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Abstract

We propose an interpolating refinement method for two- and
three-dimensional scalar fields defined on hexahedral grids.
Iterative fairing of the underlying contours (isosurfaces) pro-
vides the function values of new grid points. Our method can
be considered as a non-linear variational subdivision scheme
for volumes. It can be applied locally for adaptive mesh re-
finement in regions of high geometric complexity. We use
our scheme to increase the quality of low-resolution data
sets and to reduce interpolation artifacts in texture-based
volume rendering.

CR Categories: G.1.2 [Numerical Analysis]:
Approximation—Approximation of Surfaces and Contours;
G.1.6 [Numerical Analysis]: Optimization—Constrained
Optimization; I.4.3 [Image Processing and Computer
Vision]: Enhancement—Smoothing

Keywords: adaptive mesh refinement, isosurfaces, sub-
division, variational modeling, volume fairing.

1 Introduction

Volume rendering of scalar fields defined on regular hexahe-
dral grids is mostly based on trilinear interpolation. In re-
gions of high geometric complexity where the sampling rate
is close to the Nyquist frequency, visualization often suffers
from interpolation artifacts. These artifacts are particularly
visible in isosurfaces, since the representation of the underly-
ing scalar field with locally supported basis functions is not
optimized for the representation of smooth contours. Isosur-
faces can be emphasized in volume renderings by a proper
transfer function [8] or they can be extracted by Marching
Cubes [10].

Figures 1a) and b) illustrate the lacking smoothness of iso-
lines based on bilinear and bicubic interpolation, despite of
the fact that bicubic spline surfaces minimize thin-plate en-
ergy. All linear filtering and subdivision methods we have
tested so far exhibit more or less the same problem. Hence,
the interpolation artifacts of contours (isolines and -surfaces)
may only be reduced effectively by a non-linear optimization
method. In a previous work [1], we have presented an itera-
tive variational fairing approach for 2D scalar fields based on
bicubic splines, see figure 1c). The method increases the res-
olution by knot insertion and iteratively smoothes all isolines
based on variational principles. The results of this method
are promising, at the expense of extremely high computa-
tional cost (about 20 seconds for a 7 × 7 data set).

In the present work, we discretize the variational fairing
method for smoothing piecewise linear scalar fields. Since
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the considered contours are piecewise linear, fairing is only
necessary on the edges of the triangulated domain. In a fur-
ther step, we adapt our method to the refinement of bilinear
surfaces and trilinear volumes. The refined volumes interpo-
late the original data, deferring the most significant interpo-
lation artifacts to finer scales where they can be eliminated
by recursion. Our method can be globally applied, for ex-
ample in combination with texture-based volume rendering
[9, 5], or it can be used for local refinement.

These are the contents of our work: In section 2, we review
related work. Our algorithm for the bivariate case (linear
and bilinear scalar fields) is described in section 3, including
numerical examples. The extension to trivariate scalar fields
and its use for volume rendering is discussed in section 4. In
section 5, we conclude our work.

2 Related Work

Visualization of three-dimensional scalar fields is either done
by extraction of isosurfaces or by volume rendering, see for
example [17, 6, 8]. In both cases, isosurface quality has a
significant impact. Not only geometric smoothness, but also
isosurface topology depends on the representation of the un-
derlying scalar fields. In the case of trilinear scalar fields, iso-
surface topology is quite complicated. A variant of Marching
Cubes [10], extracting topologically correct isosurfaces was
recently devised [11].

For trilinear fields, critical points where isosurface topol-
ogy changes are efficiently detected [14]. Unfortunately, the
topology of a trilinear interpolant is often different from the
topology of an original scalar field prior to discretization.
The task is to find the best reconstruction of the original
shape consistent with the discrete data.

Image processing techniques like anisotropic diffusion [15, 4]
are capable of recognizing local features, but they often mod-
ify the data. Diffusion and filtering methods are mostly use-
ful for smoothing noisy data. Diffusion-based fairing tech-
niques are also applicable to the fairing of geometric shapes
[3, 2].

