
Adaptive 4-8 Texture Hierarchies
Lok M. Hwa∗

University of California, Davis
Mark A. Duchaineau†

Lawrence Livermore National Laboratory
Kenneth I. Joy‡

University of California, Davis

Figure 1: Two screen shots of an overflight of Fort Hunter Liggett, CA that illustrate the use of 4-8 texture hierarchies. On the left is the seamless
textured image produced by the system, while the right shows the outline of the texture tiles used in producing the image.

ABSTRACT

We address the texture level-of-detail problem for extremely large
surfaces such as terrain during realtime, view-dependent rendering.
A novel texture hierarchy is introduced based on 4-8 refinement of
raster tiles, in which the texture grids in effect rotate 45 degrees for
each level of refinement. This hierarchy provides twice as many
levels of detail as conventional quadtree-style refinement schemes
such as mipmaps, and thus provides per-pixel view-dependent fil-
tering that is twice as close to the ideal cutoff frequency for an
average pixel. Because of this more gradual change in low-pass
filtering, and due to the more precise emulation of the ideal cutoff
frequency, we find in practice that the transitions between texture
levels of detail are not perceptible. This allows rendering systems
to avoid the complexity and performance costs of per-pixel blend-
ing between texture levels of detail.

The 4-8 texturing scheme is integrated into a variant of the Real-
time Optimally Adapting Meshes (ROAM) algorithm for view-
dependent multiresolution mesh generation. Improvements to
ROAM included here are: the diamond data structure as a stream-
lined replacement for the triangle bintree elements, the use of low-
pass-filtered geometry patches in place of individual triangles, inte-
gration of 4-8 textures, and a simple out-of-core data access mech-
anism for texture and geometry tiles.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric Al-
gorithms, Object Hierarchies; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality

Keywords: Large Data Set Visualization, Level-of-Detail Tech-
niques, View-Dependent Visualization, Adaptive Textures, Out-of-
Core Algorithms

∗e-mail: lmhwa@ucdavis.edu
†e-mail: duchaineau1@llnl.gov
‡e-mail: kijoy@ucdavis.edu

1 INTRODUCTION

Graphics hardware has become orders of magnitude faster and
cheaper in recent years, yet there remains a strong need to ren-
der textured geometry from databases containing far more detail
than can be displayed in realtime. A classic motivating example
is terrain visualization, in which photo-imagery and elevation data
are available on planetary scales, resolving to ten meters or bet-
ter on average, with meter or sub-meter data available in some re-
gions (such as the one-meter database of Fort Hunter Liggett, CA,
shown in Figure 1). With new data collection instruments and data
handling capabilities, this wealth of information is likely to grow
rapidly. The NASA MOLA data, for example, covers Mars at a
resolution of 128 elevation bins per degree, totaling around one bil-
lion elevations [1]. Publicly available data from the USGS covers
the state of Washington at 10 meter horizontal and 10cm vertical
spacing, totaling 1.4 billion elevation values [19]. Dynamic, view-
dependent adaptations of geometric meshes and texture tile hierar-
chies are required to provide fast and accurate renderings of these
large-scale terrain databases.

Since hardware rendering rates have grown to exceed 200 mil-
lion triangles per second, this means that choosing triangle adap-
tations for uniform screen size will result in roughly one-pixel tri-
angles for full-screen display at 100 frames-per-second rendering
rates. At this point it is no longer desirable to make triangles non-
uniform in screen space due to variations in surface roughness,
since this will only lead to sub-pixel triangles and artifacts. This
situation for geometry is now in a similar regime to that of texture
level-of-detail adaptation, which seeks to make each texel project
to roughly one pixel in screen space. Overall then our goal is to
low-pass filter the geometry and textures so that triangles and tex-
els project to about a pixel.

While many geometric hierarchies have been devised for large-
data view-dependent adaptation, the above analysis suggests that
uniform aspect-ratio triangles are more desirable for attaining bet-
ter control of geometric antialiasing. Also, better low-pass filtering
methods are known for regular grids. Texture hierarchies are more
constrained than geometry, since graphics hardware works most ef-
fectively with raster tiles of modest, power-of-two sizes. For effi-
ciency of texture loading and packing, we avoid consideration of
texture atlas schemes in which a power-of-two tile is filled with ir-

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

219

vis
Note
Please see conference DVD for supplementary material.

regular sub-regions that are used independently. This leads us to use
regular grids for efficiency and uniformity of treatment. In theory,
there are only two regular tilings of the plane that allow confor-
mant adaptive meshes to be formed without special fix-ups at level
of detail transitions: the 4-8 meshes and the 4-6-12 meshes [7, 8].
We chose the 4-8 meshes, shown in Figure 2, since these match
the constraints of texture hardware and have many known desirable
properties [12, 6, 13].

(a) (b)

d

(c)
Figure 2: A 4-8 mesh illustrating different levels of resolution. Part
(a) shows a course, uniform refinement, which is effectively a grid of
squares (blue) with distinguished diagonals (green). Part (b) is one
level finer everywhere. Note the blue squares are rotated 45◦ and
scaled by

√

1/2. Part (c) shows the selective refinement of (b) to
add the diamond (yellow) with center d.

While several data structures have been devised to support 4-8
refinement, we found that additional streamlining and unification
was possible. This paper introduces a diamond data structure, in
which each diamond element simultaneously has unique associa-
tions with a vertex (its center), an edge (its distinguished diagonal),
and a quadrilateral face of a 4-8 refinement mesh. A diamond rep-
resents the pairing of two right isosceles triangles at the same level
of detail in the 4-8 mesh that share a base edge. Since basic op-
erations on the 4-8 mesh must treat these diamonds as a unit, it is
logical and efficient to use the diamond as the backbone data struc-
ture rather than bintree triangles. Section 3 provides details on the
diamond structure and its use in 4-8 incremental mesh adaptation.

