itself into
three or four smaller tetrahedra. In this case, the decomposition is
performed in object coordinates instead of normalized device coor-
dinates. As illustrated in Figure 3, each of these smaller tetrahedra
is projected to one of the triangles of the original PT decomposi-
tion. Moreover, each of the smaller tetrahedra features one pair of
vertices, which are projected to the same two-dimensional vertex

in the view plane. In Figure 4, for example, v
(1f)
o (the “front” ver-

tex) and v
(1b)
o (the “back” vertex) are projected to the same vertex

in the view plane. In order to process all three vertices of the tri-
angles in the view plane in exactly the same way (as required by
our implementation), we duplicate the other two three-dimensional

vertices of the tetrahedron. For example, v
(2f)
o and v

(2b)
o in Figure 4

view plane

vo
H1f L

vo
H1bL

vo
H2f L=vo

H2bLvo
H3f L=vo

H3bL
eye point

Figure 4: The tetrahedron (do,bo,ao, to) from Figure 3 in our notation

for triangle vertices. Note that v
(1f)
o and v

(1b)
o are projected to the

same point on the view plane.

are identical copies of one vertex. Analogously, v
(3f)
o and v

(3b)
o are

identical.

Once the six vertices v
(1f)
o , v

(1b)
o , v

(2f)
o , v

(2b)
o , v

(3f)
o , and v

(3b)
o are

computed, either the front facing triangle spanned by the vertices

v
(1f)
o , v

(2f)
o , and v

(3f)
o or the back facing triangle spanned by the ver-

tices v
(1b)
o , v

(2b)
o , and v

(3b)
o can be rasterized because both triangles

will cover the same pixels. During the rasterization of either trian-
gle, we can interpolate any vertex attribute either on the front facing

triangle by interpolating between vertices v
(1f)
o , v

(2f)
o , and v

(3f)
o , or

on the back facing triangle by interpolating (with the same weights)

between vertices v
(1b)
o , v

(2b)
o , and v

(3b)
o . The correct perspective in-

terpolation can be performed as described in Section 2.1.
This approach avoids rendering artifacts caused by an incorrect

(nonperspective) interpolation in several important variants of the
PT algorithm. For example, in the variant of the PT algorithm pub-
lished by Stein et al. [19], we can interpolate the attenuation coef-

ficients τ
(f) and τ

(b) with perspective correction on the front facing
and the back facing triangle, respectively, while rasterizing either

one. Similarly, we can interpolate the scalar data values s(f) and

s(b) on the two triangles in the pre-integrated variant of the PT al-
gorithm suggested by Röttger et al. [16].

These two variants of the PT algorithm also require the thick-
ness of the tetrahedron for the rasterized fragment. This thickness l
may be computed as the distance (in three-dimensional eye space)
between the points on the two triangles corresponding to the raster-
ized fragment:

l =

∣

∣

∣

∣

∣

v
(b)
e

w
(b)
e

−
v
(f)
e

w
(f)
e

∣

∣

∣

∣

∣

.

All coordinates of v
(f)
e /w

(f)
e and v

(b)
e /w

(b)
e are linear functions of

the three-dimensional object coordinates for any model-view ma-

trix M with a fourth row vector of (0,0,0,1)T ; therefore, v
(f)
e /w

(f)
e

and v
(b)
e /w

(b)
e can be interpolated with perspective correction on

the front facing and back facing triangle, respectively, as described
above.

Usually all we coordinates are 1. Furthermore, we can exploit

the fact that the three-dimensional points represented by v
(f)
e and

v
(b)
e are on one line with the origin:

l =
∣

∣

∣
v
(b)
e −v

(f)
e

∣

∣

∣
=

∣

∣

∣
v
(f)
e

∣

∣

∣

∣

∣

∣

∣

∣

z
(b)
e − z

(f)
e

z
(f)
e

∣

∣

∣

∣

∣

.
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attributes

vd
H1fL
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vd
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interpolate

for triangle

rasterizationfragment

attributes

vd
HfL

, 1�wc
HfL, sHfL�wc

HfL,
ve

HfL�wc
HfL, 1�wc

HbL, ...

call fragment program

fragment

color
RGBAHsHfL, sHbL, lL

blend with color in frame buffer

Figure 5: Data flow in our implementation of perspective interpola-
tion for the PT algorithm.

