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ABSTRACT

Coloring higher order scientific data is problematic using standard
linear methods as found in OpenGL. The visual results are inaccu-
rate when there is a large scalar gradient over an element or when
the scalar field is nonlinear. In addition to shading nonlinear data,
fast and accurate rendering of planar cuts through parametric ele-
ments can be implemented using programmable shaders on current
graphics hardware. The intersection of a planar cut with geometri-
cally curved volume elements can be rendered using a combination
of selective refinement and programmable shaders. This hybrid al-
gorithm also handles curved 2D planar triangles.

CR Categories: G.1.8 [Numerical Analysis]: Partial Differen-
tial Equations—Finite Element Methods; I.3.3 [Computer Graph-
ics]: Picture/Image Generation—Line and curve generation; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Color, Shading, Shadowing, and Texture;

Keywords: Higher Order Elements, Programmable Shaders, Cut-
planes

1 INTRODUCTION

Numerical methods are widely used throughout academia and in-
dustry to solve physical problems when experimental data is diffi-
cult to obtain. The details of these methods can vary greatly, but
they all essentially solve a set of governing equations by discretiz-
ing the domain of interest and solving an analogous formulation at
the discrete points or nodes. Once a solution has been generated for
these nodes, then data over the entire domain can be obtained by
interpolation. The simplest way to interpolate is to assume linear-
ity within each cell based on the vertices that support that element.
There are a number of ways available to then view this data, since
most visualization techniques are based on the assumption of lin-
ear interpolation. However, there are many situations in which it
is advantageous to solve the discrete equations using a non-linear
basis or higher order elements [4, 10]. This can mean using any-
thing from the polynomial Lagrange basis to a hierarchical basis
or spectral elements. One obvious difficulty with using higher or-
der numerical methods is that there is no simple way to visualize
the data in its native form (since most current visualization soft-
ware uses a linear basis). This renders higher order methods much
less useful. Understanding of numerical results and new insight is
often only possible when one can accurately visualize the massive
amounts of data produced.

Accurate rendering of nonlinear data cannot be performed ef-
ficiently using only the standard OpenGL API, since all OpenGL
primitives are inherently linear. Higher order data can be interpo-
lated and rendered quite simply and quickly by utilizing the flexibil-
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ity of modern graphical processing units (GPUs). In addition to ren-
dering surfaces, one important technique used in scientific visual-
ization is the generation planar cuts through 3D field data. This can
be accomplished through a combination of selective refinement of
the elements and accessing programmable shaders inside the GPU.

2 PREVIOUS WORK

3D graphics APIs like OpenGL are designed to use planar prim-
itives because of the simplicity of the resulting algorithms. This
ability to render linear elements can be leveraged to visualize non-
linear surfaces through polygonization, which essentially translates
the higher order surface into one that is piecewise linear. This
method was used in [1] to render parametric surfaces, while an
adaptive refinement method was used in [11] to subdivide implicit
surfaces. This was then generalized to handle both implicit and
parametric surfaces with a multi-resolution hierarchical structure in
[12]. These methods are able to sample the higher order data in way
that can be handled by traditional visualization algorithms (i.e. at
the end linear elements are produced).

A hierarchical approach was also used by [6] and [13] in the di-
rect visualization of higher order data. In [13], volume visualization
was accomplished by ray casting through both straight-edged and
curved quadratic elements. Isosurface extraction was performed by
approximating the surface by quadratic patches in parameter space,
transforming them to physical space, and rendering the resulting
quartic functions through higher order patch rendering in hardware.
Texture shaders and register combiners were used in [7] to visualize
higher order hexahedra. The hardware limitations of using texture
shaders and register combiners can be avoided by instead using a
fully programmable shading language like Cg [3].

3 DISCONTINUOUS FEM

One popular group of numerical techniques, the Finite Element
Methods (FEM), are particularly convenient when dealing with
complex geometries or unstructured computational meshes [10].
FEM simplifies the solution scheme by mapping every element in
the mesh to a master reference element, and then scalar interpola-
tion can be performed using shape functions as a basis. Regardless
of the basis used in the computational solver, the data can be easily
converted to any other basis of the same order, so only the Lagrange
basis will be discussed. Furthermore, only simplicial elements will
be considered.