Both geometry and textures are treated as small regular grids,
called tiles, defined for each diamond in the hierarchy. Tiles at a
level of resolution matching the input data are either copied or re-
sampled. Coarser tiles are computed using low-pass filtering in an
out-of-core traversal. Finer tiles can be obtained using 4-8 sub-
division [23] with the optional addition of procedural detail. For
efficient input and output, files and disk blocks are laid out using
a diamond indexing scheme based on the Sierpinski space-filling
curve. Tiles are described in Section 4. Sierpinski indexing, and
out-of-core preprocessing are described in Section 5.

For geometric rendering, patches of 256 or 1024 triangles are
stored as indexed vertex arrays in Sierpinski order for highly effi-
cient rendering on graphics hardware. Using uniform refinement,
any power of four increase in triangle count will result in confor-
mant meshes [18, 11]. We are able to achieve triangle throughput
close to the practical limits on recent PC video cards. Section 6
outlines how patches are laid out and updated.

The adaptive 4-8 textures, defined in detail in Section 7, fill each
diamond area with a regular-grid image raster, rendered using bi-
linear interpolation. Neighboring tiles share boundary samples on
their mutual edges, and the 4-8 mesh refinement naturally defines
a parent-child grid-structure relationship suitable for various filter-
ing operations. We allow each ROAM leaf triangle patch to inde-
pendently choose which texture level-of-detail to map to, based on
its estimated pixel area for the current view transform. A mapping
from the triangle patches’ parameterization to the texture diamond’s
parameter space is computed as needed when this level-of-detail se-
lection changes. This change requires an update of the vertex array
texture coordinate data stored in special graphics hardware memory
(e.g. AGP memory), which is an expensive operation that can re-
quire synchronization with previously launched asynchronous ren-
dering activity. Therefore the triangle-patch texture level-of-detail

updates are budgeted per frame based on similar dual-queue opera-
tions used by the ROAM algorithm.

Overall this approach to forming tile hierarchies and accessing
them during frame-to-frame incremental updates results in a visu-
ally seamless, high quality display of arbitrarily large terrain and
imagery databases. Some implementation details and numerical re-
sults are presented in Section 8, but the ultimate proof is to see the
system in action on a huge data set. The visual appearance is in
our experience consistently very high. Indeed, we were pleasantly
surprised that no per-pixel blending of texture level-of-detail seems
to be needed; we believe this is due to the gradual factor-of-two
changes in information content between levels.

2 RELATED WORK

A great variety of geometric level-of-detail algorithms have been
devised for realtime rendering of massive terrains and other data
sets. An overview of many historical methods can be found in [16].
The most common means of organizing geometry are Triangulated
Irregular Networks (TINs) [20, 9], and Hierarchies of Right Tri-
angles (HRTs) [15, 7]. Generally the HRT methods can be im-
plemented to have greater performance and lower memory use per
triangle, but require a modest increase in triangle budget to achieve
the same accuracy [7]. For the reasons outlined earlier, we focus on
regular-grid representations and HRT view-dependent adaptations,
and review the relevant papers here.

First it is important to note that HRTs are equivalent to adap-
tive 4-8 meshes. An early paper using HRTs for view-dependent
dynamic meshing was Lindstrom et al. [12]. They utilize an el-
egant block-adaptive refinement using frame-to-frame coherence,
followed by a fine-grained bottom-up vertex-reduction method to
reduce the size of the mesh for display purposes. Duchaineau et
al. [6] introduce a dual-queue algorithm (ROAM) to incremen-
tally split and merge HRT elements while maximizing the use of
frame-to-frame coherence for frustum culling, priority computa-
tions, mesh updates and triangle stripping. Lindstrom and Pas-
cucci [13] simplify the overall HRT processing to a minimal tri-
angle bintree recursion per frame that requires no special effort to
maintain crack-free meshes, produces a single generalized trian-
gle strip as output, and uses a novel vertex indexing scheme to
automatically make out-of-core access efficient using an existing
operating-system virtual memory system. They extend this [14] to
allow smoother view-dependent meshes through interpolation, and
test additional space-fill indexing strategies. Gerstner uses Sierpin-
ski indexing for triangles, and identifies the resulting duplicate in-
dices using a simple state machine. The method is intended for use
during recursive traversal of the triangle bintrees, and requires ex-
plicit links in the vertex database to avoid gaps in the disk or mem-
ory layout. Pajarola [17] utilizes a restricted quadtree triangulation,
similar to an adaptive 4-8 mesh, for terrain visualization. Pomeranz
[18] demonstrates how the ROAM algorithm can be extended to uti-
lize pre-computed HRT patches in place of individual triangles to
better exploit modern graphics hardware while maintaining crack-
free triangulations. Levenberg [11] extends this further by allowing
HRT patches to be computed dynamically during interaction.

Large texture processing has been attempted by several re-
searchers. Williams [24] introduces the mipmap method of pre-
filtering texture levels of detail, which are images of increasingly
reduced resolution arranged as a pyramid. Starting with the finest
level, each coarser level represents the image using one quarter the
number of texels (half the number of texels in each dimension).
Per-pixel rendering with a mipmap is accomplished by projecting
the pixels into mipmap space using texture coordinates and camera
transformations. Typically a rendered pixel is colored using a vari-
ant of trilinear interpolation of eight texels taken from two adjacent
levels of the mipmap hierarchy.

220

Tanner et al. [21] introduce clipmaps, an extension of mipmaps,
that also utilizes a factor-of-four texture pyramid, but allows arbi-
trarily large out-of-core textures to be paged into the in-memory
pyramid. This algorithm utilizes the fact that a complete mipmap
pyramid is rarely used during the rendering of a single image (par-
ticularly in terrain rendering), and much of the pyramid can be
clipped away, allowing much larger textures to be used.