Note that |v
(f)
e | denotes the Euclidean vector norm of the three-

dimensional eye space vector represented by v
(f)
e . The latter equa-

tion is also employed in our implementation, which is presented in
the next section.

2.3 Implementation with Programmable Graphics Hardware

Our implementation is based on the OpenGL 1.5 ARB extensions
for vertex programs and fragment programs [17]. Figure 5 illus-
trates the data flow for perspective interpolation in our implemen-
tation of the PT algorithm for pre-integrated cell projection.

As discussed in Section 2.2, each tetrahedron is decomposed into
three or four smaller tetrahedra corresponding to the triangles of
the original PT algorithm. For each of the smaller tetrahedra, the

six vertices v
(1f)
o , v

(1b)
o , v

(2f)
o , v

(2b)
o , v

(3f)
o , and v

(3b)
o are computed.

Moreover, six corresponding scalar data values s(1f), s(1b), s(2f),

s(2b), s(3f), and s(3b) are determined. We rasterize the front facing

triangle spanned by the vertices v
(1f)
o , v

(2f)
o and v

(3f)
o . Apart from

these coordinates, each triangle vertex is also provided with the ob-
ject coordinates of the corresponding “back” vertex and the scalar
data values for the front and back vertex. For example, for the i-th

vertex with object coordinates v
(if)
o we specify the scalar data values

s(if) and s(ib), and the vector v
(ib)
o as additional vertex attributes.

These vertex attributes are the input parameters for our ver-
tex program. For the i-th vertex, the vertex program computes

clip coordinates v
(if)
c = PMv

(if)
o and normalized device coordinates

v
(if)
d

= v
(if)
c /w

(if)
c . By performing the perspective division and re-

turning normalized device coordinates instead of clip coordinates,
we ensure that OpenGL does not use perspective interpolation but
linear interpolation since we specify that wc is equal to 1.

Apart from the projected position, the output parameters of our

vertex program for the i-th vertex are 1/w
(if)
c , s(if)/w

(if)
c , v

(if)
e /w

(if)
c ,

1/w
(ib)
c , s(ib)/w

(ib)
c , and z

(ib)
e /w

(ib)
c . Note that we set all wo’s to 1;

thus, they do not appear in these quantities.
These output vertex attributes are linearly interpolated between

the three vertices of each triangle. We denote the results of these

interpolations by 1/w
(f)
c , s(f)/w

(f)
c , v

(f)
e /w

(f)
c , 1/w

(b)
c , s(b)/w

(b)
c , and

z
(b)
e /w

(b)
c , respectively. These are input parameters for our fragment

program, which completes the perspective interpolation by dividing
interpolated values:

s(f) =
s(f)/w

(f)
c

1/w
(f)
c

,v
(f)
e =

v
(f)
e /w

(f)
c

1/w
(f)
c

,s(b) =
s(b)/w

(b)
c

1/w
(b)
c

,z
(b)
e =

z
(b)
e /w

(b)
c

1/w
(b)
c

.

The thickness l of the tetrahedron is computed from these quantities
as described in Section 2.2. Note that it is often possible to simplify
the computation of l without introducing visible rendering artifacts

with the help of the approximation l ≈ |z
(b)
e − z

(f)
e |.

This completes the perspective interpolation of s(f), s(b), and the
computation of l. Based on these parameters, the color of the frag-
ment is determined by the fragment program as discussed in the
next section.

3 ACCURATE COLORING

In the PT algorithm, many tetrahedra can contribute to the color of a
single pixel; therefore, even small color contributions of individual
tetrahedra can sum up to a significant contribution to the final im-
age. Thus, in order to avoid rendering artifacts, the accuracy of the
color computation for a single tetrahedron has to exceed the color
accuracy of the final image.