When rendering continuous data, neighboring elements share
both the location and field data of common nodes. The use of col-
lected primitives (polytriangles, quad meshes and etc.) can speed
up the display time since the support data needs to be passed along
the graphics pipeline fewer times. However, the direct goal of this
research was to visualize flow solutions generated using the Dis-
continuous Galerkin (DG) method [4], [2]. As such, any scheme
developed should be able to naturally handle discontinuities (at el-
ement faces) in the scalar fields being visualized. The simplest way
to accomplish this is for each element to independently store data
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for all of its basis nodes, similar to [8]. Even though the physical lo-
cation of shared nodes is the same between neighboring elements,
nodes must be respecified for each element in which they appear.
The goal is to have a method that allows for easy handling of both
continuous and discontinuous data with the acknowledgement that
there will be some lose of the speed benefits in comparison to the
use of collected primitives for continuous data.

3.1 Reference Element Interpolation

In general, a triangular element T has a scalar interpolant of order p
and q degrees of geometrical freedom. The degrees of freedom de-
termine if and how the sides of T are curved, and the order of inter-
polation determines how many nodal values of the scalar function
are needed to specify the interpolant. For example, a p3q2 trian-
gle would have a cubic polynomial scalar interpolant and quadratic
geometry.

Using the Lagrange basis, every element in the mesh can be

mapped to a reference element. The reference coordinates, x̄, are
aligned so that the component xi is 1 at vertex i of the reference el-
ement and 0 at all other vertices. Note that there are 3 reference co-
ordinates in 2D and 4 reference coordinates in 3D. The extra degree
of freedom is removed by requiring that the coordinates identically
sum to 1, i.e. ∑ixi = 1. The nodal shape functions fi are defined so
that at each node n j:

fi(n j) =

{

1 if i = j
0 if i 6= j

(1)

Given a scalar function with nodal values si at node ni, the value
of the scalar interpolant s(x̄) at a point x̄ is given by:

s(x̄) = ∑
i

sifi(x̄) (2)

It is convenient to scale the nodal values so that the scalar inter-
polant is contained in s ∈ [0,1]. Once the value of the scalar in-
terpolant is found at a point, the color at that point is defined by
some arbitrary colormap. One standard choice of a colormap is the
spectral colormap shown in fig. 1.

0.0 0.25 0.5 0.75 1.0

Figure 1: Spectral Colormap

In addition to nonlinear scalar data, the geometry of the element
can be curved. Only the coordinates of each node in physical space,
pi = {xi,yi,zi}, need to be specified, and then the geometry of the
element is interpolated in the same manner as the scalar field using
eq. 2. As a matter of practice in computational meshes, there will
be q > 1 elements conforming to the curved boundaries and linear
q = 1 elements on straight boundaries and in the interior. At times
q > 1 interior elements may be seen when there is a stretched mesh
near a curved boundary. This ensures positive volumes and well-
behaved interpolation.

3.2 Dimensional Hierarchy

Given physical coordinates at the nodal points, the px reference el-
ements map to some curved region in physical space, called a px

tetrahedron in 3D, a px triangle in 2D, and a px line in 1D. The
four faces of a px tetrahedron can be mapped to the 2D reference
element, so each face can be described as a px triangle. Similarly,
the three edges of a px triangle can be described as a px line. Thus
the simplicial elements form a dimensional hierarchy where a px

simplex of dimension n contains px simplices of dimension n−1.

Figure 2: p2 Shader Figure 3: p3 Shader Figure 4: p4 Shader

This concept of a dimensional hierarchy is not restricted to the
faces and edges. Any planar polygon in the 3D reference space can
be triangulated into curved triangles, and any line segment in the
2D reference space can be described as a higher order line. How-
ever, not all curved regions can be described as a px line, triangle, or
tetrahedron. Any nonlinearity in the reference space will be com-
pounded in the mapping, and the resulting interpolation will not be
px.

4 SHADING PARAMETRIC ELEMENTS

In order to visualize a parametric element with scalar values, si, at
each node, eq. 2 must be implemented in some manner. OpenGL
alone can only do this by refining the triangle or generating a texture
map. Both of these methods become extremely slow as the num-
ber of triangles increases. An alternative is to use the programma-
bility in the GPU exposed by graphics languages like Cg. This
is where great performance gains can be obtained. The GPU can
inherently use the parallelism in these operations because the ras-
terization phase generates a pixel at a time (with no dependence on
neighboring pixels). The processor can parcel out each pixel in the
fragment to the number of raster engines available in the specific
graphics hardware.

