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ABSTRACT

We present a new level set method for reconstructing interfaces
from point aggregations. Although level-set-based methods are ad-
vantageous because they can handle complicated topologies and
noisy data, most tend to smooth the inherent roughness of the orig-
inal data. Our objective is to enhance the quality of a reconstructed
surface by preserving certain roughness-related characteristics of
the original dataset. Our formulation employs the total variation
of the surface as a roughness measure. The algorithm consists of
two steps: a roughness-capturing flow and a roughness-preserving
flow. The roughness capturing step attempts to construct a sur-
face for which the original roughness is captured – distance flow
is well suited for roughness capturing. Surface reconstruction is
enhanced by using a total variation preserving (TVP) scheme for
the roughness-preserving flow. The shock filter formulation of Os-
her and Rudin is exploited to achieve this goal. In practice, we have
found that better results are obtained by balancing the TVP term
with a smoothing term based on curvature. The algorithm is ap-
plied to both fractal surface growth simulations and scanned data
sets to demonstrate the efficacy of our approach.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Surfaces and object representation

Keywords: point sampled data, surface reconstruction, level set
method, shock filter, total variation preserving, rough surface

1 INTRODUCTION

Interface reconstruction from point aggregations is a challenging
problem. An interface for a point aggregation is defined as a surface
that contacts the void exterior to the aggregation. Such aggregations
often imply rough interfaces. These interfaces are characterized as
clusters of points possessing fractal dimensions. The problem of
interface reconstruction has no unique solution. Furthermore, the
interface is often not a manifold and its topology may be far from
simple. In particular, if an interface has holes or overhangs, it is
difficult to parameterize.

These point sets may be generated from studies of physical phe-
nomena. In the material sciences, numerous discrete surface sim-
ulation models have been developed to study surface growth phe-
nomena [3]. For instance, consider the simulation result (in 2D) us-
ing the diffusion limited aggregation (DLA) cluster growth model
shown in Fig. 1. In addition to fractal-like micro-structures, promi-
nent dendritic structures are produced. Note that the blue-colored
curve in Fig. 1 represents the interface between the volumetric point
aggregation and the void into which it extends. This is why we use
the phrase interface reconstruction rather than surface reconstruc-
tion. Interface reconstruction includes two distinct steps – capturing
the natural interface followed by traditional surface reconstruction.
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Most surface reconstruction methods assume that input point data
are sampled from a surface. In other words, the interface is already
given for the problem. It should be noted that the point aggrega-
tions described here are volumetric in nature and are created from
an evolution or growth of an interface. Interior points exist below
the interface and are part of the aggregations. Hence, we need a
method to both capture the interface and reconstruct it for for DLA
data sets.

A second example, shown in Fig. 2, is a scan of a three-
dimensional ice accretion that can occur on an aircraft wings. Such
scans are used to catalog and characterize ice accretions for evalu-
ating aircraft performance degradation in icing conditions. Though
the data must be filtered before any kind of interface reconstruc-
tion can be performed, it is almost impossible to remove all noise.
Hence, the ideal interface reconstruction algorithm should be toler-
ant to the presence of noise. It should be noted that the ice accretion
process can be thought of as being the result of a more complex
DLA-like process.

Figure 1: Point aggregation from a 2D DLA simulation. The blue
line demarcates a possible interface.

Figure 2: Point aggregation from an iced wing scan.

The two applications described above motivate the need for a
robust methodology to capture and represent complex interfaces.
Explicit methods of representation using triangulation are unable to
capture the complexity of such an interface in its entirety. Addi-
tionally, their noise handling capabilities are limited. On the other
hand, implicit methods do possess the capability to represent rough
interfaces with complex topologies.

Level set methods, through appropriate choices of initial con-
ditions and front velocities, can capture interfaces while preserv-
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ing their underlying topologies. However, level-set-based recon-
struction methods tend to smooth the inherent roughness existing
in the underlying data. This shortcoming motivates our use of
a roughness-preserving level set formulation that employs a total
variation preserving filter. As we explain later, interface roughness
can be characterized by the total variation of the surface.

