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Figure 1: Streakline visualization of a 2 TB turbopump data set, with particles colored by pressure. Because the geometry is proprietary, the
pump blades are not shown and some remaining geometry is decimated.

ABSTRACT

This paper describes the methods used to produce an interactive vi-
sualization of a 2 TB computational fluid dynamics (CFD) data set
using particle tracing (streaklines). We use the method introduced
by Bruckschen et al. [3] that precomputes a large number of parti-
cles, stores them on disk using a space-filling curve ordering that
minimizes seeks, then retrieves and displays the particles according
to the user’s command. We describe how the particle computation
can be performed using a PC cluster, how the algorithm can be
adapted to work with a multi-block curvilinear mesh, how scalars
can be extracted and used to color the particles, and how the out-of-
core visualization can be scaled to 293 billion particles while still
achieving interactive performance on PC hardware. Compared to
the earlier work, our data set size and total number of particles are
an order of magnitude larger. We also describe a new compression
technique that losslessly reduces the amount of particle storage by
41% and speeds the particle retrieval by about 20%.
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1 INTRODUCTION

Interactive visualization of data sets containing a terabyte or more
is difficult to do even on the largest systems. Very few systems
have enough memory to hold the data in memory. Out-of-core vi-
sualization using traditional visualization algorithms is impossible
since the data rates of tens of gigabytes per second necessary can-
not currently be achieved. However, it is currently quite possible to
generate multi-terabyte data sets of CFD or physics calculations on
today’s supercomputers. In addition, using PC-class hardware for
the visualization is desirable since this allows scientists to examine
their results on their desktop.

One approach that scales to large data sets is to precompute the
visualization. In most cases, the resulting geometry can be dis-
played interactively. For time-varying data, a visualization can be
computed for each time step, and, if not too large, it can be an-
imated. Otherwise, each frame can be rendered beforehand and
shown as a static movie. However, all of these methods suffer from
a lack of interactivity since the visualization computation must be
repeated whenever the visualization parameters (particle seedpoint,
isosurface value, etc.) are changed.

The approach introduced by Bruckschen et al. [3] for interactive
particle visualization does not have this limitation. By computing
a large number of streaklines from a regular grid of seedpoints and
storing them on disk, a subset of the traces can be retrieved and
viewed interactively. This approach stores the traces on disk in a
format that allows the streaklines to be read from disk quickly. Each
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trace is stored contiguously. In addition, the traces are written to
disk in the order of a Morton space-filling curve [13], also known
as a Peano or z-curve. This ordering reduces the number of disk
seeks required to retrieve a 3D box of seedpoints.

In this paper, we describe several extensions to this work and
the results of applying the resulting system to a 2 TB CFD simu-
lation of a turbopump (see Figure 1). We extend the approach to
allow for particle advection through a data set defined on a multi-
block curvilinear grid, and to extract and save a set of scalar values
for each particle that can be used to color the particles when later
viewed. We also describe how the particle advection can be com-
puted on a Beowulf cluster with a limited amount of memory per
node and how the particle data can be reduced to about 60% of its
original size. Finally, we describe a viewer implementation that in-
teractively retrieves particles from a file server. The viewer uses a
server process that runs on one or more file servers, retrieves parti-
cle data, and sends it to a display process running on a workstation.
The viewer prefetches data from one or more file servers for in-
creased performance.

Overall, this new system completely changes how scientists can
view particles in terascale data sets. Our previous system required
hours to compute an animation of a streakline for a new set of seed-
points. The new system can show a new set of seedpoints in a
fraction of a second.

2 RELATED WORK

Visualization of large data sets has been an area of active research.
A commonly used technique is to precompute the visualization by
saving a series of images or sets of geometry. Two of the many sys-
tems that use precomputation are IBM Visualization Data Explorer
(now OpenDX) [1] and UFAT [11]. Out-of-core visualization is an-
other approach to handling large data sets. Chiang et al. [5] propose
a fast out-of-core technique for extracting isosurfaces using a pre-
computed disk-resident index; Chiang [4] has recently extended the
technique to handle time-varying data. A different out-of-core tech-
nique is to load only the portion of the data needed to produce the
visualization via demand paging [6]. While this technique supports
particle tracing and other visualizations, it does not allow interac-
tive visualization of terascale data sets. Ueng et al. [14] have im-
plemented a different out-of-core particle tracing system that works
with unstructured meshes.

