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Figure 1: lllustration of complex vortex breakdown in a single timestep of the delta wing dataset. Transparently rendered separation surfaces
originating at stagnation (saddle) points related to vortex breakdown on the delta wing (red and yellow). The blue stream surface originates
at the tip of the wing and wraps the vortex core up to the breakdown point. The stream surfaces are computed using the approach described
in [3]. This timestep was singled out by looking for interesting configurations of the complex vortex breakdown on the left side of the delta

wing (cf. Section 6 and Figure 6 right).

ABSTRACT

In this paper, we present an approach for monitoring the positions
of vector field singularities and related structural changes in time-
dependent datasets. The concept of singularity index is discussed
and extended from the well-understood planar case to the more in-
tricate three-dimensional setting. Assuming a tetrahedral grid with
linear interpolation in space and time, vector field singularities obey
rules imposed by fundamental invariants (Poincaré index), which
we use as a basis for an efficient tracking algorithm. We apply the
presented algorithm to CFD datasets to illustrate its purpose. We
examine structures that exhibit topological variations with time and
describe some of the insight gained with our method. Examples are
given that show a correlation in the evolution of physical quantities
that play a role in vortex breakdown.

CR Categories: 1.4.7 [Image Processing and Computer Vision]:
Feature Measurement— [1.6.6]: Simulation And Modeling—
Simulation Output Analysis J.2 [Physical Sciences and Engineer-
ing]: Engineering—.
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1 INTRODUCTION

In the design of modern aircraft, computer simulations are an im-
portant tool in the development of new prototypes. While the basic
principles of aerodynamics are well established, they are applica-
ble to large scale problems only and do not describe the increas-
ingly important details on small scales. The quality of numerical
models has risen to a point where simulations can fill this gap. As
the demand for faster aircraft and improved security is high, they
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have proven an extremely valuable tool in comparison to physical
experiments. Aside from the validation of prototypes, simulations
can help to increase our understanding of the dynamics of some
of the more complex flow patterns that keep appearing in aviation-
related problems. They facilitate complicated flow experiments and
provide accurate measurements not only at points of interest (that
might not even be known a priori) but over the whole domain con-
sidered, and it is possible to evaluate quantities that cannot be mea-
sured physically. However, the advantage of complete data for a
given problem is also a hindrance in its analysis. Since detailed
models require fine resolutions, the amount of generated data is
enormous. This is especially true for time-dependent problems. Re-
sulting datasets are usually multi-gigabyte sized. Thus the problem
of interpretation of a dataset often encompasses finding points of
interest first.

Concerning the design of delta wing type aircraft, for both civil
and military use, the vortex breakdown phenomenon has stood in
the way of a wide application of these designs. The greater part
of the lift a delta wing experiences is created by a system of vor-
tices above the wing. This results in generally very good maneu-
verability and the possibility of high airspeeds. However, it can be
observed that in certain situations (low speed and high angle of at-
tack) these vortices tend to break down in the sense that the flow
pattern becomes unstable and the vortical structure disappears, re-
sulting in a loss of lift that can have fatal consequences regarding
controllability of the aircraft. Furthermore, the pressure differences
inherent in the breakdown can severely damage the structure of the
aircraft. Therefore, there is a need to understand the origins of this
phenomenon such that it can be avoided in future designs. While
understanding is still incomplete, it is known that vortex breakdown
is characterized by the appearance of stagnation points on the axis
of the primary vortices[10]. Here, numerical simulations can show
their full power by providing insight that will help the develop-
ment of theories as to why and when vortex breakdown will occur.
Although the phenomenon can be reproduced in stationary simu-
lations, the full dynamics are only available from time-dependent
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calculations. Figure 1 depicts a staggered vortex breakdowns from
such a simulation.

To obtain insight from resulting datasets we have developed an
algorithm to track the detected stagnation points (which are essen-
tially zeros of the velocity field) over time and discover the rela-
tions between them (i.e. the structural evolution of the vector field)
and characteristics of related quantities such as acceleration and
signed helicity. The algorithm was developed to work on three-
dimensional unstructured tetrahedral grids since the unstructured
grids provided by numerical simulations can be easily converted to
this form. A visualization of the results (four dimensional in nature
and thus hard to represent) is then given by reducing the problem
to two dimensions. To keep the algorithm simple and efficient, we
have drawn on the theory of dynamical systems, namely the theory
of the Poincaré index. The main statement here is that vector field
singularities in piecewise linear fields obey a set of rules that sim-
plify their tracking through time. The work shown here is related to
the usual notion of flow topology; however, we are not concerned
with extracting all topological elements but rather a suitable small
subset of its temporal evolution.