Our roughness-preserving level set method consists of two steps:
a roughness-capturing step and a roughness-preserving step. First,
we find an initial surface using a distance field flow to capture the
interface of the point set and minimize the effect of smoothing.
Second, a level set filter comprised of a linear combination of a
roughness-preserving term and a smoothing term is applied to the
distance flow surface iteratively until specified conditions are satis-
fied. Novel to this approach is the use of an edge-enhancing shock
filter in the roughness-preserving term. Important aspects of our
approach include:

• The work reported here, and prior related work [9], represent
the first applications of level-set-based algorithms for rough
interface reconstruction from point aggregations.

• A shock filter is employed as a roughness-preserving term.

• A single parameter provides control of the overall effect of
roughness and smoothness.

• A unified level set formulation combines interface capturing
and roughness enhancement.

Our paper is organized as follows. In Section 2, we review
related efforts in surface reconstruction. We then explain the
roughness-preserving level set formulation in Section 3. The de-
tails of our implementation are provided in Section 4. In Section
5, we include results that demonstrate the effectiveness of our ap-
proach and in the final section we draw conclusions and present a
discussion of future work.

2 RELATED WORK

There exist two classes of methods for reconstructing surfaces.
There are those which employ explicit triangulation schemes and
exploit the Voronoi diagram or its dual, the Delaunay triangula-
tion [2,5]. These algorithms are interpolatory in nature. The power
crust algorithm of [2] computes an approximate medial axis trans-
form (MAT), then produces a piecewise-linear surface representa-
tion using an inverse transform of the MAT. The power crust algo-
rithm is provably correct if the sampling density is high enough ev-
erywhere. However, the local topology can change after reconstruc-
tion and holes may appear from undersampling. The cocone algo-
rithm [5] allows reconstruction from an input that is not sufficiently
sampled by detecting the boundaries between densely sampled re-
gions and undersampled regions. However, these methods are not
suitable for point clouds with noise or volumetric point aggrega-
tions with interior point samples similar to the examples presented
in the earlier section. Results obtained using these algorithms may
not be closed or even well-defined surfaces.

The second class of methods are implicit in nature. Radial basis
functions (RBF) [4] can be used for processing point clouds with
local problems (holes and incomplete surfaces). The objective is
to find a scalar function such that all data points that are close to
an isocontour of that scalar function. Distance functions have also
been used for reconstruction from point clouds. The implicit scalar
function is the closest distance of grid points to surfaces of the data
cloud. In [8], a signed distance function is first computed from
an estimated tangent plane. Later, the zero isosurface of the level
set function is extracted. However, to be applicable to our problem,

these methods would also require utilization of a sophisticated tech-
nique to identify the interface of the volumetric point aggregations.

The level set method was originally introduced by Osher and
Sethian [14] for numerical interface evolution through curvature
flow and has been successfully used to capture interfaces for wide
variety of problems. See [12] for a comprehensive review. The level
set method is a powerful iterative numerical technique for deform-
ing implicit surfaces that works in any number of dimensions. The
data structures employed are very simple, and topological changes
in the underlying and evolving surface are handled easily in a nat-
ural way. Zhao et al. [23] proposed the weighted minimal surface
model based on the distance potential functional for reconstructing
surfaces from point clouds. An initial surface is continuously de-
formed toward a final surface along the gradient direction of the
functional until a surface potential force and a surface tension force
reach equilibrium. In [9], we use the level set method to extract
interfaces from point data generated by DLA simulations. Our for-
mulation used only an attraction term (based on the distance field)
to deform the initial surface. Enright et al. [6] proposed a hybrid
particle level set method to accurately capture the interface driven
by a flow field. They exploit a marker-based particle Lagrangian
scheme to overcome the inherent smoothing effect of a level set
method.

Anisotropic diffusion methods are used to smooth surfaces while
preserving or enhancing sharp geometric features such as edges or
corners. These methods are closely related to level set methods.
Preusser et al. [16] proposed an anisotropic geometric diffusion
model for the level set method. They used a regularized shape oper-
ator depending on pre-smoothed principal curvatures and principal
directions of curvature to identify important surface features so that
the level set propagation speed is decreased near edges and corners.
Tasdizen et al. used fourth-order level set flows instead of the com-
mon second-order processes [18–20]. They solve the anisotropic
diffusion equation on the normal map of the surface, and deform
the surface to fit the smoothed normals. While all these methods
are intended for feature-preserving surface fairing, our method is
specifically designed for extracting rough interfaces from volumet-
ric point aggregations. In this context, our current effort is an im-
provement of the level set formulation presented in our previous
work [9]. A shock filter is introduced with a curvature term to con-
trol the roughness of the reconstructed surface while the distance
field term for the level set speed is used in [9]. The combination of
a shock filter and diffusion term have been used in image restoration
and deblurring applications [7, 10].

