
Visualizing Competitive Behaviors in Multi-User Virtual Environments

Nate Hoobler∗

University of Virginia
Greg Humphreys†

University of Virginia
Maneesh Agrawala‡

Microsoft Research

Figure 1: In first-person games, observation modes are typically restricted to an over-the-shoulder chase camera (left) or a floating-
player view (center). Both views make it very difficult to understand complex team-oriented actions that have an inherent global
nature. We present a novel game observation system (right) that extracts high-level semantic information about the action taking
place in a game and displays it visually. By emphasizing important low-level details and overlaying them with high level action
summaries, we provide a unique and insightful new view of the environment and behaviors therein. Using our system, it can now
be seen that the red team is holding the bridge at the center of the map against a frontal assault by blue, but is also being flanked
from the North by a lone blue player.

ABSTRACT

We present a system for enhancing observation of user interactions
in virtual environments. In particular, we focus on analyzing behav-
ior patterns in the popular team-based first-person perspective game
Return to Castle Wolfenstein: Enemy Territory. This game belongs
to a genre characterized by two moderate-sized teams (usually 6 to
12 players each) competing over a set of objectives.

Our system allows spectators to visualize global features such as
large-scale behaviors and team strategies, as opposed to the lim-
ited, local view that traditional spectating modes provide. We also
add overlay visualizations of semantic information related to the ac-
tion that might be important to a spectator in order to reduce the in-
formation overload that plagues traditional overview visualizations.
These overlays can visualize information about abstract concepts
such as player distribution over time and areas of intense combat
activity, and also highlight important features like player paths, fire
coverage, etc. This added information allows spectators to identify
important game events more easily and reveals large-scale player
behaviors that might otherwise be overlooked.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques H.5.2 [Information Interfaces
and Presentation]: User Interfaces—Interaction Styles H.5.1 [Mod-
els and Principles]: User/Machine Systems—Human Factors

Keywords: Visualization, Games, Spectating

∗nsh3h@cs.virginia.edu
†humper@cs.virginia.edu
‡maneesh@research.microsoft.com

1 INTRODUCTION

Observing multi-player games has practical applications beyond
pure entertainment. The trend in today’s games is toward more ac-
curate simulations of reality. In particular, team-based multiplayer
games have evolved from free-for-all “deathmatch” combat to sub-
tle, goal-based, multi-agent combat simulations. Because of the co-
ordination and tactics usually required for such games, parallels can
easily be drawn to warfare training simulations, or to any other im-
mersive situation where multiple users must cooperate, such as dis-
aster response simulation. By improving the ability of an observer
to quickly understand the overall structure of the action, these sim-
ulations can be analyzed more completely, so that the performance
of individual players, teams, or strategies can easily be evaluated.

In this paper, we present Lithium, a system that enables high-
level analysis of competition taking place in multi-player games.
Games have steadily increased in complexity as computer and net-
work speeds allow more individuals to interact in environments of
ever-increasing realism. With each new generation, these games
accumulate more players who compete on teams in official events
for both recognition and prizes. Despite the growth of competitive
gaming as a bona fide sport, the act of observing these games has
changed very little since the genre first appeared. The core chal-
lenge for an observation system is one of managing information
density. Indeed, the design of an effective observation system for a
video game is very much an information visualization problem.

Currently, game spectators usually have two choices: either they
can focus on a specific section of the arena and the events that occur
within that limited context, or they can observe a large area in order
to try to make more global evaluations. The former approach suffers
because its small scope does not allow the user to see actions in a
global context, which is often crucial for evaluating those actions’
efficacy or importance. The latter mode is usually not much better;
though the spectator can now see a physically larger area of the
arena, this only increases the number of players and actions that he
must keep track of. Because of this added burden on the observer,

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

163

vis
Note
Please see conference DVD for supplementary material.

important details can easily be missed and the observer can lose
track of how the overall state of the game is evolving.