The paper is structured as follows: Section 2 gives an overview
over previous and related work. In Section 3, we detail some theo-
retical results related to the Poincaré index, with a special emphasis
on three-dimensional problems. We develop the tracking algorithm
in Section 4, before we write about some issues related to prepro-
cessing of the datasets and post-processing of the results in Sec-
tion 5. The results we obtained from applying our algorithm to
actual datasets are given in Section 6 before we conclude on the
work shown here in Section 7.

2 RELATED WORK

The appearance of vortex breakdown (some authors call it vortex
burst) has concerned many authors in the fluid mechanics commu-
nity due to its relevance for a number of applications (see e.g. [10]).
In the field of visualization, Kenwright and Haimes[7] were among
few to write about the detection and visualization of vortex break-
down. They already emphasize its importance in aeronautics. Their
interpretation of vortex breakdown is a significant change in the
direction of the vortex core. From today’s point of view, this expla-
nation is slightly misleading, since the role of flow singularities and
their effect on vortex core detection methods was not understood.

Concerning the temporal variation of features, there are ap-
proaches that detect features in several timesteps and perform a
matching procedure to extract their evolution (e.g. Silver and
Wang[12] and Samtaney et al.[11]). Making explicit use of the tem-
poral interpolation, Weigle and Banks[16] extract features in the
form of four-dimensional isosurfaces. A similar course is followed
by Bauer and Peikert[1]. They incorporate a scale-space approach
into their method for the tracking of vortex cores. As to the inter-
relations among multiple features over time, Silver et. al[2] have
developed the feature tree that is remotely related to the much sim-
pler structural graph we establish in Section 5.

The importance of singularities and separatrices in flow fields
was recognized quite early by Helman and Hesselink[6] and re-
sulted in two-dimensional topology visualization. Complete three-
dimensional topology has not been attempted yet, however there
are authors that examine suitable subsets, such as Globus[4] and
Theisel et. al[14]. In their paper, they compute saddle connectors
as a basis for a topological skeleton. Relaxing the meaning of sep-
aration surfaces, Mahrous et al.[8] recently published a method for
topological segmentation of steady vector fields surfaces that sepa-
rate flow regions with different properties.

Tricoche et al.[15] describe how the time-tracking of singular-
ities and the corresponding topological variations can be investi-
gated for instationary 2D vector fields. This paper essentially ex-

tends their method to three spatial dimensions, however, we con-
centrate on the critical points and do not treat topological connectiv-
ity. Theisel and Seidel[13] have also given a method for the tracking
of critical points in more general settings by integrating streamlines
of the derived feature flow field. In Section 7 we will briefly discuss
the relative merits of their approach in comparison to ours.

As to the concept of the Poincaré Index in three dimensions,
Mann and Rockwood [9] have published a very well-written paper
in which they explain its basic premise and show how it can be ap-
plied to the study of critical points and other types of singularities.
Their work is however limited to the study of analytical vector fields
and is not directly applicable in the setting of this paper. For the ba-
sic theory, they use the notations of Geometric Algebra. Although
the formalism is very elegant, it has not been widely used in the Vi-
sualization community. We therefore give a very brief overview the
basic theory in the next section using a more conventional notation.

3 THE POINCARE INDEX IN 3D

Remark: In the following, when we speak of singularity, we will
mean isolated zeros of a vector field.

In two dimensions, the index concept is well understood and has
been explained by several authors (see e.g. [15]). We immediately
start in a three-dimensional setting: let v(x) be a three-dimensional
smooth vector field. We employ the notion of closed surfaces, i.e.
surfaces that are topologically equivalent to a sphere. The basic
idea of the index is the answer to the question of how many times
a vector field “rotates” in the neighborhood of a point. Rotations in
3D are not easily measured and compared (we would need to em-
ploy quaternions), therefore, we take a slightly different and more
geometric approach. The winding number #(S) of a closed surface
S with respect to a point x is given by

1 y—x
= — | ——=dS(y).
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It can be proven to be integer and is interpreted as the number of
times S wraps around x. For example, the x-centered sphere S¢ (x)
of radius € > 0 has the canonical winding number 1. Now, to define
the index of a closed surface S, we apply a simple notion: first, we
introduce the Gauss map