Eq. 2 can be implemented in a fragment shader by defining tex-
ture coordinates at each vertex as the vertex’s position in reference

space, x̄, and then evaluating the shape functions in the fragment
shader. The results of this shader on one triangle is shown in fig. 2.
Figs. 2, 3, and 4 show the results for the p2, p3, and p4 shaders
respectively. Note that Gouraud coloring would produce a constant
color triangle for each case.

Because Gouraud shading interpolates in color space, coloring
artifacts are seen when using the traditional OpenGL pipeline to
render triangles with large gradients. This problem is avoided in
the fragment shader because full scalar interpolation (even for p1)
is performed and the color applied as a last step via the colormap
data.

4.1 Performance

Evaluating the p2 interpolation in the fragment shader involves
more work than standard Gouraud shading. But as the number of
vertices in the scene increases, the cost of transforming the vertices
(which in most cases cannot run in parallel) overwhelms the ex-
tra cost of the fragment shader. As shown in fig. 5, when drawing
4050 triangles, Gouraud shading is 4 times faster than p2 inter-
polation done in a programmable shader, but when the number of
triangles is increased to 129600, Gouraud shading is only slightly
faster than Cg. When drawing 4050 triangles, 1 level of refinement
is faster than the Cg. When drawing more triangles however, the
programmable shader is faster than 1 level of refinement and orders
of magnitude faster than higher levels of refinement. Considering
that programmable shaders are as accurate as refining to the pixel
level, it is clear that programmable shaders represent a significant
improvement in visual accuracy while running at nearly the same
speed as standard linear shading. This is the compelling argument
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Figure 5: Performance of p2 Interpolation

for the customized use of GPUs in handing non-linear interpola-
tion. Note: the run times were generated on a P4 2.53 GHz pro-
cessor with 1Gb of memory and an nVidia GeForceFX 5800 ultra
graphics card running under LINUX.

5 CUTPLANE INTERSECTION

Consider the analytical description of the intersection of a plane
cutting through a geometrically curved q2 or q3 parametric domain.
This intersection is the union of intersections with each individual
element, so the problem can be simplified to finding the cutplane
intersection with a single element. The discussion will focus on q2

and q3 elements, but the method extends naturally to higher orders
of parametric elements.

A convenient way to describe the cutplane is by some point p0 on
the plane and the normal to the plane n. Then, the signed distance
d of any point p to the plane is given by

d = (p− p0) ·n (3)

The distance di from the nodal points to the cutplane is calculated,
and this distance can then be interpolated at any point. Thus, the

intersection of the surface and the plane is the locus of points x̄ that

satisfy the equation d(x̄) = 0.

5.1 Selective Refinement

In order to accurately visualize nonlinear data, the interpolation
must be sampled at some set of discrete points. Since the inter-
section can be described implicitly, it could be polygonized using
the method of [11]. While this technique accurately samples a gen-
eral implicit surface, it does not take advantage of the fact that the
intersection is planar.

The simplest approach is uniform refinement (UR), which homo-
geneously subdivides the q2 element, and then treats subelements
as linear by passing them to the standard marching cubes algorithm
[9]. However, as suggested by [5], this can be improved upon given
an element T with nodal values si, since the scalar field can be
bounded. Start by defining:

smin = mini si s− = 1
2 (smax − smin)

smax = maxi si s+ = 1
2 (smax + smin)

(4)

then

s(x̄)− s+ = ∑
i

(

si − s+
)

fi(x̄)

≤ ∑
i

(

smax − s+
)

fi(x̄)

= s−∑
i

fi(x̄)

≤ s− max
x̄∈T

∑
i

fi(x̄)

taking absolute values

∣

∣s(x̄)− s+
∣

∣≤
∣

∣

∣

∣

∣

s− max
x̄∈T

∑
i

fi(x̄)