Variational modeling [16, 7] is often used for fairing paramet-
ric surfaces. Using smooth basis functions, like B-splines or
quadratic splines on tetrahedra [13], interpolation and fair-
ness constraints can be specified for the scalar field. Only
few approaches are capable of fairing implicit surfaces. Niel-
son et al. [12] propose a fairing method for single isosurfaces
by constrained fairing of curves. The problem of fairing all
isolines in a two-dimensional scalar field has been solved at
the expense of high computational cost [1]. In the present
work, we discretize the underlying representation providing
a more efficient approach applicable to volume fairing.
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a) b) c) d)

Figure 1: Isolines of 2D scalar field with diagonal features, defined by samples on a rectilinear grid. a) bilinear interpolation; b) bicubic thin-plate
minimization; c) non-linear optimization with bicubic splines; d) proposed refinement method with bilinear interpolation.

3 Surface Refinement Fairing Isolines

In this section we develop an iterative fairing method for the
contours of piecewise linear and bilinear scalar fields. This
algorithm is extended to the trivariate case, later.
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Figure 2: Variation of g′ and n are equal in absolute value.

In a previous work [1], we considered the problem of minimiz-
ing the second derivative of an isoline g(s) with arc-length
parametrization,

Z

‖g′′(s)‖2 ds −→ min. (1)

This is equivalent to

Z

‖n ×∇n‖2 ds −→ min, (2)

where n(s) is the contour’s normal corresponding to the
scalar field’s gradient, see figure 2.

This integral minimizes the normal’s deviation along g.
When fairing all contours of a scalar field, the arc-length
parameter s can be eliminated by substituting the scalar
field’s domain parameters for s. The resulting optimization
process is non-linear and requires expensive convolutions of
smooth bivariate basis functions, like bicubic splines. (These
convolutions do not have a simple algebraic solution due
to a gradient-based weighting function.) To accelerate this
approach, we consider piecewise linear scalar fields and re-
define the optimization for discrete gradients.

3.1 Fairing Piecewise Linear Isolines

Consider a triangulated domain defined by a set of points
P and a set of triangles T. Every point pi ∈ P has an
associated scalar value fi. For a subset Q ⊂ P the corre-
sponding scalar values are degrees of freedom (DOF’s) used
for optimization. The remaining function values are fixed

and represent the interpolated data. Let αab be the adja-
cency relation for a, b ∈ T, i.e., αab is true iff a and b are
adjacent triangles.

e

b

nbna

a

Figure 3: Isolines have constant normal vectors for every triangle.

We propose the following optimization:

r :=
X

a,b: αab

wab (na − nb)
2 −→ min,

wab =

„

1

2
(na + nb) · eab

«2
(3)

where eab is the vector along the common edge, and na, nb

denote the scalar field’s gradient in the triangles a and b,
respectively. The gradient of a piecewise linear function is
piecewise constant, see figure 3. Hence, the normal vectors
of isolines vary only across the triangle boundaries. We note
that we do not normalize the gradients na and nb in our
residual, emphasizing regions of great slope in the optimiza-
tion.

The residual r in equation (3) is a function of the DOF’s,
i.e. of all scalar values fi : pi ∈ Q. Their optimal values
can be found by satisfying the necessary constraints

∂r

∂fi

= 0 ∀i : pi ∈ Q (4)

The weighting terms wab make this optimization non-linear,
since for constant wab, above constraints would form a linear
system of equations. The weights are quadratic proportional
to the amount of isolines intersecting the edge eab. If the nor-
mals na and nb are (more or less) orthogonal to the edge, the
weight is small, since the isolines are (nearly) parallel to eab.
The weight wab is maximal, if the average normal is parallel
to eab. We take the square of the weighting term rather than
its absolute value to make the residual a polynomial.
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We propose the following algorithm:

1 initialize the DOF’s, for example by linear interpolation
of the given data fi : pi ∈ P\Q.