#:(S)
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that maps any non-zero vector to its direction. The index k of a
closed surface S is then defined as the number of times the vector
field directions on S cover the origin as we move around all of S.
In other words, it is the winding number of the Gauss map of v
restricted to S with respect to the origin. Mathematically speaking,
we have

amk = #(0lg) = [YO000)ASGOE). ()

Note that the winding number can be read as an oriented area inte-
gral of y(v|g). Hence, the sign of k depends on the orientation of S

relative to IR3. We are able to define ind,(v) of a singularity z via
ind.(v) := g%#O(Y(V|Sg(Z)))' @3

Furthermore, a very useful result is easily obtained: let S be a closed
surface that encloses the vector field singularities z;. Then

Zi“dzi(") = #(r(vlg))-

As a consequence of the last equation, it is possible to calculate the
index of a singularity by enclosing it with a surface small enough
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Figure 2: Vector field directions on a closed surface S. Upper row:
the directions do not cover $2, hence the winding number of y(v|)

is zero. Lower row: S% is covered once, [#,(Y(v|g))| = 1.

not to contain any other singularities. Furthermore, the shape of the
surface does not matter as long as orientation is fixed relative to IR>
for all such surfaces. As in the two-dimensional case (where one
usually considers positively oriented paths), positive orientation is
assumed for all closed surfaces henceforth. As a special case of this
last equation, S does not enclose any singularity in its interior if its
index vanishes.

Although this definition is appealing in the mathematical sense,
its application for computing indices in e.g. piecewise linear vector
fields as often presented by applications is tedious. We therefore
proceed by looking for an easier means to determine a singularity’s
index in these cases.

3.1 Linear vector fields

Consider a linear vector field of the form
v(x) = Jx+ec.

If J has full rank, v has exactly one isolated singularity at z =
—J~!c. Then, the index of v at z is given by the sign of J, i.e.

ind;(v) = sign(detJ). 3)

It is quite easy to see how this simple formula works: since J is
one-to-one, we easily find that |ind,(v)| = 1 (all directions on the
unit sphere are reached exactly once). Hence, the sign of the index
only depends on the relative orientations of S and y(v|g) for any S
that wraps z. If J is orientation-preserving (i.e. det(J) > 0), the
index is +1, otherwise it is —1. Hence (3) holds.

There is a simple connection between the usual classification of
linear singularity types (e.g. saddle, node, etc.) and the index. The
index is essentially the sign of the product of the eigenvalues of the
Jacobian matrix at the singularity. Since in three-space, the Jaco-
bian has three eigenvalues, this allows for a wider range of possibil-
ities than in two dimensions. For example, in 2D a saddle point has
always index —1, whereas in 3D it can have both +1 or —1. This
shows that the geometry of the defining space has a strong influence
on the geometry of vector fields and the nature of apparent vector
field singularities. The exact classification of the singularities does
not play a role in the remainder of this paper, hence we do not go
into detail here.

While it seems that (3) is easily applied to piecewise linear vec-
tor fields, special care has to be taken in order to guarantee stable
numerical evaluation of the determinant.

3.2 Time-dependent vector fields

Let v(x,t) be a smooth time-dependent vector field, and let S(¢) be a
closed surface that changes position and shape smoothly with time.

Then, if
v(x,t) #0

the index of S(¢) is constant in 7.

Condition (4) essentially ensures that no singularity is passing
through S() as time increases. Hence, the z; enclosed by S(z) will
remain enclosed, and no other singularity can join them. The argu-
ment then proceeds along the same lines as earlier. The right hand
side of (2) varies continuously with time, and at the same time, it is
integer; hence it must remain constant.

The significance of this statement is large: it basically states that
the index of a closed surface S(¢) is conserved over time, which al-
lows us to impose certain restrictions on the temporal evolution of
singularities enclosed in S(#). The most important one for our pur-
poses is that singularities must appear or disappear in groups such
that the sum of their indices vanish. For example, if a pair of singu-
larities is created, they must have indices of +k and —k respectively.
Such a change of the structure of a vector field with a parameter (in
our case the parameter is time) is called a structural bifurcation.
A more extensive treatment of the theory of bifurcations of vector
fields can be found in the book by Guckenheimer and Holmes [5].

v, x € S(t), “4)

4 TRACKING OF SINGULARITIES

In the following we will be concerned with developing an algorithm
to the purpose of determining the paths of isolated singularities of a
time-dependent piecewise-linear vector field, given on a tetrahedral
grid. )