∣

∣

∣

∣

∣

≤ s− max
x̄∈T

∑
i

∣

∣fi(x̄)
∣

∣ (5)

and noting that for the 3D q2 shape functions,

max
x̄∈T

∑
i

∣

∣fi(x̄)
∣

∣= 2 (6)

which leads to the bounds

smin − s− ≤ s(x̄) ≤ smax + s− ,∀x̄ ∈ T (7)

For the 3D q3 shape functions,

max
x̄∈T

∑
i

∣

∣fi(x̄)
∣

∣=
16+5

√
5

9
≤ 3.021 (8)

which leads to the bounds

smin −2.021s− ≤ s(x̄) ≤ smax +2.021s− ,∀x̄ ∈ T (9)

The cutplane M will intersect T if d(x̄) = 0 at some point x̄
inside the element. If 0 lies outside the bounds, then T is not in-
tersected, but since the bounds of eqs. 7 and 9 are not tight, T
is not necessarily intersected just because 0 is inside the bounds.
Still, whether or not d = 0 lies outside the bounds can be used as
an effective criterion to reject or further refine in a linear selective
refinement (LSR) scheme, which treats the final subelements as lin-
ear just as in UR. LSR is a more efficient algorithm, since it refines
coarsely away from the intersection, and thus handles many fewer
subelements. By themselves, eqs. 7 and 9 only dictate whether the
element should be refined, they do not specify how. The simplest
method is to break the element into equal pieces, and then reap-
ply the bounds to the subelements. However, a more sophisticated
adaptive refinement algorithm that seeks to refine where the gradi-
ents in the scalar field are highest[6] could be applied.

Even this algorithm is problematic, since the rendering time of
LSR is O(V ) where V is the total number of vertices that are sent
through the graphics pipeline. In order to achieve visual accuracy
the refinement must be taken to essentially the pixel level as can
be inferred from the simpler results seen in fig. 5. An alternative
is to utilize the parallel nature of current graphics hardware by per-
forming the necessary data sampling in the programmable shaders.
This allows the nonlinear data to be resolved to the pixel level while
sending much less data down the pipeline.

6 SHADOW METHOD FOR CUTPLANE RENDERING

Though there is a great deal of flexibility when dealing with indi-
vidual fragments through it Cg, OpenGL is still constrained in the
construction of geometry. All pixels passed to the fragment pro-
gram are a result of the rasterization of a planar primitive. Let such
a linear primitive which lies in M and which will completely cover
the intersection I be the shadow of the intersection. The two main
questions to answer are how to generate a shadow and how to shade
the fragments in the shadow.
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6.1 Determining The Shadow

The shadow primitive should completely cover the intersection so
that there are no gaps seen in the final image. Finding a reasonably
small shadow is more important than finding the absolute minimal
area. The result of too large a shadow is that many pixels will be
discarded, which entails additional work in the GPU. The additional
effort of finding a smaller shadow must be balanced with the benefit
of sending fewer fragments through the GPU’s pipeline.

f i

ri

ci

i

Figure 6: q2 Orthographic
View

f i

ri

ci

d
i

pi
j

i

Figure 7: q2 Side View

To generate the shadow, the curved element is first bounded with
a congruent q1 tetrahedron C. Call the linear tetrahedron defined
by the four main vertices of the element the reduced tetrahedron R.
Each face of C will be parallel to R, as shown in fig. 6 and fig. 7.
For each main node i of the element, the opposite face is f i, the
corresponding face of the reduced tetrahedron is ri, and the parallel
face of the congruent tetrahedron is ci. C can then be described
by the distance di that each ci is offset from each ri, as shown in
fig. 7. If di ≥ 0, then C always completely contains R. Finding the
minimal values of di would require solving:

d
i = max

x̄∈ f i

pi(x̄) such that d(x̄) = 0 (10)

where pi(x̄) is the projected distance of f i(x̄) to ri, and d(x̄) = 0

constrains x̄ to M. Finding this maximum value of pi is possible,
since it is just a constrained optimization problem, but it requires

having the parameterization of d(x̄) = 0 and is not worth the effort.