2 For every i : pi ∈ Q compute the coefficients of ∂r/∂fi,
which is a cubic polynomial in fi. Among the zero
points of this partial derivative is the minimum for r =
f(fi). Replace fi by the zero point where the minimum
is obtained.

3 Repeat step 2 either for a fixed number of iterations,
or until the maximal correction of r is below a certain
threshold.

3.2 Rectilinear Grid Refinement

In the case of a rectilinear grid with associated function val-
ues, a refinement step doubles the resolution in both direc-
tions. The function values at the new points representing
the DOF’s are initialized by bilinear interpolation. In a first
approach, we triangulate the quadrilaterals of the refined
grid by inserting consistently oriented diagonals. for this
triangulation, we apply the algorithm described above.

a

fi,j+1

b

fi+1,jfi,j

Figure 4: The residual at fij depends on all twelve edges of the six
incident triangles.

In the following, we provide all relevant implementation de-
tails for step 2 of the algorithm updating a variable value
fij . Relevant for the residual r as a function of fij are only
the terms of equation (3) corresponding to the twelve edges
of incident triangles, as illustrated in figure 4. All twelve
terms are non-negative quartic polynomials of fij . To com-
pute the coefficients of the local residual r(fij), we need to
compute every term with its four partial derivatives with re-
spect to fij . As an example, we provide these derivatives for
the edges a = epi,j+1,pij

and b = epi+1,j+1,pij
, according to

figure 4.

For the term associated with edge a, we get

ra = w d,

w =

„

1

2
(n1 + n2) · (0, 1)T

«2

,

d = (n1 − n2)
2,

n1 = (fi,j − fi−1,j , fi,j+1 − fi,j)
T ,

n2 = (fi+1,j+1 − fi,j+1, fi,j+1 − fi,j)
T .

(5)

Inserting the gradients n1 and n2 provides w, d and their

derivatives with respect to fij :

w = (fi,j+1 − fi,j)
2,

w′ = −2(fi,j+1 − fi,j),

w′′ = 2,

d = (fi,j − fi−1,j − fi+1,j+1 + fi,j+1)
2,

d′ = −2(fi,j − fi−1,j − fi+1,j+1 + fi,j+1),

d′′ = 2.

(6)

Since ra is a quartic polynomial in fij , its coefficients may be
determined from its value and four derivatives with respect
to fij :

r′a = w′d + d′w,

r′′a = w′′d + 2w′d′ + wd′′,

r(3)
a = 3(w′′d′ + w′d′′),

r(4)
a = 6w′′d′′.

(7)

In analogy to the term for edge a, all other terms of the local
residual associated with horizontal and vertical edges are
computed. As an example for a diagonal edge, we provide
the term for edge b in figure 4:

rb = w d,

w =

„

1

2
(n1 + n2) · (1, 1)T

«2

,

d = (n1 − n2)
2,

n1 = (fi+1,j+1 − fi,j+1, fi,j+1 − fi,j)
T ,

n2 = (fi+1,j − fi,j , fi+1,j+1 − fi+1,j)
T .

(8)

Figure 5: The triangulation has a significant impact on the solu-
tion, since features across triangle edges often cannot be properly
represented.

Figure 6: The combined minimization of both residuals overcomes
the problem shown in figure 5. The results were obtained after ten
iterations.
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a) b) c) d)

Figure 7: Results for 8× 8 dataset. a) bilinear refinement; b) first iteration; c) ten iterations; d) additional refinement of c) after five iterations.

a) b) c) d)

Figure 8: Results for 10 × 10 dataset, as in figure 7

Again, inserting the gradients n1 and n2 provides w and d:

w =
1

4
(fi+1,j+1 − fi,j+1 + fi+1,j − fi,j)

2

+
1

4
(fi,j+1 − fi,j + fi+1,j+1 − fi+1,j)

2,

d = (fi+1,j+1 − fi,j+1 − fi+1,j + fi,j)
2

+ (fi,j+1 − fi,j − fi+1,j+1 + fi+1,j)
2.