Let p; € IR? be a set of points and v/ the vector values associated
with the p; at discrete times ¢ ;€ IR. Let 7, be a set of tetrahedra
defined on the points p;. Then every tetrahedron 7} gives rise to a
vector field v(x,?) that is linear in both space and time: if x € 7, and
tE[t;t;,,], then set

3 r=t; Lt
V(XJ) = Zﬁl(x) ﬁ\); + ﬁvl] 5
=0 j+1 i 1

J+ J J+

where B, are the barycentric coordinates w.r.t. 7, and [ refers to the
vertices of 7,. We will next examine the paths of singularities in a
single tetrahedron 7.

4.1 Bifurcations

Considering structural changes, we have determined that a tetrahe-
dron can include at most one isolated singularity, because the field
is linear. This has one major implication: structural bifurcations
cannot occur in linear vector fields. For the case of piecewise lin-
ear fields this implies that bifurcations must be located in places
where two linear pieces are adjacent. For tetrahedral grids with
per-tetrahedron linear interpolation, we find that bifurcations must
happen in places where the field is not linear, i.e. on the boundaries
between different tetrahedra. There are three possibilities: vertices,
edges and faces of the grid. We will consider faces first.

Assume we have two tetrahedra T; and 7, that share a common
face on which we find a bifurcation at some time ¢. Since the field
is linear in both tetrahedra, only two singularities can be involved
and one must be located in 7} and the other in 7,. Moreover, due
to conservation of the index, the overall index must remain zero,
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hence the indices of the singularities must be +1 and —1. Hence,
bifurcations on faces are of a relatively simple nature.

It would now be in order to discuss bifurcations on edges or ver-
tices. However, these cases are quite intricate. Since more than two
tetrahedra are involved, the list of possible bifurcation types is long,
and non-linear singularities are involved. (cf. [5]). The occurrence
of a bifurcation on an edge or on a vertex of the grid is extremely
unlikely at best due to numerical issues (the situation is similar to
the problem of identifying higher order roots of polynomials). For
the noise-afflicted CFD datasets we are interested in this issue is
aggravated. Therefore, we can limit ourselves to the case of face
bifurcations for all practical purposes.

4.2 Paths in a Tetrahedron

We first consider a single tetrahedron 7' and determine what possi-
bilities exist for the path of a singularity z. To simplify the notation,
we assume that the vector field in T is given in the form

3

V@) = Y ) (11 +1vy).

i=0

xeT,tel0,1]

and that v is non-degenerate, i.e. it contains exactly one isolated
zero at all times. For fixed ¢+ we can solve for the position of the
singularity of this field in barycentric coordinates. For example,
with w;(¢) = (1 —t)u; +tv; we write (omitting the parameters)

v =wo+ By (W —wp) + By (wy —wy) + B3 (w3 —wp)
and apply Cramer’s rule to find
o det(=wy, wy—wy, wy—wy) b (1)
© det(wl —w0, w2 —w0, w3—w0) " g(t)

By (1)

The same can be done for all ;. Brief computation shows that
the resulting b;(¢) and ¢(z) are polynomials of degree 3 in 7. We
required that v be non-degenerate, this reflects in g(¢) # 0 for all
t € [0,1]. Naturally, if B;(r) < 0 for some i, the singularity of v
is outside the tetrahedron for this specific . In other words, we
have found an explicit representation for the location of z. Taking a
closer look at b;, we find that the zeros of these polynomials allow
us to determine when z crosses one of T’s faces. If for 7 € [0,1]
we find 3;(7) = 0 and B;(f) >= 0 for j # i, then the singularity
is located on the face of T opposite the vertex p; (its barycentric
coordinate is zero). For this case, by evaluating the sign of the
derivative

g = (%) @ = 249

we can tell if the singularity enters or leaves the tetrahedron at 7. We
will say that 7" has an entrance/exit on face F at 7. This information
is important to determine in which neighboring tetrahedron (if one
exists for F') the singularity path continues.

For fixed ¢ € [0, 1] there can be at most one singularity inside T
(since the field in T is linear), hence we can conclude that if there
is a singularity in 7 at some ¢ € (0,1), it must either have entered
T at an earlier time 0 < f < ¢ or remained in T since t = 0 (in this
case we will say that z enters at t = 0). In complete analogy, it must
either exit T at t <7 < 1 or remain in 7 until r = 1 (read z exits
at t = 1). In other words, a singularity path always connects an
entrance to an exit, and exits and entrances always come in pairs.
Since there cannot be more than one singularity in 7" at a given time,
an entrance is always connected to the closest exit (w.r.t. 7).