Ulrich [22] combines a quadtree of mipmap and geometry tiles,
called chunks, to handle out-of-core view-dependent meshing and
texturing of huge terrains. The texture and geometry chunks are
produced in a preprocessing step and are static during runtime in-
teraction. Geometry chunks are based on adaptive 4-8 refinement,
with special “flanges” to hide the tiny cracks that occur at chunk
boundaries. Each chunk is stored in special graphics memory and
can be rendered with a single draw call. The chunks are refined
based on the viewpoint to meet the desired visual fidelity, and are
paged from disk. Similarly, mipmap tiles are loaded and accessed
from the geometry chunks based on calculations of maximum pixel
size in the mipmap. This determines the finest level of detail that
will be used in a mipmap, and by refining the mipmap tiles accord-
ingly, the mipmap per-pixel blending will automatically generate
seamless texture imagery across tile boundaries.

Further research by Döllner et al. integrates clipmap-like be-
havior with terrain rendering by using memory-mapped texture
files [5]. Their method utilizes a multiresolution texture system
that works in conjunction with a multiresolution model for the ter-
rain geometry. They build a tree of texture patches that is closely
associated with the hierarchical model of the terrain geometry. The
rendering algorithm simultaneously traverses the multiresolution
model for terrain geometry and texture trees, selecting geometry
patches and texture patches according to a user-defined visual er-
ror threshold. However, their method utilizes in-core quadtrees for
texture storage, resulting in a power-of-four texture hierarchy.

Cignoni et al. [2, 3, 4] have demonstrated the ability to dis-
play both adaptive geometry and texture of large terrain data sets
in real-time. They utilize a quadtree texture hierarchy and a bintree
of triangle patches (TINs) for the geometry. The triangle patches
are constructed off-line with high-quality simplification and trian-
gle stripping algorithms, and are selectively refined from scratch
each frame. Textures are managed as square tiles, organized as a
quadtree. The rendering system traverses the texture quadtree until
acceptable error conditions are met, and then traverses the corre-
sponding patches in the geometry bintree system until a space error
tolerance is reached.

In contrast to this previous work, we seek to maximally exploit
frame-to-frame coherence with view-dependent refinement, simi-
lar to the ROAM algorithm, but with chunked/patch geometry and
texture tiles paging in from disk. High-quality low-pass filtering
is applied to geometry tiles in addition to textures so as to mini-
mize geometric aliasing artifacts and to reduce average geometric
error. A new Sierpinski disk layout improves coherence of tile ac-
cess and caching, while the 4-8 textures minimize visible seams at
patch boundaries. Like ROAM, our algorithm can maintain near-
constant frame rates by optimizing to a triangle budget in addition
to selecting a desired screen error tolerance.

3 THE DIAMOND DATA STRUCTURE

Underlying all the work in this paper is the notion of a diamond,
which is uniquely associated with one vertex, one edge, and one
quadrilateral face in a 4-8 mesh hierarchy. Figure 3 depicts a di-
amond d with a standard orientation and labeling of its ancestors
a0...3 and children c0...3. By a parent of diamond d we mean a
diamond one level coarser in the 4-8 mesh whose area overlaps d.
Similarly, a child of d is one level finer and overlaps d.

d

a0

a1

a2

a3

ancestors of d

d

c0

c1c2

c3

children of d

Figure 3: A diamond d (yellow) is shown with respect to its ancestors
(left) and its children (right). By numbering each of these counter-
clockwise around d, and by placing the quadtree ancestor (green)
as a0, and the first child c0 just after this, navigation through the 4-8
mesh becomes straightforward. Note that the two parent diamonds
(blue outline) are the right parent, a1, and the left parent, a3. The
children of d are c0...3, outlined in red.

After experimenting with a number of implementations of 4-8
mesh data structures that support selective refinement, including
pointer-free “pure index” schemes, we found after performance
profiling that the fastest choice is simply to keep pointers to the
children and ancestors, and allocate diamond records in arrays of
several thousand at a time to avoid per-record heap allocation over-
head. Navigation to a diamond’s parent, quadtree and older corner
ancestors, as well as children, is then a matter of following single
links, which will be denoted d → ai and d → ci respectively for
i = 0 . . . 3. Traversing to neighbors at the same level of resolution
turns out to be simple as well.

To get to diamond d’s neighbor d0 across the child d → c0 edge,
Figure 4 shows that both d and d0 are children of d’s right parent
d → a1. Indeed, d0 is the child of d → a1 just counterclockwise of
d. Since moving to neighbors is a frequent operation, it can improve
performance to store d’s index as a child with respect to both parent
a1 and a3; these indices will be referred to as d → i1 and d → i3,
respectively. This means that the assertion d = d → a1 → cd→i1

should always hold for the right parent, and similarly using a3 and
i3 for the left parent. The pseudocode for moving to the c0 neighbor
of d is then simply

i ⇐ (d → i1 + 1) mod 4
d0 ⇐ d → a1 → ci

Child edges d → c1...3 are treated similarly.

Now that neighbor-finding is established, the process of adding a
child diamond, say c = d → c0, is a matter of finding the neighbor
d0 as above, which is the other parent of c. If d0 is missing, then
it should be recursively added to its parent d → a1 at the expected
child index. To hook up c properly, first note that its quadtree an-
cestor c → a0 is d → a1, the mutual parent of c’s two parents d and
d0. This determines the exact orientation of c (just rotate Figure 4
135◦ clockwise), and thus indicates how all of its ancestors should
be filled in, as well as its parent’s back pointers:

c → a0 ⇐ d → a1

c → a1 ⇐ d
c → a2 ⇐ d → a0

c → a3 ⇐ d0

d → c0 ⇐ c
c → i1 ⇐ 0

d0 → c3 ⇐ c
c → i3 ⇐ 3

The last two assignments follow from the observation that d and d0

both have d → a0 as their quadtree ancestor. As before, similar
procedures exist for creating children c1...3 of diamond d.