To evaluate our methods, we used the game Return to Castle
Wolfenstein: Enemy Territory, a multi-player team-based game
where two groups of 6 to 12 players attempt to complete competing
goals. Usually, one team tries to complete a set of objectives, while
the opposing team attempts to stop or delay them until a pre-set time
limit is reached. Each player belongs to a class (engineer, medic,
soldier, etc.) and must work together with their teammates in coor-
dinated actions. Team games are good candidates for information
visualization, as group behaviors can be aggregated based on the
dual objectives present in every match. Free-for-all games, where
each player is working only for themselves, are less amenable to
information aggregation since each player has a separate objective.
Also, since players in team games are are, by design, cooperating to
achieve pre-set goals, large-scale behavior patterns are much more
likely.

Our solution to these problems is twofold. First, we iconify many
semantic aspects of the action, such as munitions usage and player
classes, orientations, positions, and paths. These overlays allow
spectators to see this information easily from a distant vantage
point, making judgments of large-scale interaction much easier.
These semantic icons work well for simple and inherently spatial
information such as player positions and firing patterns. However,
these visualizations are not well suited for more abstract concepts
such as which team has control of regions that neither team may
directly occupy, what the average distribution of players is for each
team, or what areas of the map may be of specific interest to the
viewer. For such tasks, we provide a colored map grid overlay that
aggregates weighted variables to reveal a very high-level summary
of a particular aspect of the action taking place.

2 RELATED WORK

Visualization techniques for first-person video games fall into two
broad categories: spectacle visualization and analytical visualiza-
tion. Spectacle visualizations are designed to present the in-game
action in a form that is entertaining and exciting. Analytical vi-
sualizations are designed to aid the observer in understanding the
higher-level state and overall dynamics of the game. We consider
each of these visualization categories in turn.

2.1 Spectacle Visualization

Spectacle visualizations often focus on one specific player or area
of combat to provide a human-level view of dramatic moments in
the game. Many systems provide a phantom-player mode in which
spectators can move through the environment and observe the ac-
tion as a disembodied first-person “phantom player”. Some systems
also provide a player-following mode in which spectators observe
the progress of a specific player by viewing the game through ei-
ther that player’s eyes or a camera which lags slightly behind the
player. These modes often provide no more insight into the overall
action than an individual player would have. In fact, in the player-
following mode, the lack of direct control over the viewpoint can
be extremely disorienting.

Halper et al. [5] have designed a system that automatically summa-
rizes a game as a series of highlight clips. Their technique builds
on prior work in automated camera planning [6, 7, 3] for comput-
ing effective shot compositions and video summarization [8, 1]. By
focusing on only the most dramatic moments of a game, a spectator

is given a condensed version of the overall match, with all of the
exciting moments condensed into a short period.

The drawback of spectacle visualizations is that they focus on
showing the game from a human level viewpoint and therefore only
allow the observer to see a small subset of the interactions taking
place within a limited region of the environment. Such visualiza-
tions can make it difficult to understand the overall context of the
game because they may distort the flow of time and because they
may hide many important details about how the players arrive at
their current states.

2.2 Analytical Visualization

One goal of analytical visualizations is to reveal the overall dy-
namics of the game by showing all of the player interactions tak-
ing place in the environment. Many games provide overhead radar
views showing the location of all the players as dots superimposed
on a simplified map of the environment. Niederauer et al. [13]
recently pointed out that this approach fails for densely occluded
multi-story architectural environments because the 2D map cannot
show which floor each player is located on. They solve this problem
by automatically generating exploded views of the environment to
separate the stories and thereby show all of the action taking place
on each floor. However, revealing all the action using either a radar
view or a multi-story exploded view can have the unintended effect
of making it difficult for observers to decide where to focus their
attention.