When z passes from T to a neighbor T’ through the face F at
7, in both T and T’ there is a singularity on F at f. There are two
possibilities: either we find an exit/entrance combination in 7" and

(since b;(f) = 0)

T’, in which case the path continues in 7’, or we find an exit/exit
or entrance/entrance combination. In the last case, the vector field
has a structural bifurcation on F at 7 (i.e. creation or annihilation of
a pair of singularities), and the paths of both singularities involved
start or end on F'.

4.3 Tracking algorithm

Having simplified matters so far, we now give a simple scheme for
tracking a singularity path between two timesteps t =0 and r = 1
that works by simply connecting entrance/exit path segments over
tetrahedron boundaries.

Assume that a singularity z is present in T at ¢z € (0,1). Then, to
compute the path forward in time

1. compute the b; and ¢ for T, and determine entrances and exits

2. if there is no exit later than ¢, z exits T at t = 1; the path is
complete

3. if there are exits in T, then z leaves T at the earliest exit later
than #; determine the neighbor tetrahedron T’ corresponding
to the exit face F and compute b, ¢’ for 7’

4. if T’ has an exit on F corresponding to the exit on T (— bi-
furcation), the path of z ends on F'

5. otherwise, T’ has an entrance on F corresponding to the exit
onT;zisnowin T’. Set T = T’ and restart at 1.

Following the path of z backwards in time can be achieved in a com-
pletely analogous manner. Both directions are completely equiva-
lent. We use this procedure as a building block for computing the
paths of all singularities present in two given timesteps between
t=0andr=1:

1. find the sets of tetrahedra S, and S, that contain a singular-
ity at # = 0 and # = 1 respectively. Let B = {} be the set of
bifurcations encountered in between t =0 and t = 1.

2. forevery T € S,: follow the path of z forward in time

(a) ifitendsin T’ at¢ =1, eliminate T’ from §,.
(b) if it ends at a bifurcation, add it to B.

3. for every T € S, (singularities not reached by paths from ¢ =
0): follow the path of z backward in time

(a) it must end at a bifurcation; add it to B

4. for all bifurcations in B: check if B has two paths connecting
to it; if it does not, there must be another singularity involved.
Follow its path forward or backward in time depending on
whether the bifurcation is a creation of singularities or an an-
nihilation.

(a) the path must end at a bifurcation; add it to B; goto 4.

The algorithm essentially avoids multiple tracing of the same
path by making use of the equivalence between forward and back-
ward tracing (i.e. if a path extends from ¢ = 0 to # = 1, we only need
to trace it forward). The extra effort in step 4 is required because
non-intuitive situations can occur (see Figure 4). The end result
is a set of paths that completely describe the continuous structural
variation of the vector field between the two timesteps. Going to
several timesteps from here is easy as it only involves connecting
the paths from different timesteps according to which singularity
they start/end at.
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Figure 3: Structural evolution of singularities. Three spatial dimen-
sions are represented on the vertical axis.

Remark: some cases are not covered by the given algorithm. For
example: if the two bifurcations that create and annihilate a pair of
singularities lie between two timesteps, neither of the singularities
will show up in either timestep, and hence their paths will not be
discovered by the algorithm (see Figure 4). However, since they
do not interact with other singularities, they do not play an im-
portant role in understanding the structural changes in between the
timesteps. Moreover, it is often desirable to ignore small-scale local
behavior (see also Section 5).

5 APPLICATION TO DATASETS

5.1 Pre- and post-processing

To obtain a complete picture of the structural evolution of a given
dataset, the interaction of the various singularities form a structural
graph with bifurcations as vertices and paths as edges (see Fig. 5
for an example). We will shortly describe how this graph can be
used in post-processing of results.

The method shown in Section 4 is limited to tetrahedra and
the given dataset must be tetrahedrized before application. Al-
though the tracking algorithm could be enhanced to deal with non-
tetrahedral grid cells, a generalization would result in a number of
special cases that complicate the relatively simple structure of the
algorithm. In the form presented above, implementation is straight-
forward and fast. However, a small price has to be paid: tetra-
hedrization of arbitrary grids can result in the creation of singular-
ities that are not in the original dataset. It is possible that a cell of
index O is split up in such a way that the resulting tetrahedra have
non-vanishing index. These “artificial” singularities do not pose a
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Figure 4: Left: Tracking only paths originating on timesteps does not
completely explain the structural evolution (the blue path would not
be discovered). Making sure that every bifurcation has two paths
connecting to it solves this problem. Right: Paths that are not
discovered since they have no entrance or exit on a timestep.

problem, since they are always created in pairs and usually only last
for a short period of time.