A different large data visualization technique is to stream the
data through a series of filters that produce the visualization, as
proposed by Ahrens et al. [2]. This technique scales to handle very
large data sets, and can be run in parallel. It should allow interac-
tive visualization if the data are not too large and the visualization
is computed on a sufficiently large system. However, streaming
systems are not suitable for particle tracing because streaming re-
quires a priori knowledge of the data access pattern, which is not
available with particle tracing. Finally, Heerman [10] documents
many of the issues encountered when dealing with terascale data
on a day-to-day basis.

3 ALGORITHM OVERVIEW

Our visualization approach has two phases that run at different
times. The particle computation application runs as a preprocessing
step, and the viewer application is used for the interactive visualiza-
tion. The computation application uses the input data set and writes
metadata, particle traces, and scalar values to disk. The viewer ap-
plication shows the particles to the user.

The particle positions are stored in a series of files, one per time
step. Each file has the streaklines computed for each seedpoint
stored contiguously, which allows the streakline to be read with
one disk read. Furthermore, the particle traces are placed in the
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Figure 2: 4×4×4 (left) and 3×3×2 (right) Morton curves.

file according to their Morton order [13], which means that traces
for seedpoints near each other in physical space are usually near
each other in the particle file, further reducing the number of disk
seeks. Scalar values are stored separately, with a separate file for
each scalar and time step combination. If the scalars were not stored
separately, i.e., stored next to the particles in the file, during re-
trieval any unwanted scalar values would either need to be skipped
using additional costly seeks, or read and discarded.

The Morton order is based on a space-filling curve, and is the
same as the ordering seen when performing a depth-first traversal of
an octree’s leaf nodes. Figure 2 shows the Morton order of a 4×4×4
cube. Because the Morton order is only defined for cubes with
powers-of-two sizes, we use a modified Morton order that handles
arbitrary dimensions (one different than described in the literature).
This order is the same one that you would get if you traversed a cube
that was the smallest power of two possible enclosing the desired
array, but did not count elements outside the array. Figure 2 has an
example. The earlier implementation [3] has more details on how
the Morton order reduces disk seeks.

Each file has a header giving the length of each trace, followed
by the particle traces. Unlike Bruckschen et al.’s implementation,
which uses a single trace length for each file, our implementation
stores variably-sized traces, which only contain particles remaining
in the domain. While using a single trace length simplifies the data
access and makes saving the particle trace lengths unnecessary, it
would have increased the amount of uncompressed particle data by
about 33% or 580 GB. We could have limited the excess storage
by limiting the maximum trace length, but doing so would limit
our ability to determine the amount of recirculation and particle
mixing, an important CFD visualization task. Compressing single-
length particle traces would reduce the amount of extra storage, but
we have not investigated this.

We follow Bruckschen et al. by compressing the particles’ 32-bit
floating point coordinates to 16 bits. The 16-bit values are com-
puted by subtracting one corner of the mesh’s bounding box, divid-
ing by the size of the bounding box, and quantizing the resulting
fractions to 16 bits. This quantization cuts the storage in half, and
will not change the visualization in most cases. Given the resolution
of current screens, the quantized particle coordinates should place
the particles on the screen with a position error smaller than a pixel
unless the view only shows a very small fraction of the overall data
set.

Files containing scalar values simply have a series of lists, with
the lists containing the corresponding scalar values for the parti-
cle traces. The scalar values are also quantized to 16 bits, again to
reduce the amount of storage required. This quantization maps a
given range of floating point values to the range of 16 bit values.
Our current process finds this range by computing, in a preprocess-
ing step, each scalar’s minimum, maximum, average, and standard
deviation across the entire data set. The user can then use these val-
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ues to select which range should be saved in the scalar values. In
general, this process may require user intervention to pick the scalar
ranges because the scalars may have outliers that are far beyond the
range of nearly all the scalars. Including the outliers in the range of
allowable scalars can cause a too-small number of unique values to
be saved for the majority of saved scalars, degrading the resulting
visualization. However, the data set used for this paper did not have
outliers, so we used the minimum and maximum scalar values to
specify the range of values to be saved.