Analytical visualizations may also be aimed at presenting larger-
scale player and team behaviors that may take place over longer
periods of time. While such visualizations are rarely found in video
games, mapmakers have a long history of overlaying information
about the locations, actions and other properties of individuals,
groups and armies on geographical maps [11, 12]. The overlays
are formed via statistical aggregation techniques and are commonly
used in the Geographic Information Systems (GIS) to reveal over-
all trends [9]. For example, to show the overall flow of movement
for an entire army, the mapmaker would aggregate the positions
of individual soldiers over time. Perhaps the most famous exam-
ple of such a visualization is Minard’s map of Napoleon’s march
on Russia [14], which simultaneously depicts the movement and
attrition of the army over the course of the battle. Similarly, city
planners [10] and landscape designers[4] often create maps show-
ing the aggregated motion patterns of people traversing the envi-
ronment. Recent work by Chittaro and Ieronutti [2] has also applied
this technique to virtual environments as a way of dectecting distnct
behaviors among the users, as well as visualizing the overall usage
patterns within the test environments.

Our work is aimed at producing analytical visualizations of player
interactions in first-person video games to give the observer an
overall sense of the game dynamics. We combine the techniques of
showing player paths on an overhead map of the complete environ-
ment in real-time with overlays depicting other forms of statistical
data.

3 SYSTEM OVERVIEW

In order to understand a match, we must know what actions and
events are most important. We must in turn determine what measur-
able values and phenomena are indicative of the events, so that we
may detect and display them. Ideally, these metrics should be de-
signed such that they can be used to easily answer important ques-
tions that users may have about a given scene.

164

In order to select the most effective metrics for match evaluation,
we decided to familiarize ourselves with the game and tactics used
therein as much as possible. First, we studied the player experience
by playing the game for some time, becoming familiar with its intri-
cacies. Once we had a basic understanding of the games mechanics,
we proceeded to observe a series of matches using the engine’s ex-
isting spectator mode. As we observed the matches, we took notes
on questions that arose and important events that occured. Based
on our experience, we found that the following questions were of-
ten the most important:

“Where are players of each team concentrating?”

“How is a team organizing itself?”

“Where are players likely to run into opposition?”

“Where is conflict occuring?”

“What are the tactical details of this conflict?”

“How did the current game state come to be?”

After repeated viewing of a series of matches, we identified a set
of characteristics which we felt were helpful in answering these
questions. By tracking player positions and classes, we are able
to present detailed visualizations of how each team is organized
within the game world. Furthermore, by aggregating position in-
formation over time, we can show where each team tends to have
more influence, both immediately and historically, thus predicting
the areas where players are likely to run into the opposition, as well
as where they have already come into contact. Aside from position,
we track other traits as well, such as the players’ health and score,
and when shots are fired. When combined properly, these features
can provide tremendous illumination about the forces which drive
the game.

We present this information in two different ways. “Local” visu-
alizations iconify elements of the action taking place at specific
places in the map, such as player positions and shots being fired.
These visualizations help the observer understand the situation sur-
rounding an individual player or event. “Global” visualizations
present statistical data which is aggregated over the course of the
match. These visualizations help to understand more high-level
trends and behaviors.

3.1 Local Visualizations

We provide four different types of local visualizations: player
glyphs, player paths, tracer fire, and fields of view. Each of these
visualizations reveals some high level aspect of the action.

Player Glyphs In many objective-based team games, players
are divided into classes. Players from each class have different abil-
ities and are assigned different tasks in order to complete the over-
all team objective. When looking at the position of players, it is
often very important to understand where, for example, the engi-
neers are located versus the medics. Figure 2 shows an example of
player glyphs. Here, a blue engineer (shown outlined in green) has
achieved his team’s objective of advancing to the northeast turret
and placing dynamite. Although there are several red team mem-
bers near him, the cross glyph indicates that they are dead. The red
engineers can clearly be seen clustered in the southwest corner of
the map, much too far away to reach and defuse the dynamite in
time. This position is surely a win for blue, a fact that would be
impossible to see if the players were not iconified and classified in
this way.

Figure 2: Player Glyphs. Each player’s team and class is shown
through color-coding and icons. Also notice that a player can be
selected, allowing the observer to view information specific to that
player and causing him to be outlined in green.