(9)

The coefficients for rb are obtained in analogy to equation
(7). The sum of the terms of all twelve edges of triangles
incident with pij provide the coefficients for the local residual
r(fij). These are all terms depending on fij .

Now, we need to modify fij , such that the local residual is
minimized. Since r(fij) is a quartic non-negative polyno-
mial, it can have at most two minima. The global minimum
is among the roots of

∂r

∂fij

= 0. (10)

These can be found by solving a cubic equation. In our im-
plementation, we used Newton iteration with the two start-
ing points min{fi±1,j±1} and max{fi±1,j±1}, providing an
accurate estimate for both minima after five iterations on
average.

When implementing and testing our algorithm, we found
that the triangulation has a significant impact, see figure
5. When orienting all edges from lower left to upper right,
features in the opposite direction can not be represented
properly, and vice versa. To ensure that our algorithm pro-
vides a symmetric solution, we compute two local residu-
als, rleft(fij) and rright(fij) where all edges have left and
right orientation, respectively. We compute the minimum
for both residuals and update fij with the value computed
for the minimum of both.

By minimizing the smallest residual, the algorithm imposes
the best orientation of edges for local optimization, see fig-
ure 6. We do not store and optimize the triangulation, since

for adjacent points opposing orientations might be optimal,
which would result in alternating edge flips during the iter-
ation.

Our combined optimization algorithm for rectilinear grid re-
finement is summarized as follows:

1 subdivide the grid in both directions and initialize the
new grid points using bilinear interpolation. These new
values represent the DOF’s for optimization, where the
data located at the old grid points is fixed.

2 For every new grid point pij , compute the coefficients
for both local residuals rleft(fij) and rright(fij). Com-
pute the minimum for both and replace fij by the cor-
responding value for the smaller residual.

3 Repeat step 2 for a fixed number of iterations.

For adaptive refinement on a rectilinear grid, this algorithm
may be applied recursively. In the subsequent optimization
steps less iterations are necessary, since the data becomes
smoother after refinement.

Figure 9: The intermediate slice does not contain data. To avoid
diffusion of detail, we keep the scalar values located on the fat lines
fixed and use all other values as DOF’s.
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a) b) c) d)

Figure 10: Texture-based volume rendering of skull data. a) trilinear interpolation; b) result after one iteration of the volume method; c) five
volume iterations; d) additional refinement with two more iterations.

a) b) c) d)

Figure 11: Skull volume from the front (same as figure 10).

3.3 Numerical Examples

We have implemented and tested our method for different
data sets, see figures 7 and 8. Since bilinear interpolation
is used for rendering, the interpolation artifacts are shifted
to a finer scale where they can be removed by additional
refinement steps.

The algorithm converges quickly, such that ten iterations for
all DOF’s are more than enough. Table 1 provides computa-
tion times for ten iterations obtained on a PC with a 2GHz
processor.

data set resolution no. dof’s time [sec]
“X” 13 × 13 120 0.035
“A” 15 × 15 161 0.041
“O” 19 × 19 261 0.060
“X” 25 × 25 456 0.097
“A” 29 × 29 616 0.125
“O” 37 × 37 1008 0.200

Table 1: Computation times in seconds for ten iterations on small
data sets. The resolutions are obtained after subdivision.

4 Volume Refinement

In the following, we extend our method to the fairing of
isosurfaces in trivariate scalar fields. We provide numerical
examples using texture-based volume rendering.

4.1 Fairing Isosurfaces

One way of generalizing the algorithm to hexahedral grids
would be a decomposition into tetrahedra. In this case, the
edge terms for triangles would simply become face terms.
However, there are many choices decomposing hexahedra.
First, every voxel could be subdivided into six tetrahedra,
leaving a great number of possible triangulations for which
residuals had to be computed resulting in prohibitive com-
putational cost.