Fortunately, arithmetic computations in fragment programs may
be performed with floating-point precision. Therefore, it is benefi-
cial to replace, for example, the texture lookup for the correct expo-
nential attentuation suggested by Stein et al. [19] by a more accurate
computation in a fragment program. For some optical models, the
three-dimensional texture lookup for pre-integrated cell projection
can also be replaced by a fragment program as suggested by Guthe
et al. [6]. In general, however, the pre-integrated lookup can only
be replaced by an expensive numerical integration.

Therefore, instead of replacing the pre-integrated texture lookup,
we improve its accuracy by employing textures with 16-bit color
components (so called “HILO textures” [9]), which support trilin-
ear interpolation. Since HILO textures are only available with two
color components, we have to split the RGBA lookup texture into
two HILO textures and perform two texture lookups to get all four
color components. Note that we avoid floating-point textures be-
cause they only permit nearest-neighbor “interpolation.”

Apart from the accuracy of the colors tabulated in the three-
dimensional lookup texture, we also have to consider its minimum
dimensions. The three coordinates for this texture lookup corre-

spond to the scalar data value at the front s(f), the scalar data value

at the back s(b), and the thickness l [16]. The texture coordinates
are usually computed by a linear mapping of the whole range of

s(f), s(b), and l, respectively, to the range of texture coordinates. In
our implementation, the range of a particular texture coordinate is
[(2n)−1,1− (2n)−1], where n is the dimension of the texture in the

corresponding direction. Note that (2n)−1 and 1− (2n)−1 specify
the coordinates of the centers of the 0-th and the (n− 1)-th texel,
respectively, in OpenGL textures.

For the dimensions corresponding to s(f) and s(b) a resolution
corresponding to the Nyquist sampling rate of the transfer func-
tions will avoid most visible artifacts. In contrast to the scalar data
values, the range of the thickness l depends on the tetrahedral mesh.
More specifically, the minimum thickness is zero and the maximum

30



1�16

3�16

5�16

7�16

9�16

11�16

13�16

15�16

lmax�������������
64

lmax�������������
8

lmax�������������
4

lmax�������������
2

lmax

l

r

Figure 6: Mapping of l ∈ [0, lmax ] to texture coordinate r ∈ [(2nr)
−1,1−

(2nr)
−1] for dimension nr = 8. Note that the mapping is linear instead

of logarithmic for 0 ≤ l ≤ 2−(nr−2)lmax = lmax/64.

thickness is equal to the length lmax of the longest edge of all cells
in eye space. If the model-view matrix does not include any scal-
ing, lmax is also the length of the longest edge in object space. Note
that fragments on the silhouette of a tetrahedral cell usually require
a thickness very close to zero; thus, the pre-integrated lookup ta-
ble has to cover the whole range [0, lmax]. The dependency of the
color on the thickness l is in general a very smooth function since
the most relevant dependencies are the exponential attentuation and
the linear accumulation of emitted light. Therefore, previous im-
plementations of pre-integrated cell projection have often chosen a
rather low resolution for the thickness.

However, this is not appropriate for data sets featuring a very
high ratio between the lengths of the longest and the shortest edges
of the mesh. In these cases, the thickness of many small tetrahedra
will be close to zero. Therefore, on the one hand, these data sets
require a very high resolution of the lookup table for small values
of l; on the other hand, the thickness is still a smooth function for
large values of l; thus, a coarse resolution for large l is sufficient.

Therefore, a logarithmic mapping of the thickness l to the texture
coordinate r is more appropriate than a linear mapping. Note that
a thickness of l = 0 should be mapped to the texture coordinate
of the 0-th texel r = (2nr)

−1 where nr is the r-dimension of the
texture. In order to satisfy these constraints, we chose a mapping

of l to r, which is linear for 0 ≤ l ≤ ∆l with ∆l = 2−(nr−2)lmax and
logarithmic for l ≥ ∆l; see Figure 6 and Equation 1.

r =

(

max

(

log2

l

∆l
,0

)

+min

(

l

∆l
,1

))

/

nr +
1

2nr
(1)

A straightforward implementation of Equation 1 using the OpenGL
ARB extension for fragment programs requires seven instructions.
(Implementing this mapping by means of a 1D texture lookup
would usually require a prohibitively large texture size.) To com-
pute the pre-integrated lookup table efficiently, we employ an
adapted variant of the incremental pre-integration method [20] that
incrementally computes two-dimensional slices of the table for
l = 0,∆l,2∆l,4∆l,8∆l, . . . ,2nr−2

∆l.