In addition, the team-colored halo surrounding each player can be
used to encode quantitative information about that player. There are
several such values that could be of interest to spectators. For exam-
ple, the radius of the halo can encode the player’s health. This can
be important because a player with low health might behave very
differently from the rest of his team; either fighting in an atypically
conservative fashion or leaving the front lines in search of medical
assistance. In Figure 3 we see that the red player has taken some
damage, and thus his halo is much smaller than the blue player
(who is at full health). This added context helps explain why the
red player appears to be retreating away from the blue player to-
wards the added defense of higher ground. Another visualization
that we have found to be useful is to encode a player’s “experience”
in their halo. This way, an observer can see if one player is doing
substantially better (or worse) than his peers, and might choose to
temporarily switch to a first-person spectating mode focused on that
player.

Player Paths Often, the position of players is not enough to
understand why a player or team is at an advantage; we must know
how their spatial configuration was achieved. We can show the re-
cent path taken by each player, as shown in Figure 3(a). The path
is thicker at more recent instants in time. In this figure, we can
clearly see that the blue player turned back from his assault on the
red player to hide behind the terrain. In this case, a spectator might
wish to know that the blue player was in the midst of combat when
he ducked for cover, and is not lying in wait for unsuspecting ene-
mies to arrive.

In Figure 3(b), we see two engineers moving up an enbankment to
build a ramp, their goal in this part of the map. By moving along
very different paths, they ensure that the red team cannot adequately
hold off the assault, and that the blue team will achieve its objective.
Notice also in this figure that the tracer fire visualization shows that
the engineers are being well supported by cover fire from further
back on the beach.

Tracer Fire By showing the paths that munitions take through
the game, the nature of combat is often made much more clear.
The tracers are rendered as triangles which fan out from the firing
player. Representing the tracers as wedges gives several benefits.

165

(a) ducking for cover (b) dual assault

Figure 3: Player Paths. The path taken by a player to their present position is shown as a line of variable thickness (thicker indicates more
recent movement). This can be crucial to understand how a tactical position has come about. In (a) we can see that the blue player has ducked
behind an architectural feature for cover. In (b) the separate paths taken by the two blue engineers ensure that the red team cannot adequately
respond to the attack and at least one of them will successfully complete the team objective.

Figure 4: Tracer Fire. The origin of and path taken by munitions is
made clear. Notice that it is now clear that the blue player is caught
in crossfire, which would be difficult to see without this visualiza-
tion.

First, the expansion of this wedge corresponds roughly to the accu-
racy the weapon at that range, thus giving the observer an idea of
how effectively the player is expending his ammunition in the given
context. Second, by making the tracer a wedge, we give it a con-
crete ”direction” of travel. This makes it much easier to determine
at a glance both where fire is originating and where it is targeted.
This distinction would not be nearly as easy to make if the tracers
were represented with a directionless primitive. In Figure 4, we see
two blue players who are caught from multiple directions in the red
team’s crossfire. It is clear that red will achieve a combat victory
in this scenario. Without the tracer fire, we would only see the blue
players die, but would not realize that the superior positioning of
the red team lead to their defeat.

Fields of View A cone of vision indicating each player’s cur-
rent field of view can optionally be drawn. This cone encodes both
the direction that the player is facing, as well as what portions of the
map are visible to that player. Since players are more vulnurable to
attacks from directions which they are not facing or do not expect,
this feature can indicate possible weak points or paths of attack
against a line of defenders.

3.2 Global Visualizations

Some aspects of gameplay are too global to be adequately cap-
tured by an iconification of a single action element. To deal with
this issue, we divide the game arena into a coverage map, a two-
dimensional grid of cells, each of which tracks a variety of mea-
sures of the gameplay such as the amount of combat or influence
each team may be exerting within its borders. By tracking this in-
formation, we can later parse it and find important correspondences
to actual in-game events, as well as determine visualization combi-
nations that use this data to highlight certain behaviors in the overall
game landscape.