The basic form of shock-diffusion formulation employed in
those papers is:

It = −αsign(Ixx)|Ix|+β Ixx, (1)

where I ≡ I(x, t) is a scalar function in one dimension, and α and
β are constant weight parameters. It , Ix and Ixx are time, first spa-
tial and second spatial derivatives, respectively. This formulation
is very similar to our TVP formulation. However, it is intended for
image deblurring while ours is intended for interface reconstruction
of point aggregations using a level set function. In addition, the di-
mension of the problem domain does not change in image deblur-
ring problem. In contrast, our formulation is constructed in higher
dimensions of the problem domain since we embed a surface into
a level set function. Furthermore, our shock filter is motivated by
the notion that surface roughness can be characterized by its total
variation.

3 ROUGHNESS-PRESERVING LEVEL SET METHOD

Our roughness-preserving level set method employs two distinct
level set formulations: a roughness-capturing flow and a roughness-
preserving flow. Fig. 3 describes the pipeline of our roughness-

252
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Finding initial level set functionFinding initial level set function Solving Level set PDESolving Level set PDE

Distance transformDistance transform Tagging methodTagging method Distance flowDistance flow TVP flowTVP flow

Figure 3: Pipeline of roughness-preserving level set reconstruction: (a) input point set, (b) distance function: the bounding surface is the initial
surface for tagging method, (c) signed distance function: an approximate offset surface, (d) resulting surface of distance flow, (e) final surface

preserving level set reconstruction. We first apply the roughness-
capturing flow to construct an initial surface that inherits the rough-
ness of the actual interface with minimal smoothing. A distance
flow formulation is used in the first stage since it allows the robust
construction of a surface that closely approximates the true inter-
face. The roughness-preserving flow is then applied to enhance the
quality of the approximate surface by maintaining the roughness of
the interface as it evolves. We employ total variation, which in this
context is an integral of the magnitude of the first derivative of the
level set function of the interface, as a measure of the roughness
of the surface. This suggests that a total variation preserving(TVP)
formulation should be employed for the roughness-preserving flow.
In our approach, the TVP flow is realized using the shock filter of
Osher and Rudin [13]. We now describe the shock filter and its
inclusion in the level set formulation.

3.1 TVP and the Osher-Rudin Shock Filter

The total variation (TV) of a scalar function of one variable u(x)
can be defined as

TV (u) =
∫

|ux|dx. (2)

This definition can easily be extended to two or more spatial di-
mensions. TV can be employed as a measure of surface rough-
ness since it can serve as a measure of the high frequency content
of the surface. Fig. 4 shows the TV values for a simple, periodic
two-dimensional function for a range of fundamental spatial fre-
quencies. Clearly, the TV value increases as the roughness of the
function grows.

The foundation of our method is the assertion that, by preserving
the total variation of the surface as the level set method is applied
to the distance flow surface, a more accurate representation of the
surface will be obtained. Osher and Rudin proposed the use of a
shock filter for edge enhancement in image processing [13]. They
showed that their shock filter is total variation preserving in the
discrete case.

The formulation for the shock filter is given by

ut = −F(uxx)|ux| (3)

where u ≡ u(x, t) is a scalar function in one dimension with the
initial condition u(x,0) = u0(x). The Lipschitz continuous function

(a)

(c)

(b)

(d)

Figure 4: TV values for u(x,y) = sin(ωx)sin(ωy): (a) ω = 1,TV =
6.6864 (b) ω = 5,TV = 33.4319, (c) ω = 10,TV = 66.8639, (d) ω =
20,TV = 133.7277

F should satisfy F(0) = 0 and F(s)sign(s) ≥ 0. Choosing F(s) =
sign(s) gives the classical shock filter equation

ut = −sign(uxx)|ux| (4)

The two-dimensional extension of the shock filter equation is
given by

ut = −F(L(u))|∇u| (5)

where u ≡ u(x,y, t) and L(u) is a second-order nonlinear elliptic
operator. F(L(u)) serves as an edge detection term. It changes
sign across any singular feature so that the local flow is directed
toward the features. For example, one popular choice for L(u) is
the Second-Derivative-in-the-Gradient-Direction (SDGD) operator
∇ηη u where η is the direction of the gradient. Hence, the common
two-dimensional shock filter form is

ut = −sign(∇ηη u)|∇u| (6)
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Key properties of the shock filter formulation include [7]:

• Shocks develop at inflection points.