4 ACCURATE COMPOSITING

In order to avoid rendering artifacts in volume rendering algo-
rithms, colors have to be composited with a higher accuracy than
most graphics adapters offer for frame buffers. Unfortunately, the

current hardware support for floating-point color buffers has some
crucial limitations, which prevent their efficient use in the context
of the PT algorithm as discussed in detail in Section 4.1. Section 4.2
describes an approach based on randomized dithering using frame
buffers with 8-bit color components to improve the quality of the
final image.

4.1 Floating-Point Color Buffer

Current graphics adapters (based on NVIDIA’s NV3x and ATI’s
R3xx chipsets) allow fragment programs to write to and read from
floating-point textures at the same time. Although the results of
these texture read operations are undefined, this technique has been
successfully employed to implement color blending for slice-based
volume visualization [8].

For the small triangle primitives of the PT algorithm, however,
the results of these texture read operations are in fact erroneous—
presumably due to caching of texture data. If the compositing com-
putation in the fragment program is based on outdated data, severe
caching artifacts can appear. For the NVIDIA Quadro FX 3000
graphics board used in this work, we found several ways to avoid
all these caching artifacts. The two most important are:

1. rasterizing a large point primitive after each triangle fan, or

2. binding the color buffer texture and sending a fence (see the
GL NV fence extension [9]) after each triangle fan.2

Although rather slow, the latter approach performed better and was,
therefore, used for our measurements in Section 5.

The recently released NVIDIA GeForce FX 6800 (NV40
chipset) supports rendering to 16-bit floating-point color buffers
with alpha blending; thus, there is no need to simultaneously read
from and write to the same texture. Our preliminary measurements
indicate that this allows us to use floating-point color buffers at in-
teractive frame rates for the PT algorithm.

We found it extremely useful to employ floating-point color
buffers to generate reference images because these visualizations
avoid all artifacts due to color quantization during color composit-
ing. Thus, we are able to reveal rendering artifacts that would oth-
erwise be hidden by color quantization artifacts.

4.2 Alpha Dithering

For frame buffers with very limited color resolution, e.g., 8 bits per
color component, Williams, Frank, and LaMar [23, 11] suggested
alpha dithering as an efficient way to overcome quantization arti-
facts in volume rendering algorithms.

Our variant of alpha dithering customizes the 8-bit color quan-
tization of the color result of the fragment program. The de-
fault quantization on our graphics hardware maps an output α-
component between 0 and 1 to b255α + 1/2c/255 with the floor
function bxc denoting the largest integer smaller than or equal to x.
In contrast to this default quantization, we implement the following
quantization at the very end of our fragment program:

α 7→

{

(b255αc+1)/255 if 255α −b255αc > q

b255αc/255 otherwise

with a pseudo-random number q ∈ [0,1], which is determined by
texture lookups in tables of random numbers. In other words, we
round up with a probability equal to the fractional part of 255α ,
otherwise we round down.

Our randomized rounding performs very well in many cases;
however, it does not avoid all rendering artifacts since the graphics

2This method was suggested by Nick Triantos (NVIDIA).
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(a) (b) (c)

Figure 7: Rendering of the NASA blunt fin data set: (a) without HILO lookup textures, (b) without floating-point color buffer, and (c) with
both HILO lookup textures and floating-point color buffer.