To visualize the coverage map, we draw a color-coded overlay over
the game’s terrain. This allows the information to be evaluated in
context and more readily integrated into the overall observation ex-
perience. The color for each cell is determined by the emphasis
mode of the map (i.e., what information the spectator has spec-
ified as important), which weights the source data fields for the
cell to effectively focus attention on those gameplay features for
which the spectator is looking. By changing the emphasis mode of
the coverage map, the user has the flexibility to quickly and easily
compare multiple game factors. In this section, we show a single
situation with all of the coverage map emphasis modes we have
implemented, to highlight all the different subtle gameplay aspects
taking place at this instance.

Occupancy The most commonly used global visualization
mode is the occupancy map. This mode encodes which team has

166

Figure 5: Occupancy Coverage Map. In this image, we can see
that a large conflict is occuring in the northeast quarter of the map,
with red reinforcements moving in from the south. Furthermore,
we can see that the red team’s northern flank is undefended, and
that the blue player farthest to the west is well positioned to sneak
around red’s defenses and gain a positional advantage.

most recently occupied a location, as shown in figure 5. The color
of each cell indicates which team last controlled that cell, and the
brightness of that color indicates how recent that occupation was.
Each cell’s color indicates which team currently exerts the most
control over a region. Brighter colors (red and blue) indicate more
recent occupation, while darker colors (dark red and dark blue) de-
note areas in which neither team currently has a strong presence,
but where one has historically exhibited more control. Orange and
cyan indicate where members of the red or blue team are partici-
pating in combat. Yellow cells mark contested regions where close
combat is occuring.

The occupancy map gives a clear view of where the forces are cur-
rently located, where they have been recently, the overall structure
of the team’s position, and the location of combat. If the observer
wants an overview of how a match unfolds, this can be a more effec-
tive visualization than a detailed one showing local player details.

Support Fire In team games, it is often advantageous to posi-
tion a few players away from the front lines in order to provide sup-
porting fire for the less combat-oriented players. For example, an
engineer might need time to construct a bridge, and during that time
he is very vulnerable to attack. In this case, a sniper might provide
cover fire to prevent opposing forces from approaching the engi-
neer and killing him without opposition. The skill of these snipers
is frequently critical to the success of a team’s mission. In Figure 6,
we show areas where support fire is originating. Here, the red team
has positioned a machine gunner on high ground, placing them at a
large tactical advantage. Being able to see the evolution of support
placement over time can give substantial insight into the reasons
for a team’s success. may or may not be the best allocation of red’s
forces, an insight that could prove Additionally, notice that the blue
player at the top of the map would be well positioned to take out the
gunner, but instead focuses his attention on the area of direct com-
bat. This image suggests that the blue team would be better served
if the sniper instead focused his attention on the red machinegunner
instead of supporting the combat directly.

Medic Efficacy In free-for-all games, killed players often just
respawn at various locations in the map. Many team games, how-

Figure 6: Support Fire Coverage Map. Orange and cyan cells
indicate areas where red and blue players are firing weapons, but
are not engaged in close combat themselves. In this image, both red
and blue players are supporting their teammates who are involved in
a battle in the northeast end of the map. This visualization is crucial
for understanding both how well a team has set up its defenses and
conversely what areas a team must attack in order to proceed.

ever, empower players in the medic class to revive killed team-
mates. Obviously, the skill of a team’s medics will be crucial to
its success, as dead players cannot participate in the completion of
the team’s objectives. Our final global visualization mode, shown in
Figure 7, highlights the behavior and skill of a team’s medics. Ar-
eas in red show the location of killed players, while areas in green
show the location of the medics (this mode only visualizes one team
at a time). In this figure, the medic is well placed to respond to the
recently fallen teammate. Medics that are out of position or not
aware of the location of heavy combat can be a serious liability,
so this visualization mode can provide a key insight into a team’s
performance.