Numerical datasets are often subject to noise, especially if the
computations involve some kind of differentiation. It is common
practice to apply smoothing operators to datasets in order to undo
some of the damage done by previous computations. Numerical
noise usually reflects in short-lived pairs of artificial singularities
that exist in isolation and are not part of the dataset’s structural
evolution over time. It can also occur that a path is “interrupted”
by a pair of artificial bifurcations that enclose a path segment of
very short duration (Fig. 4 (left) gives an example).

What seems a drawback at first can be turned into an advantage:
instead of smoothing the dataset we filter the resulting set of singu-
larity paths by removing paths that last less than e.g. one timestep.
Filtering can be applied on the structural graph directly and can
be implemented in an efficient way by first removing edges that
represent paths with short duration and successively removing all
isolated vertices. In our experiments, we found this method to be
very effective in treating noisy datasets. It turns out that conven-
tional smoothing does not significantly reduce the number of artifi-
cial singularities. It however affects the structure of the dataset in
such a way that the structural evolution is obscured or changed (this
is especially true for minimum/maximum tracking as described in
the next paragraph).

5.2 Tracking of minima and maxima

The presented algorithm is concerned with tracking singularities in
vector fields. By applying the above approach to gradient fields of
scalar quantities, we are able to track the evolution of minima and
maxima throughout time by following the paths of the associated
singularities in the gradient fields. The algorithm can be directly
applied to this modified problem. The resulting structural graph
can then be filtered to only include paths of single singularities,
i.e. attracting and repelling nodes. Note that while minima and
maxima do not necessarily appear in pairs, they are still created
and destroyed at bifurcations in the structural evolution. Although
e.g. saddle points in the gradient field might have some physical
meaning as well, we did not consider them in our examples (see
Section 6).

5.3 Visualization

The structural evolution of a vector field is basically a graph whose
vertices have a total of four coordinates (3D space + 1D time).
Representing the paths of singularities in three-space directly turns
out to be non-intuitive, and adding temporal information to the
presented locations via color-coding or animation does not help.
Therefore, we approach the problem by first reducing the dimen-
sion from four to two by a change of coordinates.

In one of our examples (cf. Section 6), the dataset is highly rota-
tion symmetric and singularities appear and move on the symmetry
axis only. Their complete evolution is then easily represented in a
2d diagram. However, the other example is much more intricate,
and there is no canonical axis to represent the movement of the sin-
gularities. If the positions of all singularities at all times are taken
into account, then we are able to determine the principal spatial
direction and the common center of their movement by evaluating
the zeroth and first order terms of the corresponding principal com-
ponent analysis. This provides a single spatial coordinate along
which to describe the location of singularities. For more compli-
cated datasets, higher order terms of the PCA and interpolation can
be drawn upon to generate a curved coordinate. The resulting two-
dimensional diagrams quickly enable the viewer to discover key
points in the structural evolution that can then be analyzed in detail
with other methods.
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6 RESULTS

We have applied our algorithm to two different time-dependent
datasets of CFD simulations performed by the German Aerospace
Center (DLR)/Go6ttingen using their TAU code. Both take the form
of a velocity field provided on the vertices of an unstructured grid
consisting of tetrahedra, pyramids and prisms. Although the simu-
lations are based on problems that show some degree of symmetry,
the computation was performed on the full domain. While the can
dataset retains the symmetry of the original problem, the delta wing
dataset shows increasingly different behavior on both sides of the
wing as time passes.

It is already known that vortex breakdown is associated with the
occurrence of (pairwise) stagnation points, therefore we have ap-
plied the tracking algorithm to the velocity fields first. Furthermore,
there are speculations that both acceleration and signed helicity play
an important role in this context. We have computed these fields for
those datasets and applied tracking to them as well, in the case of
signed helicity (which is a scalar quantity defined as the normal-
ized scalar product of velocity and vorticity)) minimum tracking
was performed (as described in Section 5). Since these computa-
tions involved taking derivatives of the original velocity fields, we
observed strong numerical noise in both helicity and acceleration
yielding many artificial singularities. Using the structural graph fil-
tering method described in Section 5 we were still able to obtain
meaningful results.