To simplify the process, remove the restriction that d(x̄) = 0,

and try to ensure that ci lies outside the entire curved face f i. Let
a

i and b i be disjoint sets of nodes, where the main nodes of ri are
in a i and the other nodes on f i are in b i. For a q2 element, b i is
just the set of mid-edge nodes on f i, and for a q3 element, b i is the
set of the 6 mid-edge nodes and the center node. Also, pi

j = 0 for

j ∈ a i since the projected distance to a plane of the three points that
define that plane is zero. Let:

pmax = max(max
j∈b i

pi
j,0) (11)

then pi can be bounded by:

pi ≤ max
x̄∈ f i

pi(x̄)

= max
x̄∈ f i

∑
j

pi
jfj(x̄)

≤ pmax max
x̄∈ f i

∑
j∈b i

∣

∣fj(x̄)
∣

∣ (12)

for a 2D q2 triangle:

max
x̄∈ f i

∑
j∈b i

∣

∣fj(x̄)
∣

∣=
4

3
(13)

yielding:

pi(x̄) ≤ 4

3
pmax = d

i (14)

This provides a quick way to size the congruent tetrahedron while
retaining the property that C contains the entire cutplane intersec-
tion, since the bound on di in eq. 14 ensures that ci will at worst be
tangent to f i.

Now, after the congruent tetrahedron is found for a particular
curved element, the standard linear cutplane algorithm is applied to
C to determine the shadow primitive. One problem with this ap-
proach is that it can sometimes generate a shadow for an element
that does not intersect M (e.g. C has one corner clipped by the
cutplane). This could be avoided by refining the element and reap-
plying eq. 7, but these empty shadows are not a problem in practice.

Generating the congruent tetrahedron for a q3 element is more
complicated, but essentially the same process. A face of a q2 tetra-
hedron can only be purely concave or convex, while it is possible
for the curvature of a q3 face to have an inflection point or curve. A
q3 face can be classified into one of three groups based on the signs
of the pi

j:

• Mixed: ∃ j,k ∈ b
i such that pi

j > 0 and pi
k < 0

• Nonnegative: pi
j ≥ 0, ∀ j ∈ b

i

• Nonpositive: pi
j ≤ 0, ∀ j ∈ b

i

Define for a q3 face:

pmin = min
j∈b i

pi
j

p∗max = max
j∈b i

∣

∣

∣
pi

j

∣

∣

∣

p′max = max( max
j∈b i, j 6=9

pi
j,0) (15)

For a mixed q3 triangle:

max
x̄∈ f i

∑
j∈b i

∣

∣fj(x̄)
∣

∣=
11+160

√
10

243
< 2.128 (16)

This maximum value occurs at 3 symmetric points, one of which
is:

x̄ =

(

11−2
√

10

27
,

11−2
√

10

27
,

5+4
√

10

27

)

≈ (0.173,0.173,0.654) (17)

Call a q3 face nonnegative if all of the pi
j ≥ 0. This does not

imply that pi(x̄) > 0 everywhere, and such a face can be either
convex or inflected. For a nonnegative q3 triangle:

max
x̄∈ f i

∑
j∈b i

∣

∣fj(x̄)
∣

∣=
9

8
(18)

This maximum value occurs at the middle of each edge, that is the
3 points symmetric with:

x̄ =

(

1

2
,

1

2
,0

)

(19)

The bound in eq. 18 can be improved in one special case, when the
projected distance of the center node ( j = 9) is greater than eq. 18
applied to the other nodes in b i:

pi
9 ≥

9

8
p′max (20)

412



which implies:

pi(x̄) ≤ pi
9 (21)

Call a q3 face nonpositive if all the pi
j ≤ 0. Unlike a q2 face, this

face is not necessarily purely concave. Even if no pi
j is positive,

pi can still extend past ri. Bounding the maximum value of pi is
a little different for a nonpositive face, since a term pi

jfj in the

interpolation will only be positive if fj < 0. Therefore define H to
be a step function:

H(x) =

{

0 if x ≥ 0
x if x < 0

(22)

Thus,

pi ≤ max
x̄∈ f i

pi(x̄)

= max
x̄∈ f i

9

∑
j=0

pi
jfj(x̄)

≤ max
x̄∈ f i

∑
j∈b i

pminH
(

fj(x̄)
)

= pmin min
x̄∈ f i

∑
j∈b i

H
(

fj(x̄)
)

(23)

For a q3 face:

min
x̄∈ f i

∑
j∈b i

H
(

fj(x̄)
)

=
20−14

√
7

27
> −0.632 (24)