• Local extrema remain unchanged in time.

• The scheme is TVP.

3.2 Level Set Formulation

The two salient steps of our level set formulation are described be-
low:

Embed the surface A co-dimension one surface Γ is defined as
the zero isosurface of a level set function φ(x), i.e., Γ = {x :
φ(x) = 0}. φ is negative inside Γ and positive outside Γ. In
practice, the signed distance function is often the level set
function of choice. Geometric properties of the surface Γ,
such as the normal and mean curvature can be easily com-
puted from φ using

outward unit normal: n =
∇φ
|∇φ | (7)

mean curvature: κ = ∇ · ∇φ
|∇φ | (8)

Embed the motion The time evolution PDE for the level set func-
tion is obtained by differentiating φ(Γ(t), t) as

φt +
dΓ(t)

dt
·∇φ = 0 ⇔ φt + vn|∇φ | = 0 (9)

Here, vn is the normal directional speed of Γ(t) which may de-
pend on external physics or global and local geometric quan-
tities. The PDE is solved for x ∈ Ω (Ω ∈ ℜ3 in our problem)
and t ∈ [0,Tf ] with well-posed boundary conditions.

Define d(x) = distance function(x,S) to be the closest distance
between the position x and the input point data set S. The following
distance flow is used for roughness capturing

dφ
dt

= ds(x)|∇φ | (10)

where the signed distance function, ds(x), is:

ds(x) =
{

d(x) if x is outside of the surface of S
−d(x) otherwise

This distance-based speed term produces an attraction toward the
true surface. In our previous work [9], only this term was used to
reconstruct an interface from a DLA simulation point data set. We
now describe the new roughness preserving formulation.

We can naturally extend Eq. 6 to the level set formulation for the
roughness-preserving flow

dφ
dt

= −sign(∇ηη φ)|∇φ | (11)

where η is the direction of the gradient. In practice, we found a
better reconstruction can be achieved by balancing the TVP term
with a surface smoothing term. Hence, we add a mean curvature
speed term, often referred to as the surface tension or regularizing
term, to the shock filter

dφ
dt

= −|∇φ |
[
sign(∇ηη φ)−κ

]
(12)

In this formulation, the curvature term is likely dominate since it
can be much larger than the TVP term whose magnitude is in the

interval [0,1]. Therefore, we equalize the weights of the two front
speed terms by normalizing κ using the following transformation

κ̃ =
κ

1+ |κ| (13)

The normalization transforms the magnitude of the curvature values
into the range [0,1] so that it proportionately contributes to the TVP
term. Further, we provide users with control of the roughness by a
simple weighting of the two speed terms using the parameter γ as
shown below:

dφ
dt

= −|∇φ |
[
γ sign(∇ηη φ)− (1− γ)κ̃

]
(14)

Note that the original TVP flow is recovered for γ = 1 and the pure
mean curvature flow recovered for γ = 0. It should be noted that
this formulation is not strictly TVP for γ �= 1.

Finally, we provide a unified formulation using the time depen-
dent Heaviside function(H) given by

dφ
dt

= −|∇φ |H(−t +Td)
[
γ sign(∇ηη )φ − (1− γ)κ̃

]
+|∇φ |H(t −Td)d(x)

(15)

where the Heaviside function(see Fig. 5) is defined by

H(s) =
{

1 if s ≥ 0
0 if s < 0

For t ≤ Td , the distance flow term is used. The roughness preserv-

Td

0

1

0

1

Simulation time

H(t-Td): distance flow

H(-t+Td): TVP flow

Td

Tf

Tf

Figure 5: Heaviside functions

ing term is effective after the epoch Td . Td and Tf can be automati-
cally determined using appropriate stopping criteria or are specified
by the user.