The tracking algorithm itself is of linear complexity in both the
number of singularities and the number of timesteps. The most
time-intensive part is the pre-computation of all singularities in a
timestep, for which each cell has to be considered individually. This
is not a drawback of our algorithm but rather a limitation inherent in
this class of tracking algorithms (cf. [15, 13]). If this information is
assumed given, the running times for our examples are on the order
of very few seconds. Since the algorithm only needs two successive
timesteps to do its work, it is possible to integrate it directly into
the CFD simulation. The structural graph for all timesteps can then
be completed in post-processing. This would also allow for online
supervision of simulations that are still in progress. We will next
detail the results for both datasets.

6.1 Can dataset

The simulation describes a can filled with a highly viscous fluid
that is accelerated by rotation of the lower lid. The rotational speed
varies over time, leading to breakdown of the central vortex that
covers the symmetry axis of the can. Due to the high viscosity of
the fluid and the high degree of symmetry the velocity field is of
very good numerical quality. This dataset is very close to being
a standard model of vortex breakdown and consists of about 5000
timesteps on a grid with approx. 4.4 million tetrahedra after decom-
position.

The results are of almost analytical quality (see Figure 5). The
simulation actually shows two occurrences of vortex breakdown
(and two corresponding pairs of stagnation points) and it is inter-
esting to observe how primary and secondary vortex breakdown
successively merge and re-split. Acceleration zeros and helicity
minima show a strong correlation with the onset of the breakdown
process and the bifurcation that creates the two stagnation points.
Before our analysis of the dataset, this correlation was not known.
It is also obvious that the structural graph serves as a kind of “direc-
tory” for the different timesteps by indicating interesting phenom-
ena. Through this, relevant timesteps can be identified quickly and
reliably.

6.2 Delta Wing dataset

In order to study vortex breakdown in aviation, an unsteady simu-
lation of a delta wing configuration was performed. The angle of
attack is increased over time, and the primary vortices eventually
exhibit breakdown. The simulation totals 1000 time steps that de-
scribe the formation and breakdown of the primary vortices over
time. The grid consists of about 18 million tetrahedra after decom-
position. The dataset is somewhat noisy in a numerical sense since
the resolution is still too low in some of the more interesting parts
of the dataset (this is especially true for the vortex breakdown re-
gions). Figure 6 provides an overview showing stream surfaces that
wrap around the primary vortices above the wing (red and blue).
Asymmetric breakdown is clearly visible.

We have used our method on two regions in the dataset that cor-
respond to breakdown on both sides of the wing. After the coordi-
nate transformation (see also Section 5), the structural graph of the
right region (cf. Figure 7) clearly shows the evolution of the stag-
nation points as they move towards the wing. Again, acceleration
zeros and a helicity minimum seem to play a role in formation of
breakdown, although the correlation is not as obvious as in the can
dataset. This is, in part, to be blamed upon the lack in resolution
and the resulting numerical instability of differentiation. Filtering
of the structural graph for the helicity gradient field (whose com-
putation involves a second spatial derivative) reduced the number
of meaningful paths from roughly 1.000 to 4, effectively eliminat-
ing all artificial singularities. The left region is even more complex,
and it is clearly visible how the stagnation points begin to oscillate
and disappear around timestep 730, to be followed by what appears
to be a sequence of short-lasting vortex breakdowns in different
places. In this case, the structure graph helps in grouping the veloc-
ity field singularities that would otherwise just be isolated singular-
ities in the field without any context. Using the structural graph as
a guide to find interesting timesteps in the evolution, we produced
Figure 1 from timestep 760 where the graph indicates the presence
of three successive breakdown bubbles. The stream surfaces shown
are separation surfaces originating in the separation planes of the
(saddle) stagnation points. Although this picture conveys the basic
structure of the breakdown bubbles, for an accurate interpretation
the structural graph is needed.

Figure 6 gives a direct comparison between the evolution of stag-
nation points on the left and right sides and the corresponding flow
structures (displayed by stream surfaces). While the behavior is
almost similar in the beginning, the left side quickly deteriorates.
Again, the structure graph can provide for a direct qualitative com-
parison that is very hard to achieve by other means (e.g. streamlines
or surfaces).