Since we do not limit the length of particle traces, the worst-case
total number of particles over all the time steps is proportional to
the square of the number of time steps. For this data set, the overall
number of particles generated was not very far from the worst case:
it is only 25% less than the worst-case number of particles. This
results in large particle files and very long computation times (see
Section 5). The average number of particles per particle trace will
vary because it depends on data set properties, such as the magni-
tude of the velocity vectors or the size of the domain in the direction
of the fluid flow.

4 CURVILINEAR DATA

Computing particles in a data set using a regular grid [3] is some-
what simpler compared to a curvilinear grid. Particle integration
requires retrieving velocity values at arbitrary points in physical
space. This is straightforward with regular grids, but is more com-
plicated with multi-block curvilinear grids. These grids require
point location code to find a cell enclosing the requested physical
location, and additional code to resolve cases where multiple grids
overlap. We use the Field Model library [12] for accessing velocity
values, which simplifies the retrieval from an application’s point of
view to a single function call once the grid has been read.

An additional complication is that the domain of curvilinear
grids are much more irregular than regular grids, which means that
finding the seedpoints for the particle integration requires a bit more
work. Like Bruckschen et al. [3], we use a regular grid of seedpoint
locations. However, the regular grid of seedpoints is usually evenly
spaced throughout the bounding box of the mesh (the user can spec-
ify a different box of seedpoints if an area is of particular interest).
With many curvilinear grids, most of these initial seedpoints are
outside the grid. In our data set, only 14% of the initial seedpoints
are inside the grid. Figure 3 shows an example of seedpoints spread
over the domain of a 2D curvilinear grid, and shows how the initial
seedpoints can be either inside or outside the domain.

We find the seedpoints inside the grid, the active seedpoints, at
the start of the computation by testing whether each initial seed-
point is inside the grid domain. Our grid varies over time, which
means that holes in the grid that correspond to the interior of a tur-
bine blade can move over time. Thus, we test each initial seedpoint
against a number of different grid time steps; seedpoints inside any
time step are considered active seedpoints. We test twenty time
steps each spaced three time steps apart (i.e. time steps 0, 3, 6,
..., 57). We need to test 60 time steps since that is the amount of
time needed for a blade to advance one blade width, which lets any
initial seedpoint inside a blade at the first time step find that it is
inside the grid domain. Testing every third time step speeds this
initial checking. The number and spacing of time steps to check is
configurable since it is data set dependent.

Once the validity of each initial seedpoint has been determined,
the computation algorithm writes out a metadata file. This file has
the dimensions of the initial seedpoint grid, the box containing the
initial seedpoints, the grid bounding box, the number of active seed-
points, and a value for each initial seedpoint. This value is –1 if the
seedpoint is not active, and is the number of the active seedpoint
otherwise. This array of values is needed because the particle files
only contain traces for the active seedpoints; otherwise the viewer

Figure 3: Example of 2D curvilinear mesh with two grid blocks,
shown in black and blue. Seedpoints are spaced evenly throughout
the grid’s bounding box. Seedpoints inside the domain are colored
green, and those outside are red.

application would not be able to determine which selected initial
seedpoints have particle data, nor the position of the valid seed-
points within the particle files.

Another option with curvilinear grids is to place seedpoints
evenly in computational space. Computational space seeding is
clearly desirable when the scientist would like to see particles
placed around a moving object, such as a rotating turbine blade.
Computational seeding might be considered superior because the
seedpoint density follows the cell density, although the density of
particles in cells will not be constant once the particles have been
advected a significant distance. Our experience with the current
system indicates that computational space seeding is not necessary
for the particle visualizations needed for this data set.

5 PARTICLE COMPUTATION

The particle computation was done on a 49-node Beowulf cluster
(see Section 8). Dividing up the particle computation among the
nodes was straightforward since the calculations for each seedpoint
are independent. However, getting the data to the calculation was
difficult since we obviously cannot load the entire 2 TB data set into
each node’s 1 GB of memory, or even onto each node’s 100 GB
disk. The amount of data needed at once can be greatly reduced by
only loading pairs of time steps (both grid and solution) at a time,
advancing the particles, and then loading the next time step [11].
However, this would still require 1.7 GB of memory, and would
cause a lot of page swapping and low CPU utilization. We use
several techniques to reduce the data and memory requirements, as
described below.