This minimum value occurs at the 3 points symmetric with:

x̄ =

(

4−
√

7

9
,

4−
√

7

9
,

1+2
√

7

9

)

≈ (0.15,0.15,0.7) (25)

Combining eq. 24 with eqs. 16, 18 and 21 suggests the following
logic to compute di for a general q3 element:

d
i =











2.128p∗max if pmin < 0, pmax > 0 (Mixed)
−0.632pmin if pmin < 0, pmax = 0 (Nonpositive)

1.125pmax if pmin ≥ 0, pi
9 < p′max (Nonnegative)

pi
9 if pmin ≥ 0, pi

9 ≥ p′max (Nonnegative)

(26)
The bound for a mixed q3 element is relatively loose when com-
pared to the bound for a nonnegative element. Also, a purely con-
cave face would be contained by d

i = 0, as is the case for a q2

element, but the nonpositive bound in eq. 26 will set di as some
positive value. However, q3 elements are used in a mesh to con-
form to the curved boundaries of the computational domain, and it
is beneficial for the flow solver for these curved boundaries to be
well resolved. As a matter of practice, very few of the elements
(if any) in a computational grid will be mixed or inflected. In fact,
most will be purely concave or convex, and the looser bounds for
the mixed elements and nonpositive elements will not be necessary.
Assuming that all the elements in a q3 mesh are either purely con-
cave or convex, this suggests the following logic to compute di for
a q3 element:

d
i =







0 if pmin < 0, pmax = 0 (Concave)

1.125pmax if pmin ≥ 0, pi
9 < p′max (Convex)

pi
9 if pmin ≥ 0, pi

9 ≥ p′max (Convex)

(27)

6.2 Fragment Shading: Newton-Raphson Inversion

Once the shadow is sent down the graphics pipeline, how are the
fragments shaded? Two questions must be answered:

1. Should the fragment be rejected (i.e. is it outside the ele-
ment)?

2. How is the fragment colored if it is inside the element?

Both of these questions can be answered if the reference coordi-

nates x̄ of the pixel to be rendered are known. The position is in the

element if x̄≥ 0, and then eq. 2 can be implemented in the fragment
shader. The reference coordinates will vary nonlinearly in physical
space therefore they can be determined using a Newton-Raphson
(NR) inversion algorithm.

At each pixel, the physical coordinates x̄p are known, since that’s
what determines the fragment’s location via the modelview trans-

formation. For any reference coordinate guess, x̄i, the position can
be updated using:

x̄i+1 = x̄i +
¶x̄

¶x̄

∣

∣

∣

∣

∣

x̄i

(

x̄p − x̄(x̄i)
)

(28)

where

¶x̄

¶x̄
=

(

¶x̄

¶x̄

)−1

and
¶x̄

¶x̄

∣

∣

∣

∣

x̄i

= ∑
j

x̄ j
¶f̄

¶x̄

∣

∣

∣

∣

x̄i

(29)

While this is fairly straightforward, the standard OpenGL shading
just linearly interpolates color values, so the NR algorithm does rep-
resent a significantly larger workload per pixel. However, the only
straightforward way to pass nonlinear data through the OpenGL
pipeline is through texture maps. Texture maps are are prohibitively
expensive to generate for each element, and the additional work of
the fragment shader is small by comparison.

6.3 Rendering Results

The shadow method is able to render curved planar cut intersec-
tions that are topologically similar to linear cutplane intersections.
Fig. 8 shows a triangular cut, where the p2 tetrahedral element is
outlined in black, the congruent tetrahedron is outlined in blue, and
the shadow is shown in green and red. Those pixels that are in the
cutplane intersection are shaded in green, and the pixels that lie out-
side the element are shown in red. The figure is shaded to highlight
the fact that a linear primitive (the shadow) can be used to render
a nonlinear intersection. In a visualization application, the pixels
in the shadow outside the element would be discarded by setting
their opacity to zero, and the actual intersection would be shaded as
in fig. 9. In addition to the two linear cutplane intersections (trian-
gle or quadrilateral), higher order elements can intersect a plane in
complicated ways. The shadow algorithm is easily able to capture
multiple distinct intersections as shown in fig. 10, and intersections
that cut a face without touching an edge as shown in fig. 11.