4 IMPLEMENTATION

Since Lithium visualizes semantic details about the game being
played, it must be implemented in a manner such that it has access
both to important internal game data, and the underlying rendering
engine. Non-invasive approaches such as those taken by Nieder-
auer et al. [13] are attractive because they can work on any game,
but they must reconstruct or infer any semantic information about
the gameplay from only the geometry being drawn. Network proxy
approaches are also unappealing in this situation because games
frequently encrypt their network protocol to prevent cheating. In-
stead, we take advantage of the fact that Enemy Territory supports
a modular, publicly available API which allows ust to have limited
access both to internal data structures and to the rendering engine
of the game itself.

There are some drawbacks to using a client-side module. First,
there is sometimes important game state information that is not sent
to spectators, as the server does not expect those clients to need it.
Furthermore, we must use the narrow interface to the graphics en-
gine to realize our visualizations. The client is typically a very sim-
ple shell that simply draws the world and draws simple text and 2D
images on a “heads-up” display. Due to the expected usage which
this API was designed for, ability to draw arbitrary 3D overlay in-

167

Figure 7: Medic Efficacy Coverage Map. In this image, the loca-
tions of dead players (red) and the medics (green) for the blue team
are shown. Note that the blue medic is well placed to respond to
the wounded player. If the medic were out of position, the red team
could easily put blue at a material disadvantage.

formation in the world itself is somewhat restricted, limiting the
complexity and detail that our system can accomodate. We do not,
for example, have direct control over the projection matrix, nor are
able to upload dynamic textures. Most of Lithium must be imple-
mented using simple world space geometry or screen-aligned icons.
Note, however, that these problems are not fundamental to our sys-
tem; they could be easily solved if future games were designed with
Lithium-style spectator modes in mind.

4.1 Glyphs and Local Visualizations

Individual players are tracked separately, keeping a history of states
that are updated periodically for each player as the game progresses.
Each “snapshot” of the players contains information on each one’s
position, score, health, activity, and other important factors. Every
frame, we use the client-side graphics API to draw the local visual-
izations described in section 3.

Although all of the results presented in this paper show the game
being visualized from an overhead orthographic view, the local vi-
sualization enhancements are actually rendered in three dimensions
in the game’s world coordinate system. Thus, these visualizations
also function correctly in a standard perspective-based chase cam-
era mode as well. Even in this completely local context, these
overlay visualization can greatly enhance the comprehensibility of
a combat segment.

4.2 Coverage Maps

Collecting data for and rendering of the global coverage maps is
more complex than for the local visualizations, because decisions
need to be made about what information to use and how best to
present this data.

Collecting the Data The coverage map is generated from a
relatively low resolution 2D grid that spans the entire game arena.
Each grid cell contains several values that are estimations of the
player density, medic density, medic need, and combat activity
within the cell. Every frame, the entire grid is updated by iterating

through all of the players and adding their influences in the differ-
ent categories to the appropriate locations of the grid. Each player’s
influence is spread over multiple nearby cells using a kernel that
falls off quickly with distance. The coverage map for the current
frame is then computed as a linear interpolation between the new
grid of values and the previous frame’s coverage map. Blending
the values in this manner has several advantages. First, it prevents
values from oscillating rapidly, as would happen if the occupancy
of a cell changes frequently. In fact, we carefully select the linear
interpolants for each tracked variable separately, so some values
more closely reflect the current game state, and others have more
temporal stability.

In fact, these interpolation rates need not be constant. The rates
for medic need and density, for example, vary according to the
magnitude of the newly computed values. If the new density is
greater than the current density or if the current density is above
a given threshold, the value changes very quickly; otherwise the
values change much more slowly. This way, a player entering an
area will immediately have his presence correctly reflected in the
surrounding cells, even if the values are extremely low at the time.
However, when he leaves, the value will fall off much more slowly,
causing the player’s presence to ”linger” in places he has recently
visited, allowing the observer to see a time-lapsed history of the
player’s influence as he moves about the arena.