We use the following system architecture. The input CFD data
are stored on a file server with 4.5 TB of disk. Each node reads
the input data it needs from the file server, and sends the computed
particles and scalars to the master node. The master node buffers
the computed particles , and writes them to each output file in order.
The output files are stored on the file server using NFS.

The seedpoints are divided into 196 equal-sized chunks (4
chunks per node). Each chunk of particles is a contiguous sec-
tion of the active seedpoints, sorted by Morton order. Using sec-
tions of contiguous seedpoints means that the particles do not fill
the entire domain. This reduces the amount of solution data that
must be loaded via demand paging, described below. Seedpoints in
different areas of the domain will need different amounts of com-
putation. For example, seedpoints near the domain exit will have
shorter traces than ones near the domain entrance. We give each
node 4 disparate chunks of seedpoints to reduce load imbalances
caused by this effect.

We reduce the memory usage via several techniques:
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• Loading only a pair of time steps at a time, as described above.

• Reducing the particle memory footprint. This is significant
since each node will have about 4 million particles at the
end of the computation. Our initial particle tracing code was
very general (allowing particles constrained to a computa-
tional plane, streaklines or streamlines, etc.) and stored sev-
eral intermediate results for increased speed, and used over
200 bytes per particle. We reduced the memory to 24 bytes
per particle by removing unnecessary features and not storing
the intermediate results.

• Exploiting the regularities in the grid, as described below.

• Using an out-of-core algorithm to load solution data via de-
mand paging, also described below.

5.1 Exploiting Mesh Regularities

The mesh has 35 blocks, or zones, each representing a part of the
domain. Many of the zones contain vertices near various features,
such as turbine blades. Some of the zones rotate over time, such
as those surrounding the rotating blades of the turbine (see Fig-
ure 1; the white gaps show the blade positions). Other zones do
not change over time. Furthermore, many of the zones are rotated
copies of other zones in the same time step, such as the zones that
contain points around each of the blades.

We used the techniques described in [9] to find the regularities
described above and replaced the time-varying mesh (contained in
2400 mesh files) with a replacement mesh that required that only
46% of one mesh file be loaded. The replacement mesh uses three
zones that refer to static data, four zones that rotate over time, 15
zones that rotate over time and can reuse the vertices from another
zone, and 12 zones that are static and can use rotated vertices from
another zone. All of the zones have unique per-vertex flags which
indicate validity and correspondences between zones. Since the
per-vertex flags in the turbopump data set do not vary over time,
only all of the per-vertex flags from a single time step must be
loaded. Using the replacement mesh cuts down the amount of mesh
data by over a factor of 5000. (However, not all of the original mesh
data would need to be loaded if the demand paging techniques de-
scribed below are used.)

The ability to exploit mesh regularities varies according to the
data set. However, we believe such regularities are fairly com-
mon in data sets with time-varying meshes, although time-varying
meshes are not that common. We have seen regularities in a sim-
ulation where the aircraft body rotates, and expect that such regu-
larities would exist in a simulation of an aircraft with rotating pro-
pellers.

5.2 Demand-Paging Solution Data

Because each cluster node computes particles for seedpoints clus-
tered in a few parts of the domain, each node does not access all of
the solution data (the velocity values). We avoid loading unneces-
sary solution data by using demand paging, which is similar to the
virtual-memory system used in most operating systems. This tech-
nique divides each solution file into a number of fixed-size blocks.
When a solution file is opened, a data structure is created that in-
dicates whether a given block is present, and points to the block
if it is. Then, when solution data are requested, the data retrieval
code checks whether the corresponding blocks are present, loads
the blocks if not present, and then retrieves the requested data from
the blocks. The data blocks are allocated from a fixed-size pool
of blocks. If a block is needed when all the blocks are allocated,
an in-use block that has not been recently accessed is chosen and
reused. Each block contains an 8×8×8 cube of solution values,

Size of grid files 381 MB
Size of solution files 476 MB
Number of time steps 2400
Total data set size 2055 GB

Initial seedpoint grid size 35×167×167
Number of initial seedpoints 976,115
Number of active seedpoints 135,443
Total number of particles 293 billion
Particle storage (uncompressed) 1761 GB
Particle storage (compressed) 1021 GB

Table 1: Initial data set and particle data statistics (M=106, G=109).

which reduces the number of blocks needed compared to blocks
of data organized in standard array order. More details about this
technique can be found in [6].