6.4 Hybrid Selective Refinement

The majority of cutplane intersections will resemble fig. 8, with rel-
atively few pixels in the fragment being discarded. But in examples
like fig. 10 and fig. 11, a significant portion of the shadow is eventu-
ally thrown away. This extra computational burden can be lessened
by using eq. 7 or 9 to selectively refine the element, and then apply-
ing the shadow algorithm to each subelement. As shown in figs. 12
through 14, this hybrid selective refinement (HSR) algorithm cor-
rectly renders the cutplane intersection while requiring much less
refinement than LSR would to produce the same level of accuracy.
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Figure 8: Triangular p2 Cut w/
Shadow

Figure 9: Triangular p2 Cut
Shaded

Figure 10: Multiple p2 Cuts Figure 11: Face Only p2 Cut

Also notice that there is some amount of overlap between the shad-
ows, but the reduction in excess fragments more than makes up for
this redundancy.

6.5 HSR for 2D data

All elements found in the solution from a 2D flow solver can be
thought of as occupying a single plane in 3D space. A shadow that
lies in that plane can bound the 2D curved element. This shadow
primitive will be a linear triangle C that is congruent to the reduced
order triangle R of the element, as shown in fig. 15. This is an
extension of the method described in sec. 6.4 where the main dif-
ference when visualizing 2D data is in computing the bounds of the

element. The maximum value of pi(x̄) for a q2 triangle face always
lies at the midpoint.

As with sizing the congruent tetrahedron for a 3D tetrahedral q3

element, the bounds used for a general 2D triangular q3 element are
looser than those actually necessary for elements used in a compu-
tational mesh. The bounds for sizing of di for a general element
are:

d
i =







1.3p∗max if pmin < 0, pmax > 0 (Mixed)
−0.316pmin if pmin < 0, pmax = 0 (Nonpositive)

1.125pmax if pmin ≥ 0 (Nonnegative)

(30)
For a q3 mesh, assuming that the edge is either concave or convex,
using:

d
i =

{

0 if pmin < 0, pmax = 0 (Concave)
1.125pmax if pmin ≥ 0 (Convex)

(31)

will ensure that C completely covers R.

7 APPLICATION TO FLOW SOLUTIONS

The method used to intersect finite elements with planar cuts de-
scribed in previous sections was developed with the goal of visual-
izing flow solutions on unstructured grids in both 2D and 3D. This

Figure 12: One Hybrid Refinement

Figure 13: Two Hybrid Refinements

Figure 14: Three Hybrid Refinements

Figure 15: Congruent Shadow Triangle
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effort supports the work of Project X [4]. The 2D code solves the
Euler equations and the Navier-Stokes equations, while the 3D code
is currently only inviscid. The equations are discretized using DG
methods and solved using p multigrid with line smoothing.

7.1 2D Viscous Navier-Stokes

The approach to solving the Navier-Stokes equations is the same as
the method to solve the Euler equations, except that the line smooth-
ing is modified to account for viscous diffusion in addition to con-
vection. The flow around a NACA0012 airfoil at 0◦ angle of attack
was solved using a grid containing 2264 p1q1 triangles in the inte-
rior and the farfield, and 40 p1q3 triangles on the airfoil. Fig. 16
shows the Mach number distribution, which clearly show both the
viscous boundary layer and the trailing wake. Fig. 17 shows a close

1.163E-05

3.042E-01

6.084E-01

Figure 16: NACA0012 Airfoil Mach Distribution

view of the leading edge, while fig. 18 shows the shadow pixels
and outlines the elements. Fig. 19 shows an extreme close-up of
just two elements, which are fairly curved. Even at this size, the
curvature of the element is preserved.

Figure 17:
NACA0012 Air-
foil Curve

Figure 18:
NACA0012 Air-
foil Shadows

Figure 19: Two Ele-
ment Shadows

7.2 3D Inviscid Euler

The application of the 3D code is to a straight NACA0012 wing
with a span of 5 chord lengths. The grid used was generated from a
2D airfoil grid, which was then extrapolated into 3D. This produced
a tetrahedral mesh consisting of 91936 p2q1 interior and farfield el-
ements and 3536 p2q3 boundary elements around the wing. The
Mach Number distribution is shown along the surface of the wing
in fig. 20. Since the grid is fairly well refined around the airfoil, no
enhancement was necessary to approximate the shape, though the
depth and lighting were modified at each pixel in the fragment pro-
gram to better approximate the curved shape. The farfield boundary
forms a dome around the wing, as seen in fig. 21. Fig. 22 also shows
the position of the cutplane.