Table 1: Total rendering times per frame (including cell sorting) and
overhead introduced by our enhancements for the blunt fin data set.

rendering technique/enhancement time in secs

basic pre-integrated PT algorithm (i) 0.195
overhead for perspective interpolation (ii) 0.048

overhead for HILO lookup textures (iii) 0.031
overhead for logarithmic lookup (iv) 0.040

total for frame buffer (i+ii+iii+iv) 0.314
total with alpha dithering 0.621

total for floating-point color buffer 1.781

Table 2: Number of tetrahedra and total frame buffer rendering times
per frame for different data sets.

data set no. tets time in secs tets per sec

heat sink 121,668 0.252 483K
blunt fin 187,318 0.314 597K
cylinder 624,960 0.929 673K

X38 1,943,483 3.07 633K

hardware performs a second quantization after the blending oper-
ation of the fixed-function OpenGL pipeline. Unfortunately, this
blending operation is not customizable; thus, we cannot avoid ar-
tifacts introduced at this point. The only exception to this rule is
purely additive blending. In this case, the result of the blending is
guaranteed to be quantized, and the second quantization is, there-
fore, ineffective. This is also the only case in which a randomized
rounding of the red, green, and blue components is preferable to the
randomized rounding of α .

5 RESULTS

5.1 Timings

We tested our implementation on a Windows XP PC with an AMD
Athlon 64 3400+ processor (2.4 GHz), an AGP 8× bus, and an
NVIDIA Quadro FX 3000 graphics adapter with 256 MB of video
memory. As discussed in Section 2.3, our implementation takes ad-
vantage of the programmable vertex and fragment processing pro-
vided by the graphics hardware. Many factors influence the render-
ing performance, for example, the number of tetrahedra, the image
dimensions, and the depth complexity. The transfer function does

(a) (b)

Figure 8: Isosurface visualization of the heat sink data set: (a) with-
out and (b) with perspective interpolation.

not affect the rendering performance since different transfer func-
tions are achieved by modifying the pre-integrated lookup table.

Table 1 shows the timing results for the NASA blunt fin data set,
which is decomposed into 187,318 tetrahedra before rendering. All
times were measured for images of 800 × 600 pixels. Since our
system is fragment-bound, additional instructions in the fragment
program increase the rendering time. Note that we could greatly
improve the rendering performance by culling transparent tetrahe-
dra in software; however, for benchmarking purposes we are pro-
jecting all tetrahedra.

Perspective interpolation is implemented using vertex and frag-
ment programs with twelve and eleven arithmetic instructions, re-
spectively (see Section 2.3). The use of HILO lookup textures
requires an additional 3D-texture lookup per fragment (see Sec-
tion 3). The logarithmic lookup is implemented with seven arith-
metic instructions per fragment, as mentioned in Section 3. For
the images in this paper we always employed lookup tables of di-
mensions 256×256×16 where 16 is the dimension of the texture
corresponding to the thickness l.

Ten arithmetic instructions and two 2D-texture lookups in
pseudo-random number tables are needed per fragment for alpha
dithering (see Section 4.2). Due to the additional operations re-
quired to eliminate the texture caching artifacts as discussed in Sec-
tion 4.1, the color compositing in a floating-point color buffer is
considerably slower than in a frame buffer.

Table 2 presents the rendering times per frame for different data
sets rendered with perspective interpolation and logarithmic HILO
lookup textures. The times are roughly linear in the number of pro-
jected tetrahedra but also depend strongly on the number of raster-
ized fragments.
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(a) (b) (c)

Figure 9: Rendering of the NASA tapered cylinder data set: (a) with color compositing in the frame buffer, (b) with alpha dithering and color
compositing in the frame buffer, and (c) with color compositing in a floating-point color buffer.

(a)

(b)

Figure 10: Isosurface visualization of the pressure component of the
NASA X38 data set: (a) with a uniform lookup texture and (b) with
a logarithmic lookup texture.

Our preliminary measurements on an NVIDIA GeForce FX
6800 GT clocked at 350 MHz show only a slight increase in per-
formance. For example, the rendering with all enhancements to
an 8-bit frame buffer is about 22 % faster than with the NVIDIA
Quadro FX 3000. This is presumably due to bottlenecks caused by
the CPU or the AGP bus. There is, however, an important excep-
tion: the rendering with hardware-supported blending to a 16-bit
floating-point color buffer is only less than 1 % slower than the ren-
dering to an 8-bit frame buffer since no additional operations are
necessary to avoid caching artifacts.