Unfortunately, the computation must wait while a block is loaded
from the file server. We reduce this waiting by using a number of
different threads, each working on a trace from a different seed-
point. When a thread starts waiting for a block of data, a different
thread is made runnable (if one is available) so the processor is kept
busy. This multithreading technique is also used to provide work for
the two processors in each node. We speed the retrieval of blocks
from the file server by using a custom protocol that allows multiple
outstanding read requests, and only sends the requested data. Us-
ing this protocol increases the speed compared to using NFS. See
[8] for more details about the multithreading technique, the remote
protocol, and their associated speedups.

The particle computation algorithm reduces the latency due to
loading solution data by prefetching blocks when a new time step
is started. If the previous time step calculation used files t and t +1,
the new time step calculation will use files t + 1 and t + 2. When
the new step is started, a separate thread finds which blocks are cur-
rently present for file t +1 and quickly loads them for file t +2. This
prefetching is effective because there is a high correlation between
the particle positions, and hence the blocks used, in adjacent time
steps. However, our unsophisticated prefetching scheme will load
all the blocks that were either used in or prefetched for one time
step even if they are not used in future time steps. To reduce the
amount of unused prefetched data, no prefetching is used for every
tenth time step. The spacing of 10 time steps was chosen arbitrarily.

5.3 Particle Computation Performance

The particle computation is fairly slow: the computation for the 2
TB data set took five days on the cluster described in Section 8.
Table 1 shows some statistics about the run. While five days is a
long time, it is much shorter than the weeks required for the original
simulation, which was done on a larger machine. The computation
saved particle locations as well as each particle’s age, pressure, x
component of the velocity field, and velocity magnitude. The x
component of the velocity field can be used to find reverse flow in
the pump.

The main performance limitation of the precalculation is load-
ing the solution data from the file server. The CPU utilization on
each node is quite low at the start of the computation for each time
step since the CPU is waiting for data. Once enough data have
been loaded, the CPU utilization rises to near 100%. Prefetching
data for the next time step during the current time step would re-
duce this waiting period, and it would be best if the prefetching was
done when no other requests for data were outstanding. However,
this would require another time step of solution data to be loaded
into memory, and it does not appear that the additional memory is
available on our current cluster. A second performance limitation
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Figure 4: Compressed file size for particles and three scalars expressed
as a fraction of the original file size, for each time step. The first
two or three compressed files for scalars are larger than 1.5 times the
original file size, and are omitted for clarity. See text for compression
settings. The fluctuations in the pressure file sizes are caused by
pressure waves in the data set.

is the fact that our load balancing is done statically, when the run
starts, by dividing the seedpoints equally between the nodes. Since
seedpoints have traces of varying length, this will cause load imbal-
ances.

We have found that the threading library greatly affects the per-
formance. An earlier particle computation when our cluster was
running a Linux 2.4 kernel took nearly three times as long as the
current run that used a Linux 2.6 kernel. We believe the improved
threading implementation in the 2.6 kernel caused the performance
improvement since our code was not changed significantly. More
evidence that the threading implementation affects the performance
comes from our earlier work [8]. The experiments done for that
paper, done on an SGI system running Irix, showed that the per-
formance using the native sproc() thread library gave much better
performance than the then-new pthreads thread library.

6 COMPRESSION

Since the computed particles use a large amount of disk space, even
after the 16 bit quantization, we have explored compressing the par-
ticle files. We used a prediction preprocessing step that reduced the
entropy of the data as well as the zlib compression library [7], used
by gzip. The prediction step uses particles earlier in each trace to
compute the predicted value, and the difference between the ac-
tual and predicted value is compressed. Using previous values in
a sequence to predict future values is a standard compression tech-
nique. We tried several different prediction methods as well as dif-
ferent zlib compression settings. All of the compression methods
are lossless.

The prediction methods tried were no prediction, and zeroth,
first, and second order prediction. Zeroth order prediction predicts
each particle or scalar value to be the same as the previous parti-
cle. First order prediction uses the formula pi = xi − 2xi−1 + xi−2,

where pi and xi are the i th preprocessed and original particle or
scalar in the trace, respectively. First order prediction predicts that
the particles travel in a straight line. Second order prediction uses
the formula pi = xi −3xi−1 +3xi−2 + xi−3.