7 CONCLUSION

The objective of the work presented in this paper was to determine
the structural evolution of certain types of complex time-dependent
CFD datasets. First, we have presented a number of theoretical re-
sults about the Poincaré index in three spatial dimensions. It is an
extremely powerful yet intuitively geometric concept of describing
singularities of 3D vector fields and the laws they must obey under
time-varying circumstances. Considering the restrictions imposed
by tetrahedral grids with piecewise linear interpolation in space and
time, we were able to give a robust and straightforward algorithm
to the intended purpose. By providing a temporal overview of the
dataset using the structural graph that is built from singularity paths,
it is possible to quickly determine points of interest in large datasets
with many timesteps. Furthermore, the method has already proven
useful in the analysis of two datasets where the flow exhibits vor-
tex breakdown. Since understanding of this phenomenon is still
incomplete from a fluid mechanical point of view, we believe that



the uncovered interrelations of various quantities can be an impor-
tant step towards a complete explanation. Here, visualization can
show its strength by giving new impulses in fluid mechanics.

Concerning the tracking algorithm, we wish to briefly com-
pare our approach to the more general one of Theisel and Sei-
del [13]. They approach feature tracking in 2D by defining a three-
dimensional feature flow field, and the singularity paths are obtained
by integrating streamlines in this vector field. The method is ag-
nostic of the data representation and could be generalized to 3D.
However, a number of difficulties arise in implementation: first, the
feature flow field is constructed by use of derivatives, which can be
painful to generate with good quality on unstructured grids. Fur-
thermore, it mandates very high integration accuracy especially for
the quite noisy application datasets under consideration here. We
feel that, for the type of grid considered here and the resulting con-
straints on the behavior of critical points, using a set of simple logi-
cal rules to deduce the evolution of singularities (cf. Section 4) has
clear advantages in both speed, relevant especially for very large
datasets, and accuracy. We have, however, not attempted a direct
comparison of the two approaches due to the high implementation
overhead inherent in [13].

There is some space for improvement on the presented material.
The tracking algorithm could be extended to deal with trilinear in-
terpolation to make possible the treatment of CFD grids directly
without the need for prior tetrahedrization. So far, singularities
have not played a significant role in the analysis of vortex break-
down datasets; this has changed with the advent of simulations that
are able to resolve the very complex flow patterns. If a more com-
plete picture of a given flow can be obtained via the structural graph,
the detection of certain types of flow behavior could be automated
based on the graph. With efforts underway to automatically op-
timize the geometries of e.g. aircraft to exclude undesired effects,
the structural graph could provide a robust criterion to indicate their
presence. Vortex breakdown serves as a prime example.

As to the visualization of the structural graph it should be ex-
amined in how far this reduction in dimensionality can be applied
to more general problems. For genuinely one-dimensional phenom-
ena such as vortex breakdown (the stagnation points basically travel
along the vortex core line) our method is certainly appropriate. To
obtain a temporal overview of the dataset structure and isolate re-
gions of interest, the exact spatial location of the singularities is not
critical. Therefore, the PCA we employed will lead to a good sep-
aration of the individual singularities and thereby guarantee a good
depiction of the structural graph.
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Figure 5: Left: Structural graph of the can dataset. The green paths represent the stagnation points in the velocity field. Primary and
secondary breakdown each create a pair of stagnation points. Around timestep 1888, the two phenomena join, only to re-split at timestep 2458
and successively decay. The blue and orange paths belong to helicity minima and acceleration zeros. Note the strong interrelation between the
three quantities. Middle and right: Two snapshots from the can dataset. Separation stream surfaces are started at the singularity positions.
Timestep 1700 shows both breakdowns, whereas the second breakdown has already vanished in timestep 4000 and the first breakdown shows

the typical “mushroom” structure.
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Figure 6: Left: Overview of the delta wing dataset with its two primary vortices above the wings. Stream surfaces wrap around the vortices
and are eventually distorted by vortex breakdown. Note the asymmetrical breakdown structure. Middle and right: Structural graphs for right
and left breakdown. Again a connection between various quantities involved in vortex breakdown can be observed for the right breakdown. In
the left breakdown, several oscillating breakdown structures are visible in the later timesteps.
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Figure 7: Comparison of right and left breakdown structures. Left image: The combined structural graphs make an intuitive comparison
possible. Middle and right: transparent stream surfaces show the distortion of the flow and the intricate flow patterns that make analysis
difficult. The left breakdown does not show the usual breakdown structure and consists of several smaller and independent breakdowns (see

also Figure 1).
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