Presentation In order for the data collected in the coverage
map to be useful it must be presented to the user in a meaning-
ful and easily deciphered way. Simply blending between different
colors based upon the values for each metric tracked in the cell is
overly simplistic and results in unclear visualizations. The observer
does not need to visualize the exact values of each metric across
the grid; instead, he wants to see a summary of the status of each
cell. To achieve this, we use a modal coloring system which, based
on the values of the different metrics for that cell, present a gen-
eral categorization of the cell. By making these hard distinctions,
the observer can far more easily determine where borders or where
important events are occuring.

An occupation coverage map, such as Figure 8 uses a cascading se-
ries of logic statements to categorize each cell, then colors them ap-
propriately. First, it determines which team has the strongest pres-
ence in the cell by comparing the player presence metrics. If the
value of the stronger team’s presence is less than a specified “pres-
ence threshold” (the same value used for the linear interpolation
rate), the cell contains a player’s residual presence and is assigned
a dark red or blue color (depending on the team). If the presence is
greater than the threshold, we determine whether the cell is within
overlapping regions of presence by opposing teams or whether it is
within a region of combat; if so, the cell color is modified accord-
ingly.

The “support fire” mode’s coloring is not quite as complicated as
the occupation coverage map. This emphasis mode defines sup-
port fire as shots fired from an area which is “uncontested” (which
we define as only one team having an occupancy value above the
presence threshold). By displaying uncontested areas where shots
are being fired, this mode can visualize whether players who are
not directly involved in a combat region are still taking part in the
conflict, tying local phenomena to global behavior.

The “medic efficacy” mode is even simpler, because only one team
may be monitored at a time. Initial attempts to visualize the medic
densities for both teams simultaneously were difficult to decipher,
because the medic needs for both teams tend to have substsantial
overlap resulting from close combat. Dealing with only one team
at a time, however, lets us use two simple color codes: red for medic
need and green for medic presence. When these colors overlap, the

168

Figure 8: Modal Coloring. Thanks to the modal coloring system employed in the occupation coverage map, we can easily divide the game
arena into several distinct areas of activity. The red team holds control of the northwest section of the map (shown in dark red), while
blue pushes out from the southeast (in dark blue). Combat fronts (yellow) appear at the two chokepoints between the territories, with blue
committing most of its forces to the main, southern pass. Red has also left one player in reserve to the north, to assist by providing covering
fire to either front as needed.

resulting yellow cells make clear where medics are doing a good
job.

5 CONCLUSION AND FUTURE WORK

Our system is successful at presenting a visual encoding of a variety
of aspects of multi-player action that make it easier for an observer
to understand high level aspects of that action. Many of our visu-
alizations reflect the evolution of an action over time, so spectators
understand not only what is taking place, but how the current game
state came to be. Our experience has been that these visualiza-
tions, coupled with a rudimentary understanding of the mechanics
of multi-player team games, allow a novice spectator to easily dis-
cover and grasp subtle aspects of matches that even experienced
players cannot find with a standard spectating interface.

In the future, we would like to objectively study the effectiveness
of our system by having actual user studies. Preliminary anecdo-
tal evidence seems to indicate that the system is quite effective in
achieving its goals. However, experimentation with different pre-
sentation modes and levels of information density in a controlled
environment would undoubtedbly prove fruitful.

As far as further development and features go, there are two primary
directions for this work. The first is automatic detection of “inter-

esting” or anomalous actions as they take place. Although allowing
the spectator to control these parameters (as we do now) can have
certain advantages, we are very interested in allowing completely
passive viewing of games. A passive spectating system would au-
tomatically select visualization parameters in order to direct an ob-
server’s attention. This could also be extended to control the camera
system and reposition/zoom the view to focus on important features
such as a particular local action or an overall positional shift. The
key advantage to automatic visualization selection is that it can be
non-trivial to find which combinations of overlays and input data
would most clearly show a particular feature or event in a given
match. Instead of having the user manually explore this parameter
space, an automation module could take a simplified set of “inter-
est parameters” (weights that the system would use to determine
the importance of player movements, combat, grouping behaviors,
territory control, etc.) and automatically select which visualization
configurations would show most clearly important features of the
match based on the simplified weights.