The compression results are shown in Table 2, which has the re-
sults if every tenth time step is compressed. The table does not show
the results when the maximum zlib effort setting was used because

Particles Particle Age

zlib setting No 0th 1st 2nd No 0th 1st 2nd

Default 97 66 57 98 79 4.3 5.2 81
Filtered 97 67 57 99 79 4.3 5.2 81
Huffman Only 97 72 59 99 79 15 16 81

Pressure Velocity Magnitude

zlib setting No 0th 1st 2nd No 0th 1st 2nd

Default 57 43 44 70 84 61 59 90
Filtered 59 42 43 72 85 61 58 91
Huffman Only 69 46 45 77 86 66 59 91

Table 2: Size of particle and scalar files as a percentage of the original
data size using the default zlib effort setting. Key to columns: No =
no prediction, 0th = zeroth order prediction, 1st = first order, 2nd =
second order.

it had only negligible effect in nearly all the cases, and in many
cases significantly increased the compression time. Using maxi-
mum effort when compressing the particle age values did slightly
decrease the amount of storage needed from 4.3% to 3.9% of the
original size, but took three times as much CPU time.

By comparing different rows in Table 2, you can see that the
other zlib setting, the compression method, had a significant effect
on the amount of compression in only a few cases. The default
setting and the filtered setting (the latter modifies the algorithm
to work best with preprocessed input data) have nearly the same
compression performance. Using Huffman-only compression gave
about the same compression performance. However, Huffman-only
compression took about half the time to compress the data, and sped
the viewer retrieval process by about 10% since it is a much simpler
algorithm.

Comparing different columns in the table reveals that the predic-
tion method had the most influence on the amount of compression.
Not using any prediction did not get much compression of the par-
ticles, and allowed some compression of the scalar values. Using
zeroth or first order prediction gave about the same amount of com-
pression, and gave the best results. Second order prediction per-
formed the worst. An explanation for this is that the second order
prediction’s assumption that the first derivative is constant is false.

The compression ratios for the particles and different scalar val-
ues were quite different. The ratios for particles and velocity mag-
nitude values were about the same. Particle ages compressed very
well; the best results had over 20 to 1 compression. This is not sur-
prising since the ages for particles in a given trace, if all particles
are still active, is a sequence of ages amax,amax − 1, ...1,0, where
amax is the maximum particle age. Particles that have been deleted
cause gaps in the sequence. Comparing the ratios for pressure and
velocity magnitude show that the compression is data-dependent.

We have chosen to use two compression settings. When com-
pressing particles, pressure values, and velocity magnitude values,
our implementation uses first-order prediction, Huffman-only com-
pression and the default effort setting. This results in slightly larger
files, 59% of the original size instead of 57%, but increases the
viewer performance. We use a different setting when compressing
particle ages: zeroth-order prediction, standard compression algo-
rithm, and the default effort setting. This gives an excellent level of
compression without long compression times.

These compression times were used in Figure 4 to show how the
compression ratio varies over the time steps. The initial time steps
did not compress at all because the compression algorithm does not
work well on very short sequences, and because the increased book-
keeping data used in compressed files is noticeable with very short
traces. The amount of storage reduction decreases quickly once the
traces have about 100 particles. The compression ratio then slowly

357



drops to about 30% as the trace length increases. A possible expla-
nation for the smaller compression ratio is that more fully evolved
traces are much more complex than short traces, which results in
less compression.

The particle file format is slightly different with compressed par-
ticle traces. Instead of storing the number of particles in each trace
in each file’s header, we store the compressed size of each parti-
cle trace, which requires a 32-bit integer. The 16-bit particle count
is moved to the beginning of each trace. Including the count al-
lows the compression algorithm to store uncompressed traces if the
traces cannot be compressed, and also simplifies allocating memory
for the uncompressed traces. Files with scalar values also have a
header indicating the compressed size of each list of scalars. These
files do not have the particle counts since they are already stored in
the particle trace files.

Compressing the particle traces and scalars is currently done as a
post-process to the particle computation, and takes about a day due
to limited disk bandwidth. If the compression was done during the
particle computation, it would add only about 90 minutes of time to
the run since the particles would already be in memory.