221

d

d0

d → c0

d → a1

d → a0

i1

(i1 + 1) mod 4

Figure 4: The neighbor of diamond d across its child c0 edge, d0, is
obtained by walking up from d to its right parent d → a1, and then d0

is this parent’s child counterclockwise one step from d. To make this
computation fast, d’s child index within a1 is kept in d’s record, and
the counterclockwise child index is this index plus one, taken mod 4.

To delete a childless diamond d, the pointers to d from its parents
must be cleared:

d → a1 → cd→i1 ⇐ null
d → a3 → cd→i3 ⇐ null

Any adaptive 4-8 mesh may be constructed by sequences of child
additions and childless-diamond deletions. Convenience opera-
tions, such as deleting a diamond with children, may be imple-
mented easily using these basic operations.

The final idea required to begin using diamond meshes is the
method to hook up the initial base (i.e. coarsest-level) mesh. Given
any manifold polygonal mesh, a diamond base mesh may be con-
structed by creating a diamond per vertex, face and edge. Vertex
diamonds exist only to supply their centerpoint coordinate—no use
is made of their child or ancestor links. Face diamonds link to their
children, which are the edge diamonds. Conversely, the edge di-
amonds link to their parents, the face diamonds, as well as their
other ancestors, which are vertex diamonds. For polygonal meshes
with non-quadrilateral faces, the number of children of face dia-
monds will not be four, and neighbor-finding will require arithmetic
modulo the number of edges in the face. Indeed, the neighbor of
d (e.g. d0) in the child-addition procedure may need to examine
which of its parents is in common with d in order to select its ap-
propriate child index. In contrast, for the non-base-mesh case of
Figure 4, and for cubical base meshes laid out carefully, d0 always
uses child index 3. For this reason, we choose a cubical base mesh
for planetary geometry, which has all quadrilateral faces.

The proper layout for a base cube divides the edge diamonds into
four sets of three, as shown in Figure 5, with each 3-set sharing a
common vertex diamond as their “quadtree” ancestor.

Figure 5: For planetary base meshes, a cube is used, with diamonds
for each vertex, face and edge. The edge diamonds should be ori-
ented as shown, so that their a0 (quadtree) ancestors are one of the
four red vertex diamonds, and the face diamonds are their parents.
Three edge diamonds sharing the centermost vertex diamond are
highlighted in blue.

4 GEOMETRY AND TEXTURE TILES

Given the basic diamond structures just outlined, it is possible to
create selectively-refinable objects by associating spatial coordi-
nates and colors to the vertex of each diamond. However, this kind
of fine-grained treatment of geometry and color is very inefficient
for paging from disk and for rendering on newer graphics hardware.
To overcome this, small regular grids of points and colors, called
tiles, will be associated with each diamond. The central ideas re-
quired to work with tiles are to:

1. set up a parametric coordinate system within a diamond, and
determine the mapping from child to parent diamond param-
eters,

2. perform low-pass filtering to create high-quality coarsened
tiles, and

3. create additional detail through 4-8 subdivision and optional
procedural displacements.

For each diamond, define its local coordinate system (u, v) ∈
[0, 1]2 to have its origin at the quadtree ancestor vertex d → a0, the
u axis moving from the origin to the right parent d → a1, and the v
axis moving from the origin to the left parent d → a3. A diamond
d overlaps one half of each of its children, in the shape of a right
isosceles triangle. The relationship between d’s (u, v) coordinates
and those in each child is depicted in Figure 6.

d

c0

c1c2

c3

Figure 6: The mapping of diamond (u, v) parameters between a di-
amond d and its children is depicted using arrows to indicate the
u axes. These coordinate systems are standardized to be right-
handed, with the origin at the quadtree ancestor vertex. Each
diamond’s parametric coordinates are in the unit square, that is,
(u, v) ∈ [0, 1]2.

To move information from finer to coarser tiles for low-pass fil-
tering, the tile for d must collect information from half of each
child. An affine mapping from child ci’s parameters (ui, vi) to d’s
parameters (u, v) would then be

(u, v) = (uc, vc) + ui(ua, va) + vi(−va, ua)

where the origin (uc, vc) and ui direction vector (ua, va) are given
in Table 1. These child-to-parent mappings may be composed to-
gether to map to coarser ancestors, a process which will be used to
obtain texture coordinates in section 7.

child (uc, vc) (ua, va)

c0 (1, 0) (− 1
2
, 1

2
)

c1 (1, 0) (1
2
, 1

2
)

c2 (0, 1) (1
2
,− 1

2
)

c3 (0, 1) (− 1
2
,− 1

2
)

Table 1: Origin and ui axis for child-to-parent mappings.

222

Low-pass filtering for diamond d can now be defined as col-
lecting tile array entries from the appropriate half of each of the
four children, and placing these into two arrays arranged accord-
ing to the local coordinate system of d. As shown in Figure 7, one
set of values will be the cell-centered entries (hollow dots), while
the other values are vertex centered (solid dots). The new vertex-
centered values will be stored in d’s tile, and are computed using
weighted averages of the old cell- and vertex-centered values ob-
tained from the children. Note that for the weighting mask chosen,
there are four cell-centered values (each marked with an X) that
are needed, but are outside those available from the four children.
While it is possible to query four additional tiles to obtain these val-
ues, only a single value from each tile would be used, and has only a
tiny impact on quality. Therefore we choose instead to use a slightly
altered weight mask for the four corners of d. For geometry tiles to
avoid cracks on patch boundaries, section 6 discusses which parent
values must be subsamples (simple copies) of the vertex-centered
values from the children.

interior weights

4
8

1
8

1
8

1
8

1
8

corner weights

5
8

1
8

1
8

1
8

Figure 7: Low-pass filtering is performed by collecting both cell-
centered values (hollow dots) and vertex-centered values (solid dots)
from the four children of a diamond. One child is highlighted, and the
weight masks for the interior and corner cases are given.