4 IMPLEMENTATION

As shown in Fig. 3, we first obtain an initial surface by deforming
the bounding surface following an approximate normal flow. This
step is necessary because a good initial surface reduces the com-
putational cost of solving the PDE. We then deform the approxi-
mate offset surface (Fig. 3(c)) to obtain the final surface by solving
Eq. 15. A fast and stable numerical solver is critical to the suc-
cess of this step. The final surface can be extracted as a polygonal
model using the Marching Cubes method [11] and then rendered
with standard graphics software.
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4.1 Finding the Initial Surface

First, we compute the distance function to construct the level set
function in which the initial surface is embedded. The distance
function d(x) to an input point data set S is computed by solving
the following Eikonal equation

|∇d(x)| = 1, d(x) = 0, x ∈ S. (16)

We use the algorithm in [23] that combines upwind differencing
with alternating direction Gauss Seidel iterations to solve the dif-
ferential equation in Eq. 16.

The approximate offset surface is then used as an initial surface.
To find such an offset surface, we use the simple tagging method de-
scribed in [23]. We start from a surface that includes the true surface
such as a bounding box(see Fig. 6(a)). Every grid cell is initially
tagged as inside(i), boundary(b), or outside(o). Then, we deform
the initial tagged boundary to the final offset surface. The deforma-
tion process is terminated when the maximum distance value of the
tagged boundary is less than a specified offset distance. Fig. 6(b)
shows a snapshot of the computational grid employed in the tag-
ging process. After completing the tagging process, we can obtain
the signed distance function by applying the distance computation
algorithm to the tagged boundary.

(a)

o o o o o o o o o o o
o b b b b b b b b b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b b b b b b b b b o
o o o o o o o o o o o

o o o o o o o o o o o
o o o b b b b b o o o
o o b b i i i b b o o
o b b i i i i i b b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b i i i i i i i b o
o b b b b b b b b b o
o o o o o o o o o o o

(b)

Figure 6: Tagging method: The solid line rectangle is an initial
bounding box and the dotted line triangle is the true surface. A
green cell is the one that has the maximum distance value. (a)
initial status (b) updated status after a few iterations

4.2 Solving the Level Set PDE

We continuously deform the initial signed distance function, φ , by
solving the level set PDE given by Eq. 9. If we solve the PDE for
all computational grid nodes, the computational cost is O(N3) at
each time step for a grid of size N×N×N. The computational cost
reduces to O(N2) using the fast local level set method [15]. Instead
of computing for every grid cell, the computation is performed only
in a narrow tube around the zero level set (see Fig. 7 ). Since it is
difficult to maintain the solution of Eq. 15 as a smooth signed dis-
tance function in the neighborhood of the front Γ(t), a redistancing
algorithm in [15] is employed.

First-order or higher-order ENO (Essentially Non-Oscillatory)
type upwind schemes are used for spatial discretization of the ad-
vection term in Eq. 15. A central-difference approximation is em-
ployed for the SDGD edge filter term and the curvature term. Note
that no boundary conditions are needed since they are enforced nu-
merically by the upwind scheme. The first-order forward Euler
scheme or higher-order TVD (Total Variation Diminishing) Runge-
Kutta scheme is used for the temporal discretization. More details
for the discretization scheme can be found in [14, 15, 22].

Γ

computational grid

(interface)

τ (tube)

Figure 7: Local level set method: Computation is only performed on
the narrow tube τ around the zero level set Γ

Since we concatenate two different level set PDEs, special at-
tention is needed for the stability condition. We automatically de-
termine the time step needed to ensure the stability condition for
each level set PDE. The Courant-Friedreichs-Lewy condition (CFL
condition) must be satisfied for the distance flow because it is a
hyperbolic PDE. The CFL condition asserts that numerical waves
should propagate no faster than physical waves. The parabolic sta-
bility condition is used for the TVP flow (Eq. 14) since the equation
includes the second-order diffusion term (curvature term). Hence,
the time step is determined by the following relations for the uni-
form grid

distance flow (Eq. 10): ∆t = α1
h

max
p∈τ

(vp)

TVP flow (Eq. 14): ∆t = α2h2

where α1,α2 ∈ (0,1), τ: the narrow tube around the frontal surface,
vp: the speed at the grid point p, h: grid spacing. Optimal α1 and
α2 values vary depending on the properties of the data set. We use
the following stopping criteria for the distance flow. We define the
error measure ei as the average of the distance between the zero
level set for the iteration i and the data set. The simulation stops
either if ei < tol or if ei > ei−1. In other words, the distance flow is
terminated if either the surface is close enough to the data points or
if the error begins to increase. The TVP flow executes for a given
number of iterations without any stopping criteria until the desired
enhancement is achieved.