Second, every voxel could be subdivided into five tetrahedra,
one located in the middle and four at certain corners. There
exist two such decompositions, which had to be used alter-
nately on the grid, to avoid cracking. In analogy to the pla-
nar case, two possible triangulations would be constructed
(depending on the choice for the first voxel). However, the
drawback of this decomposition is that every other vertex
has 32 incident tetrahedra, and the remaining vertices have
only eight. The two competing residuals would be based on
a different number of faces, such that this choice of a grid
would cause severe artifacts.

Facing this problem, we decided to apply the bivariate ap-
proach to the three sets of slices orthogonal to the canonical
directions. This approach was already used for the fairing
of single isosurfaces by smoothing three sets of isolines [12].
In our work, we use this approach for volume fairing, rather
than considering one particular contour.

In contrast to updating every flexible grid value once per
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a) b) c) d)

Figure 12: Marschner/Lobb volume rendering (same refinement as in figure 10).

a) b) c) d)

Figure 13: Effect of the algorithm on an isosurface extracted after two steps of refinement. For rendering, we use flat shading. a) skull
with trilinear subdivision; b) optimized result (using 5 iterations before and 2 iterations after refinement); c) Marschner/Lobb with trilinear
subdivision; d) optimized.

iteration, we compute one iteration of the planar method
for each slice orthogonal to the x-, y-, and z-axis, respec-
tively. When processing these slices, every other slice does
not contain data, i.e. all grid values are flexible. To avoid a
diffusion of geometric detail, we keep those values fixed that
are located between two data points, see figure 9. These
are initially determined by trilinear interpolation and are al-
terated by the passes for the two other directions. Every
volume iteration is now composed of three passes, such that
every DOF is updated two or three times, depending on its
location on the grid.

4.2 Numerical Examples

We have applied our algorithm to the fairing of a
643 down-sampled computer tomography of a human
skull and to the 413 Marschner/Lobb data set (see
http://www.volvis.org/), which is interesting due to its
high-frequency details.

Figures 10–12 show volume rendered results obtained by
transparent textures [9]. For rendering, we do not re-
sample the data, however, to avoid additional artifacts. Re-
arranging the texture planes is only necessary, when the vol-
ume is rotated by more than 45 degrees, such that the viewer
is facing a different side of the cube. The colors in figures 10–
12d) are slightly different, since these images were rendered
at twice the resolution of texture planes.

Figures 10a-c) were rendered by 127 planes, each with a
transparent 128 × 128 texture. The color and opacity of
the texture (RGBA) is generated by a color-coded transfer
function. We did not use gradient mapping, which would
also be possible. For higher efficiency, the texture generation
is independent of the viewpoint. We use different display

lists for the front, side, and top views of the data set. On
a consumer-grade PC, we obtained frame rates up to four
frames per second.

The effect of our volume fairing method on a single isosurface
is illustrated in figure 13. The Marschner/Lobb data set
shows impressively that details above the Nyquist frequency
cannot be reconstructed properly. For all other features, we
obtain visually pleasing results. Computation times for one
volume iteration (on the three sets of slices) are summarized
in table 2.

data set resolution no. dof’s time [sec]
“mlobb” 813 462520 22.9

“skull” 1273 1786293 85.3
“mlobb” 1613 3641840 178.3

“skull” 2533 14145894 676.0

Table 2: Computation times in seconds for one volume iteration
obtained on a PC with a 2GHz processor. The resolutions after
subdivision are listed.

5 Conclusions

We presented an iterative refinement algorithm fairing con-
tours (isolines and isosurfaces) of scalar fields defined on
regular grids. Our method significantly reduces the inter-
polation artifacts and reconstructs features in regions where
the sampling distance is close to the Nyquist limit.

Numerical examples show that the quality of gridded data
is significantly improved in regions of high geometric com-
plexity. Coarse features traversing the grid diagonally ap-
pear also smoother. The algorithm can be used for adaptive
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refinement, for example also when zooming into smaller re-
gions of large-scale data sets. We apply our method for
texture-based volume rendering exploiting graphics hard-
ware to obtain nearly interactive frame rates.
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