7 VIEWER

Once the particle traces have been computed, a separate application
allows the traces to be viewed interactively. The viewer application
has two components, which are separate programs: a workstation
component, which runs on a workstation and handles user inter-
action and graphical display, and a server component, which runs
on the file server and reads the requested traces from disk. The
two components communicate using a custom protocol and a TCP
connection. For increased performance during animation, multiple
instances of the server component can be run on one or more file
servers, providing interleaved access to time steps.

The viewer allows interactive manipulation of the viewpoint and
the selected seedpoints. It also allows interactive manipulation of
the current time step or allows time to move forward automatically,
animating the particles. Seedpoint selection is done using a selec-
tion box widget, which allows arbitrary axis-aligned selections. The
widget allows changing the size or position of the selection via a di-
rect manipulation interface. An additional viewer feature is that the
viewer allows other precomputed geometry, such as surfaces or cut-
ting planes, to be displayed with the particle traces. The geometry
can be static, time-varying, or rotating at a constant rate. The addi-
tional geometry allows the particles to be visualized in the context
of the overall data set. Finally, the viewer allows the particles to
be colored according to one of the scalar values saved during the
computation step.

The viewer was written with attention to performance. When
the particles are being animated, it overlaps the display with the
retrieval of the next time step’s particles. Particle retrieval is opti-
mized by reading multiple adjacent particle traces in a single I/O
request. Unlike the implementation by Bruckschen et al., our im-
plementation does not read particle traces that are not needed in
the interest of reducing the number of disk seeks. We compared
the performance of a viewer implementation that read unnecessary
data to one that read only the necessary data, and did not see any
speedup. Thus, we chose the simpler implementation, the one that
reads only the needed data.

The viewer operates differently depending on the interaction
mode:

• Time held constant and selection box modified. In this
mode, the viewer requests any necessary particle traces and
scalar lists from the server. Retrieved traces are saved in mem-
ory to avoid retrieving the same trace multiple times. The
cache is flushed when the current time step is changed.

• Time modified and selection box held constant. The viewer
requests the particle traces for each requested time step and
displays them.

• Time animated and selection box held constant. When the
particles are animating, the workstation component fetches
the next time step’s particles while the current particles are
being displayed. The server component sends the requested
particles, and, if time is available, fetches particles for the next
time step, which is two time steps ahead of the time step being
displayed.

• Time animated and selection box modified. This mode is
similar to the previous mode except that the modified selec-
tion box causes the prefetching to not retrieve all of the neces-
sary particles. The workstation component requests the miss-
ing particles via a second request. Unfortunately, this sec-
ond request slightly decreases the response rate. This is par-
tially alleviated by applying selection box changes to the next
frame’s prefetch request.

8 EQUIPMENT

The particle computation was done on a 49 node Beowulf cluster.
Each node had two 1.67 GHz Athlon MP processors and 1 GB of
memory, and had a Fast Ethernet network connection. The master
node was similar but had 2 GB of memory and Gigabit Ethernet.
The input data as well as the computed particles were stored on a
pair of file servers. Each had two 3 GHz Xeon processors, 4 GB
of memory, dual channel-bonded Gigabit Ethernet, and 21 250 GB
data disks. These IDE disks were organized into three hardware
RAID 5 arrays that were then striped using software, resulting in
4.5 TB total storage per system. The viewer timings were done on
a workstation that had two 3 GHz Xeon processors, 4 GB memory,
Gigabit Ethernet, and a NVIDIA Quadro FX 3000 graphics card.
All the systems ran Fedora Core 2 Linux.

9 PERFORMANCE

We measured the speed of the viewer application for a few different
configurations so we could gauge its overall speed, and quantify the
effect of using compression, different numbers of servers, and dis-
playing particles colored by scalar. All of the measurements used
the turbopump data set and the same set of particles and seedpoints.
Each run measured the time the viewer application took to retrieve
a static selection of seedpoints for each of the time steps in the sim-
ulation. The performance figures are for runs that do not include
any additional reference geometry in the viewer.

We measured several different configurations, as shown in Ta-
ble 3. One configuration used uncompressed particles; the others
used compressed particles and different combinations of either one
or two servers, and no scalars, particle age, and pressure. Each con-
figuration was run using two different particle selections: a small
selection near the middle of the pump and a larger one near the
pump’s inlet. Table 3 gives some statistics about the selections and
the resulting performance, and Figure 5 shows a few representative
frames of the visualizations resulting from the two selection boxes.