5 RESULTS

The implementation of our level set solver exploits many of the
utility classes available in the VISPACK library [21]. The zero level
set, i.e., the desired implicit surface, is extracted using the Marching
Cubes method as implemented in VTK [17]. The result is available
as a polygon model format such as OBJ. Final images are rendered
by MAYA [1]. The computations were conducted on a SGI Octane
workstation with a MIPS R12000 processor and 500 MB of mem-
ory. We use the first-order solver to obtain the presented results.
Results obtained using the second-order solver are visually similar
to the first-order results and are not included here.

The reconstructions for the iced wing segment for a spectrum of
roughness parameters are shown in Fig. 8. The computational grid
is 198×184×176. It takes approximately 28 seconds for each TVP
iteration. Fig. 8(a) shows the original point set. Fig. 8(b) shows the
initial surface obtained using the tagging method. Fig. 8(c) shows
the result of applying the distance flow to the initial surface after 14
iterations. The remaining images demonstrate the effects of γ on

255



the roughness or smoothness of the final reconstructed interface. It
is apparent that as value of γ becomes smaller, the resulting surface
becomes smoother. The surface in Fig. 8(i) appears very smooth
because pure curvature flow is used. In contrast, the result with only
the TVP term shows a very rough surface in Fig. 8(d). Fig. 8(g) with
γ = 0.5 shows a well-balanced result when compared to the other
reconstructions.

Fig. 9 shows a rough surface generated by a three-dimensional
DLA simulation. A 111× 101× 102 computational grid is used.
The computing time for each time step is approximately 4 sec.
Fig. 9(b), 9(c) and 9(d) are the results for γ = 1.0,0.3 and 0.0,
respectively. Again, Fig. 9(b) shows more rugged surface than
Fig. 9(d). Note that the roughness filtering sharpens the ridges of
the initial surface as well as keeping the global shape.

6 CONCLUSIONS AND FUTURE WORK

We presented a new level-set based interface reconstruction tech-
nique for aggregate point clouds. We introduced a total varia-
tion preserving term as a roughness-preserving term in the level
set formulation. Through a linear combination of the roughness-
preserving term and the smoothing term, our method allows users
to control the level of roughness of the final surface. Furthermore,
we provide a single level set formulation that integrates an attrac-
tion term based on distance flow and the TVP/curvature flow. This
integration allows for the creation of an intermediate surface from
the application of a distance flow technique which is then provided
for further enhancement by our TVP term. Noise (if any) is reduced
through the inclusion of the curvature flow smoothing or regulariz-
ing term. We applied our technique to two representative data sets
- a DLA simulation and a scanned wing with ice accretion.

Much future work remains. One imminent problem is that the
TVP flow does not have a fitting term that keeps the surface close
to the data points. The fitting term could be derived through a vari-
ational formulation based on a good roughness measure. Addition-
ally, a rigorous analysis of our level set formulation is needed. In
this paper, we employ the SDGD edge filter as a second-order el-
liptic operator in the term for the shock filter. It would be inter-
esting to explore the effect of other edge operators such as a LoG
(Laplacian-of-Gaussian) filter. In addition, feature-based values of
the parameter γ may be employed to determine a better blend of
the roughness preserving and smoothing terms. Finally, constraint
based interface reconstruction is needed to efficiently handle open
surfaces like the iced wings.
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Figure 8: Reconstruction of the iced wing part: (a) point set, (b) initial surface, (c) distance flow with 14 iterations, (d) γ = 1 with 5 iterations,
(e) γ = 0.9, (f) γ = 0.7, (g) γ = 0.5, (h) γ = 0.3, (i) γ = 0.1
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(a) (b)

(c) (d)

Figure 9: Reconstruction of 3D DLA point aggregation: (a) point set, (b) γ = 1 with 5 iterations, (c) γ = 0.3, (d) γ = 0
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