Performing 4-8 mesh refinement with tiles is very similar to low-
pass filtering, only performed in reverse. The main difference is that
a new diamond child tile must collect values from its two parents,
and for subdivision schemes smoother than linear or bilinear inter-
polation, ghost values are needed.

5 DIAMOND SIERPINSKI INDICES AND PAGING

When accessing a large terrain database from disk during interac-
tion, performance is highly sensitive to the spatial coherence of the
data layout, and is improved by the use of hierarchical space-filling
curves [14]. With the kind of tile-based, explicit paging scheme that
we are pursuing, we need a fast and local means of mapping dia-
monds to indices that provides such a good layout, and works well
with incremental selective refinement (i.e. diamond child additions
and deletions driven by dual priority queues). The most natural and
coherent of the space-filling curves to apply to 4-8 meshes is the
Sierpinski curve, depicted in Figure 8. Recall from Knuth [10] that
any complete binary tree may be assigned unique indices by setting
the root node to 1, and then for every node with index k, recursively
set it’s child indices to be 2k and 2k + 1 respectively. Performing
this for the triangle bintree gives the indices shown (note that left
branches are taken first on even levels, and right branches first on
odd levels).

A challenge with these Sierpinski indices is that they are associ-
ated with the triangles of a 4-8 mesh, not the diamonds (or equiv-
alently, the vertices). The most obvious choice, associating the in-
dex with the triangle’s split point, creates two indices per diamond.
Associating with any of the three corners results in even worse du-
plication. It turns out that associating the triangle’s index with one

1

2 3

4
5 6

7
8 9

10

11 12

13

14 15

Figure 8: Sierpinski indices for bintree triangles are computed recur-
sively from their parent index. While the layout is highly coherent, the
indices are mapped to triangles, not diamonds.

of the midpoints of the shorter edges, say the left side, provides
the one-to-one and onto mapping that is needed. Figure 9 provides
a visual proof that all diamonds at a given level of resolution are
covered exactly once by the left edges of bintree triangles one level
coarser in the 4-8 mesh.

Figure 9: The 4-edge neighborhood shown is covered exactly once
by the diamonds associated with the left edges of the bintree tri-
angles. This pattern repeats to cover the plane. The triangles are
shown in outline, the diamond areas in alternating shades, and the
diamond centers by marking the inside of their respective bintree tri-
angle left edge.

To compute the Sierpinski index of a diamond d efficiently dur-
ing selective refinement, the diamond must be mapped to its Sier-
pinski triangle, namely the bintree triangle whose left edge has the
diamond vertex at its center. From this Sierpinski triangle, its par-
ent Sierpinski triangle is determined, and then the diamond of its
left edge is the “Sierpinski parent” dS of d. There are two cases, as
shown in Figure 10, depending on whether the distinguished diag-
onal of d’s quadtree parent d → a0 is horizontal or vertical:

quadtree vertical split

d
d → a3

d → a0

dS

(i + 1)
mod 4

i

horizontal split

d
d → a3

d → a0

Figure 10: The Sierpinski parent dS of a diamond d is determined
based on two cases, depending on the orientation of d’s quadtree
ancestor’s distinguished edge. On the left, this edge is vertical, and
the counterclockwise neighbor of d’s left parent is the Sierpinski par-
ent. On the right, the Sierpinski parent is simply d’s left parent.

The pseudocode to compute d’s Sierpinski index d → k is then:

223

d3 ⇐ d → a3

if d3 → a1 = d → a0, then
dS ⇐ d3 → a1 → c(d3→i1+1) mod 4 create as needed
d → k ⇐ 2dS → k + x

otherwise
dS ⇐ d3

d → k ⇐ 2dS → k + y

where for even levels of the 4-8 mesh, (x, y) = (1, 0), and for odd
levels (x, y) = (0, 1).

A diamond’s index is stored in 64-bits, where the upper bits rep-
resent the Sierpinski index followed by a one and a string of zeros
to the end. To map a Sierpinski index to input and output of files,
blocks and tiles, we consider a Sierpinski index to be left-shifted
so that the leading “1” bit is just removed in a 64-bit register, and
place that bit just to the right of the least significant bit of the index
in order to mark the end of the relevant bits:

i ⇐ (i � 1)|1

MSB = 1 � 63

while ((i&MSB) = 0) i ⇐ i � 1

i ⇐ i � 1

The bits are now of the following form:

b63b62b61...bN100...0

where N is the least significant bit of the Sierpinski index after the
left-shift procedure.

This bit string can now be treated like a generalized directory
path name, at first literally describing directory branches, then a
file name, followed by the block index and tile number within the
block. We explain using the case N = 37:

b63b62b61b60 } directory branch 1

b59b58b57b56 } directory branch 2

b55b54b53b52 } directory branch 3

b51b50b49b48 } file name

b47b46b45b44b43b42b41b40 } block number within file

b39b38b3710 } tile number within block

The “1” mark bit is allowed to be in any of the five tile bit positions.
A special root file is made in the top-level directory to catch all the
blocks and tiles that have insufficient bits to define a full 16-bit
file index. This leads to directories with up to 16 subdirectories
and 16 files each, where each file contains up to 256 read/write
blocks, each of which contains up to 32 tiles from 5 different levels
of detail. Branching factors, block sizes and so on can be tuned for
performance, but we found the arrangement given here to be very
effective on the systems we tested.