5.2 Comparison of Artifacts

One advantage of our implementation is that it allows us to study
artifacts in terms of their causes and remedies. In the following
discussion, we compare different renderings and relate artifacts to
techniques that remove them.

Perspective interpolation of vertex attributes is required in the
PT algorithm since an incorrect linear interpolation of texture co-
ordinates causes erroneous coloring (see Section 3). In Figure 8,
we show a volume visualization of the heat sink data set, which
mimics an isosurface rendering by employing a transfer function
with a sharp peak at the isovalue. Without perspective interpola-
tion, artifacts in the form of cracks and overlaps occur along the
intersections of the isosurface with cell faces, as shown in the inset
in Figure 8a. In contrast, rendering with perspective interpolation
shows no artifacts, as shown in the inset in Figure 8b. Note that all
insets in Figures 7 to 10 are magnified and contrast-enhanced.

An 8-bit per component pre-integrated lookup texture does not
offer sufficient color depth, as mentioned in Section 3. For example,
the structured artifacts shown in Figure 7a result from the coarsely
quantized colors of such a lookup texture. On the other hand, HILO
lookup textures produce artifact-free renderings as shown in Fig-
ure 7c. Color compositing also requires a high color accuracy, as
noted in Section 4.1. Figure 7b shows a rendering using a frame
buffer with only 8 bits per component for color compositing. This
limited color depth results in structured artifacts, which are similar
to those in Figure 7a.

As explained in Section 4.2, alpha dithering alleviates render-
ing artifacts resulting from quantization errors to a certain extent.
Figure 9a shows the NASA tapered cylinder data set rendered with
an 8-bit per component frame buffer. Alpha dithering lessens arti-
facts in inset “1” and almost removes them in inset “2” as shown in
Figure 9b. With floating-point precision for the color compositing,
alpha dithering is unnecessary, as shown in Figure 9c.

As explained in Section 3, a uniform lookup texture is inappro-
priate if the ratio between the lengths of the longest and the shortest
mesh edges is very high, which is the case in the NASA X38 data
set. Very small tetrahedra have thicknesses close to zero; thus, they
require lookup textures with an extremely high resolution for small
thicknesses. Uniform lookup textures cannot offer such a high res-
olution at a feasible size and, therefore, lead to under-sampling
errors for extremely small tetrahedra. This results in darker ren-
derings with substantial edge artifacts (Figure 10a) as opposed to
the artifact-free rendering with a logarithmic lookup texture (Fig-
ure 10b).
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6 CONCLUSIONS AND FUTURE WORK

We have identified and cured all major rendering artifacts that are
common in implementations of the PT algorithm. These include in-
correct interpolation, insufficient accuracy and dimensions of pre-
integrated lookup tables, and insufficient accuracy of the frame
buffer used for compositing. With our improvements, the PT al-
gorithm is capable of achieving a rendering quality that was previ-
ously only possible with ray casting approaches.

Our solution to the limited accuracy of frame buffers is the use
of floating-point color buffers, which is well supported only by the
latest graphics hardware. This hardware allows us to provide the
highest rendering quality at interactive frame rates.

Several of our improvements are not restricted to the PT algo-
rithm. For example, the correct perspective interpolation could
also be applied to pre-integrated texture-based volume rendering
[4], and logarithmic lookup textures could be used for hardware-
accelerated ray casting algorithms with an adaptive sampling rate
[15, 20].

In order to further improve the PT algorithm, we plan to integrate
the volume lighting method described by Lum et al. [12] with cor-
rect perspective interpolation. Moreover, we intend to validate the
volume visualizations generated by our system by means of a com-
parison with a software ray caster. This will allow us to study the
effect of incorrect visibility orderings and to compare the numeri-
cal pre-integration with analytic solutions of the volume rendering
integral for piecewise-linear transfer functions.
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