The small selection box contained a 5×7×8 array of seedpoints
and had one row of missing seedpoints because the box was not
entirely in the domain. The frame rate when using this selection,
uncompressed particle traces, and one server was 5.1 frames per
second. Using compressed traces increased the speed to 6.1 frames
per second, an 18% speedup. Adding a second file server doubled
the frame rate to 12.2 frames per second. When running with com-
pressed particles, the viewer has the frame rate that is high enough
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Small Large
Statistic Selection Selection

Number of seedpoints 275 512
Average number of particles 266,158 577,192
Maximum number of particles 420,035 1,091,097
Average trace length 968 1,127

Average Frame Rate Servers Small Large

Uncompressed particles 1 5.1 2.6
Compressed particles 1 6.1 3.1
Compressed particles 2 12.2 6.4
Comp. particles with age 1 3.5 2.0
Comp. particles with age 2 6.5 3.9
Comp. particles with pressure 1 2.4 1.2
Comp. particles with pressure 2 4.5 2.4

Table 3: Statistics (top) and viewer performance (bottom) for two
selection sizes. The frame rates are given in frames per second.

to allow easy interaction. The frame rates when showing scalar val-
ues mapped onto the particles were significantly lower since data
must be retrieved from two files instead of one.

The large selection box contained an 8×8×8 array of seedpoints.
This is the same number of seedpoints used in the measurements by
Bruckschen et al. [3]. However, our visualization had a larger av-
erage trace length, 1,128 particles, than the maximum trace length
of 130 particles used in the earlier paper. (Of course, comparisons
between the two implementations and data sets are difficult due to
equipment differences.) The frame rate with the larger selection
box and uncompressed particle traces was 2.6 frames per second,
which is a bit low. Using compressed traces on one server increased
the frame rate by 23%, to 3.1 frames per second. Animating the par-
ticles using compressed traces and two file servers ran at 6.1 frames
per second, nearly twice the speed.

Overall, using particle trace compression results in a noticeable
performance improvement in the viewer. In addition, using two
servers instead of one adds a large performance boost since disk
reads can be done in parallel.

The above measurements only give performance information for
one mode of operation: when the particles are being animated with
a static selection box. Other modes have different performances.
Changing the selection while animating has somewhat lower per-
formance since the particle prefetching does not retrieve all of the
needed particles. Interactively modifying the time step is also a bit
slower since prefetching cannot be used. However, changing the
selection box when time is held constant is quite fast. It is fast be-
cause many of the particle traces displayed with the previous selec-
tion box can be reused with the new selection box since the boxes
almost always overlap.

10 CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the method of visualizing particle
flow by precomputing particle traces for later retrieval and display
can be scaled to handle multi-terabyte data sets and more than a
terabyte of particles. We have discussed the necessary modifica-
tions to Bruckschen et al.’s original algorithm that allow a data set
with a curvilinear mesh to be used, that allow the particle compu-
tation to be done using a PC cluster, and allow scalar values to be
extracted and used to map color onto the particles. In addition, a
new compression technique allows the particle traces to be com-
pressed by 41%, saving a significant amount of storage space, and
also improves the interactive viewer performance by roughly 20%.
Overall, we have demonstrated a visualization system for a multi-
terabyte CFD data set that decreases the turnaround time for seeing

the results from changing the location of a streakline’s seedpoint
location from hours to a fraction of a second.

Future work includes improving the speed of the particle compu-
tation, either by improving the prefetching algorithm or by imple-
menting dynamic load balancing. We would also like to improve
the viewer by adding conditional display of particles based on their
scalar value. For example, a conditional display of particle ages
could allow the display of timelines, where particles are emitted
every n time steps.
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Figure 5: Two particle trace visualizations of the turbopump data set. The left column images show a visualization using a small selection box
in the middle of the domain, and the right column images show a larger selection box near the inlet. The images in the three rows show the
visualizations at time steps 300, 1200, and 2100 (respectively, top to bottom). The particles in the images on the right are colored according
to their age. Because the geometry is proprietary, the pump blades are not shown and some remaining geometry is decimated.
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