When a tile is requested, it is returned immediately if it is in main
memory. If it is in a compressed read/write block in memory, the
tile is decompressed and placed in the tile cache. If the block is
missing from the cache, it is read into the block cache from disk,
and the tile is extracted. If this process fails to find a tile, the tile
is manufactured using 4-8 subdivision and optional procedural dis-
placements. Since elevation and texture tiles are simple 2D rasters,
any number of known compression schemes can be applied.

For this system we use a least-recently-used strategy for tile and
block cache replacement decisions. Cache sizes should be deter-
mined by balancing various application and system memory needs,
since of course there is incremental gain for any increase in a par-
ticular cache as long as another cache is not decreased. For our
system, we found a total cache size of a hundred megabytes, di-
vided evenly between compressed-tile blocks and uncompressed
tiles, provides excellent performance.

6 GEOMETRY PATCHES AND FRAME-TO-FRAME UPDATES

When replacing individual leaf triangles with small patches of say
1024 triangles, a natural concern is that a loss of adaptivity will
result. However, modern graphics hardware can render thousands
of such patches at 50-100 frames per second, which is similar to
the performance for thousands of single triangles reported for view-
dependent HRT algorithms less than a decade ago.

From [18], we know that for any uniform refinement of a right
isosceles triangle that is a power of four, such as 256 or 1024, the
patches of an adaptive 4-8 mesh will be without cracks. For most
efficient rendering, these patches are laid out as vertex and indexed-
triangle arrays, where both the vertices and triangles are listed in
Sierpinski order, as shown in Figure 11 for the case of 256 triangles
per patch. Note that the 256-triangle patch has 16 triangle edges per
patch edge, thus ensuring crack-free selective refinement.

d d → a0 → a0 → a0

d → a0

d → a0 → a0

Figure 11: The Sierpinski layout of a triangle patch, with the mapping
of the patch to its elevation tile. If d is the diamond of the triangle
patch, then the child-to-parent mappings of section 4 can be com-
posed to locate the appropriate elevation values in the third quadtree
ancestor, d → a0 → a0 → a0.

For geometry, the triangular patches are best taken as only a
small fraction of a CPU-cache tile, since the optimal granularity
of these two objects is quite different. After testing a number of
sizes, we found a good tradeoff to be a tile with 129 or 257 vertices
(elevation samples) per side. For triangular patches, either 256 or
1024 triangles are used. Figure 11 shows a 256-triangle patch in re-
lation to a tile with 129×129 vertices. Note that for these sizes, the
tile diamond is the third quadtree ancestor of the patches’ diamond.

The low-pass filtering scheme from section 4 is used for eleva-
tion tiles, but with some vertices being subsampled to avoid creating
cracks during selective refinement. It is sufficient to subsample the
vertices on the edges of the patch diamonds, and allow their inte-
riors to be smoothed out through low-pass filtering. For example,
in Figure 11, the four sides of diamond d (in yellow) should be
subsampled.

Frustum culling for triangle patches is identical to the system
used in ROAM, but we simplify the method to use bounding spheres
rather than pie-wedge bounds, thus reducing by about six the per-
plane floating-point frustum in/out tests. In addition, since the core
data structure is now a diamond rather than a bintree triangle, it
is natural to pass frustum-cull in/out flags down from the quadtree
ancestor, which have a nesting relationship, rather than the parent,
which doesn’t. We can avoid getting overly-conservative culling by
indicating a triangular patch is out if either its diamond is out, or
the parent diamond on that patches’ side is out. As with ROAM,
entire subtrees of in/out labels will remain constant from frame to
frame if its root diamond stays either out or all in from the previous
to the current frames, and hence no subtree work is needed.

Similar to ROAM, dual-queues are used to prioritize respec-
tively diamond split and merge activity. Unlike the ROAM base
priority that is sensitive to surface roughness, we only use the esti-
mated screen size of the diamond as its split/merge priority, so as
to perform geometric antialiasing given the extremely high triangle
counts available.

224

7 4-8 TEXTURES FOR TRIANGLE PATCHES

Most multi-resolution texture algorithms use a prefiltered quad-tree
of textures, where tiles all have the same number of texels but where
quadtree children cover one fourth the area of their parent. Select-
ing adjacent tiles where the texels per unit area differ by a factor of
four can produce visual discontinuities. Our method creates twice
as many detail levels, allowing a smoother transition between levels
(only factors of two), while effectively using the diamond hierarchy
for level traversal.

The initial data set texture is diced into 1282 or 2562 size tiles,
which represent the texture at the finest level. Low-pass filtering is
performed as described in section 4. The filtering approach from
level-to-level preserves the average energy of the original signal to
minimize level-of-detail transition artifacts. Unlike geometry filter-
ing, which must subsample on the boundaries of patch diamonds,
texture tiles appear more visually seamless without any subsam-
pling (subsampling can alter the average energy near boundaries,
thus producing visual artifacts).

Each displayed triangle patch is evaluated to determine its op-
timal texture resolution. Since patches are drawn using a single
rendering call, no more than one texture tile can be associated with
a triangle patch. Hence the finest resolution texture that can be ac-
cessed will be at the same diamond level as a patches’ diamond.
For a 1282 texture tile and a 256-triangle patch, this means a maxi-
mum of 32 texels per triangle. Since graphics hardware will exhibit
differences in relative texel and triangle rendering performance, we
decouple the geometry and texture levels of detail. For high triangle
performance relative to texture performance or memory availability,
fewer than 32 texels per pixel may be desired. Ideally if texture per-
formance were not a bottleneck we would choose a texel-to-pixel
ratio near one, and determine the texture level of detail using this.
Using the child-to-parent parameter mapping from section 4, one
can iteratively walk to the diamond parent on the side containing
the triangle patch until the desired texture level is reached. The tex-
ture coordinates for the patch vertices can then be easily computed
using the resulting composite mapping.