The vast majority of the elements in the grid are q1, so the stan-
dard marching cubes algorithm handles intersection. However, all
the elements that either have a face or an edge on the wing sur-
face are q3, so that they can accurately conform to the airfoil shape.
The cuts through these elements were rendered using the shadow
method of sec. 6, using eq. 27 to generate the shadows. The curva-
ture at the wingtip is best handled with 1 level of selective refine-
ment, so this was used throughout. The cutplane position in fig. 22
was used to generate the following Mach cut in fig. 23:
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6.084E-01

Figure 20: NACA0012 Wing Mach Distribution

Figure 21: Farfield Boundary Figure 22: Cutplane Position

To provide a better sense of the element size involved, fig. 24
shows the outline of all the q3 elements that were cut at the position
shown in fig. 22. Figs. 25 and 26 show the cutplane through the
leading edge, with all the shadow pixels shown in pink. Notice
that there is some overlap of the shadow primitives, but since these
pixels normally get rejected, this is never noticed by the viewer.

Fig. 27 shows the wingtip, with the cutplane at 3 locations ap-
proaching the tip. These cutplane positions were used to generate
images through the Mach field and are displayed in fig. 28. This
shows that the cutplane shadow method is able to correctly render
the planar intersection for even the fairly curved elements at the
wingtip.

8 EXTENSION TO ISOSURFACES

The discussion so far has focused on rendering planar cut intersec-
tions, and not on visualizing isosurfaces. The algorithms to render
each type of intersection for linear elements are the same, and in-
deed, the LSR algorithm should work for isosurfaces. The crucial
difference is that isosurface will not, in general, be planar.

However, it may be possible to render the isosurface with scalar
value, s∗, by bounding it with linear primitives. Based on screen
position, xs, of each pixel on the bounding shadow, the depth is
adjusted until the point on the isosurface, x, is found such that xs

lies on top of x (i.e. x and xs have the same screen coordinates but
different depths). To find x, |s− s∗| is first minimized by perform-
ing a search of points inside the element that lie beneath xs, then

Figure 23: Cutplane Through Mach Field
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Figure 24: NACA0012 Wing Boundary Elements

Figure 25: NACA0012 Leading
Edge

Figure 26: A Few Element
Shadows

the fragment can rejected or drawn based on whether or not s = s∗.
Performing this search would be relatively expensive, so acceptable
values of s will lie close to s∗ within some bounds set by the accu-
racy of the search. Under some viewing transforms, the isosurface
can curve behind itself, which means there can be multiple solu-
tions, x, that all lie on top of xs. In this case, the several solutions
should be compared using the depth test to determine which one is
displayed.

The faces of the congruent tetrahedron used to generate the cut-
plane shadow would certainly cover the isosurface intersection,
since it captures the entire element by design. But using those tri-
angles could produce many extraneous fragments. This could be
alleviated by combining the view-based refinement used in [7] and
the selective refinement of HSR to approximate the isosurface in-
tersection.

Figure 27: Cutplane Position
at Wingtip

Figure 28: Cutplane Through
Mach Field at Wingtip

9 CONCLUSION

Subdivision algorithms generate exponentially more subelements
as the refinement level is increased, and their performance is
directly tied to the number of vertices being processed. Pro-
grammable shaders leverage the flexibility of modern GPUs to effi-
ciently sample higher order data at each pixel in a powerful manner.
Visualizing planar cuts through parametric FEM elements simpli-
fies to knowing the reference coordinates at each pixel, and hav-
ing the ability to use that information to correctly render the scalar
field. The major obstacle is the limitation of having to use planar
primitives to generate pixels for the fragment shader. To overcome
this challenge, the HSR algorithm bounds the curved intersection
with a shadow primitive, which can then be manipulated in the
GPU. Some pixels will inevitably be discarded, and to minimize
this wasted effort, very coarse selective refinement can be used to
generate several shadow primitives that collectively cover the en-
tire intersection. Thus the HSR algorithm provides an efficient and
functional method to produce and shade planar cuts through higher
order FEM data.
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