We would also like to explore techniques for analyzing video
games, rather than spectating them. The key difference is that anal-
ysis tries to answer the question of “what went wrong;” i.e., why
a team succeeded or failed. For a spectator who wishes to enjoy a
game, the proper interface is probably a mix of semantic overlays
for explanatory reasons and through-the-eyes replays for fast-paced
action. However, a team captain may wish only to understand the

169

reasons behind his team’s shortcomings, which is a different goal.
For more analytical exploration of games, we would likely have
the luxury of offline computation, since games can be recorded for
later playback. These offline systems would map the game onto
simplified models that can then be used to more easily compare dif-
ferent matches. One such method would be to take a set of recorded
matches (all on the same arena with the same set of objectives) and
monitor the positions and velocities of the players at every timestep.
Once this time-based model of player density is complete for each
match, the information can be merged, compared, and contrasted
to find correlations or important distinctions (especially between
matches that are won by different sides). This data could even be
used to create a directed graph or other summary of a given arena;
the resulting model would be useful in real-time analysis of other
matches, allowing for quick comparison to canonical examples.

ACKNOWLEDGEMENTS

The authors would like to thank Jonathan Moses for early access
to the game source code, as well as the team at Splash Damage for
their help in making this project a success. Cliff Woolley stayed up
late with us making sure that all our I’s were dotted.

REFERENCES

[1] Matthew Brand. The inverse Hollywood problem: From video to
scripts and storyboards via causal analysis. In Proceedings 14th Con-
ference on Artificial Intelligence, pages 132–137, 1997.

[2] L. Chittaro and L. Ieronutti. A visual tool for tracing users’ behavior in
virtual environments. In Proceedings of AVI 2004: 6th International
Conference on Advanced Visual Interfaces, pages 40–47. ACM Press,
May 2004.

[3] Steven M. Drucker and David Zeltzer. Camdroid: A system for imple-
menting intelligent camera control. In 1995 Symposium on Interactive
3D Graphics, pages 139–144, April 1995.

[4] Stephen M. Ervin and Hope H. Hasbrouck. Landscape Modeling:
Digital Techniques for Landscape Visualization. McGraw-Hill, 2001.

[5] Nick Halper and Maic Mausch. Action summary for computer
games: Extracting action for spectator modes and summaries. In Wan
Hak Man Loo Wai Sing and Wong Wai, editors, Proceedings of 2nd
International Conference on Application and Development of Com-
puter Games, pages 124–132, 2003.

[6] Nicolas Halper, Ralf Helbing, and Thomas Strothotte. A camera
engine for computer games: Managing the trade-off between con-
straint satisfaction and frame coherence. Computer Graphics Forum,
20(3):174–183, 2001.

[7] Nicolas Halper and Patrick Olivier. CAMPLAN: A camera planning
agent. In Proceedings 2000 AAAI Spring Symposium Series on Smart
Graphics, pages 92–100, March 2000.

[8] Liwei He, Elizabeth Sanocki, Anoop Gupta, and Jonathan Grudin.
Auto-summarization of audio-video presentations. In ACM Multime-
dia ’99, pages 489–498, 1999.

[9] George B. Korte. The GIS Book. OnWord Press, 2000.
[10] Kevin Lynch. The Image of the City. Cambridge, Massachusetts: The

MIT Press, 1960.
[11] Alan M. MacEachren. How Maps Work. The Guilford Press, 1995.
[12] Mark Monmonier. Mapping It Out. The University of Chicago Press,

1995.
[13] Christopher Niederauer, Mike Houston, Maneesh Agrawala, and Greg

Humphreys. Non-invasive interactive visualization of dynamic archi-
tectural environments. In Proceedings of the 2003 symposium on In-
teractive 3D graphics, pages 55–58. ACM Press, 2003.

[14] Edward Tufte. The Visual Display of Quantitative Information. Con-
necticut: Graphics Press, 1990.

170