Using the bounding sphere radius previously calculated for frus-
tum culling, we compute an upper bound on the possible screen area
covered by the triangle-patch diamond. The maximum screen space
coverage occurs when looking at a diamond oriented perpendicular
to the view direction. We use as the upper bound on pixel area 2R2,
where R is the projected radius of the diamond’s bounding sphere.
Using the number of texels in the texture diamond covered by the
triangle patch, the texel-to-pixel ratio α is computed. Frame-to-
frame, the patch-to-texture level-of-detail associations are adjusted
incrementally, similar to the split-merge dual-queues for geometry,
so as to keep α close to 1.0. Higher priority is given to refining
a patches’ texture association as α becomes greater than one, and
coarsening becomes more urgent as α becomes less than one. We
keep to a budget of 4 − 8 patch-to-texture updates per frame to
maintain high frame rates, since each update can be expensive.

If the desired texture is not cached in texture memory, we use
the next coarser texture level that is available. When finer textures
are loaded, we keep coarser textures so that the system can always
instantly coarsen as desired. The next finer texture diamond is then
added to a texture-wait queue with priorities defined by the α of
this next-finer texture. Because updates to texture memory are ex-
pensive, the wait queue allows a fixed number of textures to be
uploaded per frame, thus avoiding irregular load times. When a
texture is to be cached, it is fetched from the disk tiles using the
diamond’s 64-bit index, as described in section 5.

Each triangle now has a cached texture associated with it. If
the level-of-detail for a triangle has changed or the texture has just
been cached, we must compute the new texture coordinates for the
triangle patch, using the composite child-to-parent mappings.

8 RESULTS

Our performance results were measured using a 3Ghz Xeon pro-
cessor with 1GB of RAM and a GeForce FX 5900 Ultra. We ran
the tests at a resolution of 640× 480 utilizing the NVidia vertex ar-
ray range specification combined with chunked triangle patches to
exploit the graphics-card capabilities. These results are based on a
flight path through the 10-meter data of Washington state [19] with
around 1.4 billion elevation and texel values at the finest resolution.
The source elevation data totals 2.7 gigabytes on disk before pre-
processing. Textures were procedurally generated and colored from
the original geometry and stored in RGB-565 format.

The out-of-core preprocessing step for this particular data set
took approximately 53 minutes including the calculation of the
shaded texture map from the geometry. Without the shading step,
preprocessing texture and geometry data into tiles took 33 minutes.

In the rendering application, approximately 53% of the time for
a given frame is spent preparing the vertex array data. During this
time, vertex pointers are set up and triangle patches that need to
be updated either due to geometry updates or texture coordinate
updates are transferred to AGP memory to be pulled by the GPU.
Around 45% is spent managing vertex and texture coordinate cache
allocation and traversing the hierarchy to evaluate when triangle
patches or texture coordinate updates are necessary. The time taken
by the split/merge optimization loop is a user defined parameter,
but in this test less than two percent time was spent on this. Less
than one percent each was spent on fetching geometry and texture
from disk, priority updates, coordinate mapping calculations, trian-
gle patch building, frustrum culling, and new texture loading. In our
implementation, priority queues also allowed a user-defined num-
ber of fixed textures to be sent to graphics-card texture memory
per frame. Our results show that the main bottleneck lies in the
graphics-card upload bandwidth and the loop for determining ap-
propriate triangle patch updates to geometry and texture.

Performance statistics for our implementation are shown in Fig-
ure 12, taken during a flyover of Mount Rainier (shown in the ac-
companying video). In the lower-right graph, the rendering prepa-
ration line refers to the updating of AGP memory and set up of ver-
tex pointers. Traversal and allocation involves walking through the
diamond hierarchy and managing system memory. The geometry
optimization line represents the split/merge time taken per frame.
The remaining calculations, generally taking less than two percent
of the frame time, are labeled “other”. Snapshots from the flyover
are highlighted in Figure 13.

0 1000 2000 3000 4000 5000
Frame Number

0 K

100 K

200 K

300 K

400 K

500 K

T
ri

a
n

g
le

 C
o

u
n

t

0 1000 2000 3000 4000 5000

Frame Number

0

20

40

60

80

100

120

F
ra

m
e

s
 P

e
r

S
e

c
o

n
d

0 1000 2000 3000 4000 5000
Frame Number

0

10

20

30

40

50

M
il

li
o

n
s

o
f

T
ri

a
n

g
le

s
P

e
r

S
e

co
n

d

0 1000 2000 3000 4000 5000

Frame Number

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f

F
ra

m
e

 T
im

e

Rendering Preparation

Traversal and Allocators

Geometry Optimization

Other

Figure 12: Performance graphs measured for a test flight path over
the 10-meter WA state data: (top left) near-constant triangle counts
matching the triangle budget target, (top right) frames per second,
(bottom left) Mtri per second, and (bottom right) % breakdown of
system task times.

225

Figure 13: Screen shots of our test flight showing the overall Wash-
ington state data set, the San Juan islands, a view facing Victoria,
and Mount Rainier with Mount Adams behind.

9 CONCLUSION

We have presented a solution to the texture level-of-detail prob-
lem for real-time view-dependent rendering of extremely large ter-
rain meshes. We introduce a new texture hierarchy based upon a
4-8 mesh, which, when coupled with a similar adaptive geometry
scheme, provides a mechanism for real-time display of the terrain.
The 4-8 hierarchy provides twice as many levels of detail as con-
ventional quadtree-style refinement schemes such as mipmaps. Be-
cause of this more gradual change, we find in practice that the tran-
sitions between texture levels of detail are less perceptible. The 4-8
scheme is integrated into a variant of the ROAM algorithm, and to-
gether with a simple out-of-core data access mechanism based upon
Sierpinski curves allows out-of-core access for the display of very
large textured meshes.

Future work based on this terrain system can be expanded to
include dual queues at all levels of cache, for both geometry
and texture, replacing the reactive least-recently-used strategy with
prefetching and optimized priority modeling. Anisotropic filtering
could help with highly warped terrain data, such as near cliffs, and
with the horizon aliasing for near-planar regions. Further exper-
imentation with different types of texture maps, such as normal
maps for lighting calculations, may enhance the visual quality of
a scene and allow dynamic lighting. As memory bandwidth in-
creases, it may also be possible to play animated textures of certain
areas in a scene to demonstrate time varying properties like plant
life or erosion. The development of realtime, high quality procedu-
ral detail is also of interest.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48. This
work was supported by the National Science Foundation under con-
tracts ACR 9982251 and ACR 0222909, through the National Part-
nership for Advanced Computing Infrastructure (NPACI), and by
Lawrence Livermore National Laboratory under contract B523818.
We thank the members of the Visualization and Graphics Group
of the Institute for Data Analysis and Visualization (IDAV) at UC
Davis, and the visualization researchers within the Center for Ap-
plied Scientific Computing at LLNL.

REFERENCES

[1] National Aeronautical and Space Administration. MOLA data set,
http://pds-geosciences.wustl.edu/missions/mgs/megdr.html, 2003.

[2] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. BDAM: Batched dynamic adaptive meshes for high
performance terrain visualization. In Proc. EG2003, pages 505–514,
September 2003.

[3] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Fed-
erico Ponchio, and Roberto Scopigno. Interactive out-of-core visual-
ization of very large landscapes on commodity graphics platforms. In
ICVS 2003, pages 21–29. November 2003.

[4] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Fed-
erico Ponchio, and Roberto Scopigno. Planet–sized batched dynamic
adaptive meshes (P-BDAM). In Proc. IEEE Visualization, pages 147–
155, October 2003.

[5] Jürgen Döllner, Konstantin Baumann, and Klaus Hinrichs. Textur-
ing techniques for terrain visualization. In Proc. IEEE Visualization,
pages 227–234, 2000.

[6] Mark A. Duchaineau, Murray Wolinshy, David E. Sigeti, Mark C.
Miller, Charles Aldrich, and Mark B. Mineev-Weinstein. ROAMing
terrain: Real-time optimally adapting meshes. In Proc. IEEE Visual-
ization, pages 81–88, October 19–24 1997.

[7] William Evans, David Kirkpatrick, and Gregg Townsend. Right trian-
gular irregular networks. Technical Report TR97-09, The Department
of Computer Science, University of Arizona, May 1997.

[8] William Evans, David Kirkpatrick, and Gregg Townsend. Right-
triangulated irregular networks. Algorithmica, 30, 2001.

[9] Hugues Hoppe. Smooth view-dependent level-of-detail control and its
application to terrain rendering. In Proc. IEEE Visualization, 1998.

[10] D. E. Knuth. The Art of Computer Programming, Sorting and Search-
ing. 2nd edition, 1975.

[11] Joshua Levenberg. Fast view-dependent level-of-detail rendering us-
ing cached geometry. In Proc. IEEE Visualization, pages 259–266,
October 2002.

[12] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hughes,
Nick Faust, and Gregory Turner. Real-Time, continuous level of detail
rendering of height fields. In SIGGRAPH 96 Conference Proceedings,
pages 109–118, August 1996.

[13] Peter Lindstrom and Valerio Pascucci. Visualization of large terrains
made easy. In Proc. IEEE Visualization, pages 363–370, 2001.

[14] Peter Lindstrom and Valerio Pascucci. Terrain simplification simpli-
fied: A general framework for view-dependent out-of-core visualiza-
tion. IEEE Transactions on Visualization and Computer Graphics,
8(3):239–254, July/September 2002.

[15] Anthony Mirante and Nicholas Weingarten. The radial sweep algo-
rithm for constructing triangulated irregular networks. IEEE Com-
puter Graphics and Applications, 2(3):11–13, 15–21, May 1982.

[16] Tomas Möller and Eric Haines. Real-Time Rendering. A. K. Peters
Limited, 2nd edition, 1999.

[17] Renato Pajarola. Large scale terrain visualization using the restricted
quadtree triangulation. In Proc. IEEE Visualization ’98, pages 19–
26,515, 1998.

[18] Alex Pomeranz. ROAM using surface triangle clusters (RUSTiC).
M.S. thesis, Department of Computer Science, University of Califor-
nia, Davis, June 2000.

[19] United States Geological Service. State of Washington data set,
http://rocky.ess.washington.edu/data/raster/tenmeter/onebytwo10/index.html.

[20] Cláudio T. Silva, Joseph S. B. Mitchell, and Arie E. Kaufman. Au-
tomatic generation of triangular irregular networks using greedy cuts.
In Proc. IEEE Visualization, pages 201–208, 1995.

[21] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones.
The clipmap: A virtual mipmap. In SIGGRAPH 98 Conference Pro-
ceedings, pages 151–158, July 1998.

[22] Thatcher Ulrich. Rendering massive terrains using chunked level of
detail control, SIGGRAPH Course Notes, 2002.

[23] Luiz Velho. Using semi-regular 4-8 meshes for subdivision surfaces.
Journal of Graphics Tools, 5(3):35–47, 2000.

[24] Lance Williams. Pyramidal parametrics. SIGGRAPH ’83 Proceed-
ings, 17(3):1–11, July 1983.

226

