

Tutorial: Feature Oriented Methods in Flow Visualization

Topological Methods

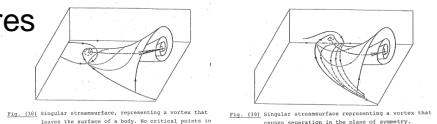
Xavier Tricoche

Scientific Computing and Imaging Institute
University of Utah

IEEE Visualization 2004
Austin, TX

Outline

- Motivation
- Theory basics
- Implementation
- Applications
- Pros and cons



Feature Oriented Methods in Flow Visualization: Topological Methods

Motivation

- Synthetic depiction of complex flow structures
- Efficient computation of global features
- Rich mathematical framework
- Versatile tool

Dallmann, *Topological Structures of Three-Dimensional Flow Separation*.
DFVLR-AVA Bericht Nr. 221-82 A 07, April 1983.

Feature Oriented Methods in Flow Visualization: Topological Methods

Outline

- Motivation
- **Theory basics**
- Implementation
- Applications
- Pro and Contra

Feature Oriented Methods in Flow Visualization: Topological Methods

Dynamical Systems

- For a Lipschitz continuous vector field

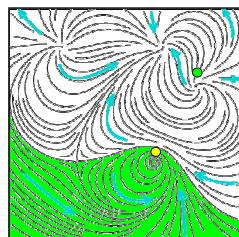
$$\vec{f} : (I \subset \mathbb{R}) \times (U \subseteq \mathbb{R}^n) \rightarrow \mathbb{R}^n$$

- Differential equation (ODE)

$$\frac{d\vec{x}}{dt} = \vec{f}(t, \vec{x}) \quad \text{steady}$$

- Flow

$$\begin{cases} \frac{d}{dt} \vec{\phi}(\vec{x}, t) \Big|_{t=\tau} = \vec{f}(\tau, \vec{\phi}(\vec{x}, \tau)) \\ \vec{\phi}(0, \vec{x}) = \vec{x} \end{cases} \quad \text{initial condition}$$



Feature Oriented Methods in Flow Visualization: Topological Methods

Limit Sets and Basins

- Topology:** structure of phase portrait w.r.t. asymptotic behavior of integral curves

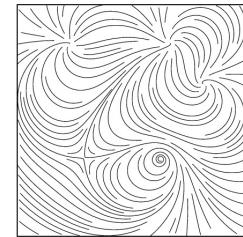
- Limit set:** locus of convergence $t \rightarrow \pm\infty$ all curves when

- Basin** of a limit set (outsets/insets)

- Separatrices**

Feature Oriented Methods in Flow Visualization: Topological Methods

Phase Portrait


- Integral curve

$$\vec{x}(\tau) = \vec{\phi}(\tau, \vec{x}_0) = \vec{x}_0 + \int_0^\tau \vec{f}(t, \vec{x}(t)) dt$$

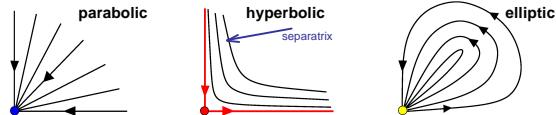
- Streamline / pathline

- Phase portrait:**

set of all integral curves

Feature Oriented Methods in Flow Visualization: Topological Methods

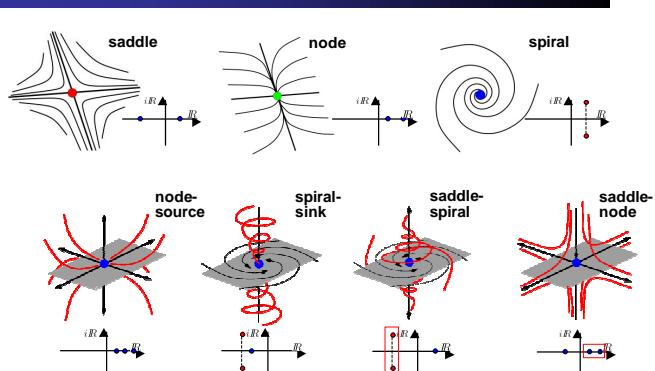
Critical Points


- Equilibrium $\vec{f}(P_0) = \vec{0}$

- Local flow structure:

- Linear case: determined by eigenvalues of Jacobian

- Sign of real part: $+$ $-$
- Complex part:


- General case: sector decomposition

Feature Oriented Methods in Flow Visualization: Topological Methods

Critical Points

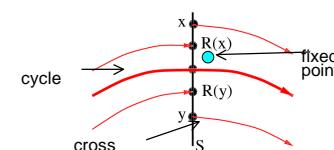
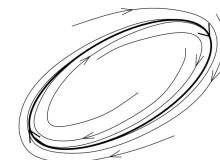
2004 Feature Oriented Methods in Flow Visualization: Topological Methods

Poincaré Index

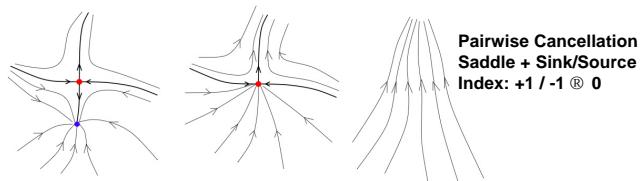
- Gauss map: $\gamma: \mathbb{R}^n \rightarrow S^{n-1}$, $\gamma(\vec{v}) = \frac{\vec{v}}{\|\vec{v}\|}$, $\vec{v} \neq \vec{0}$
- Index of closed region with boundary Γ : # of coverings of S^{n-1} around $\vec{0}$ by $\gamma \circ \vec{f}(\Gamma)$
- Additive - index = 0 for homogeneous flow
- 2D: number of rotations along curve

Linear case: index = sign(det J): source +1, sink -1, saddle +1

Feature Oriented Methods in Flow Visualization: Topological Methods



Poincaré Index

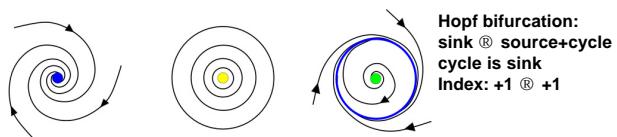
- Gauss map: $\gamma: \mathbb{R}^n \rightarrow S^{n-1}$, $\gamma(\vec{v}) = \frac{\vec{v}}{\|\vec{v}\|}$, $\vec{v} \neq \vec{0}$
- Index of closed region with boundary Γ : # of coverings of S^{n-1} around $\vec{0}$ by $\gamma \circ \vec{f}(\Gamma)$
- Additive - index = 0 for homogeneous flow
- 2D: number of rotations along curve
- Saddle: -1, sinks/sources: +1


Cycles and Tori

- Periodic solution: closed curve or torus
- Sink / source
- Separatrix
- Poincaré map (1D/2D)

Bifurcations

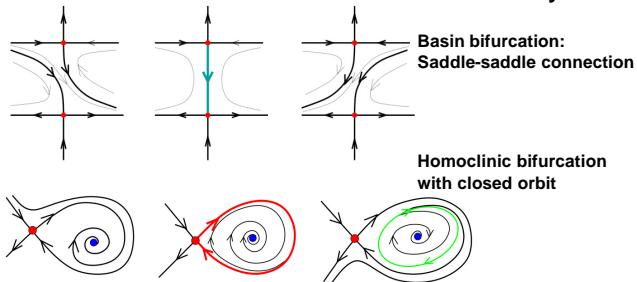
- Structural changes: nature and position of critical points, connectivity
- Local: index preserving


Feature Oriented Methods in Flow Visualization: Topological Methods

Hopf bifurcation:
sink \circledast source+cycle
cycle is sink
Index: +1 \circledast +1

Bifurcations

- Structural changes: nature and position of critical points, connectivity
- Local: index preserving



Feature Oriented Methods in Flow Visualization: Topological Methods

Bifurcations

- Global: transforms overall connectivity

Feature Oriented Methods in Flow Visualization: Topological Methods

Outline

- Motivation
- Theory basics
- **Implementation**
- Applications
- Pro and Contra

Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Extraction - Steady Case

- Cell-wise critical point extraction
 - *Linear, bilinear, trilinear interpolation*
- Type characterization
 - *Compute Jacobian (cell-wise defined)*
 - *Compute eigenvalues and eigenvectors*
- Integrate separatrices
 - *Streamlines*
 - *Stream surfaces*

Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Extraction - Steady Case

- Helman, Hesselink, *Representation and Display of Vector Field Topology in Fluid Flow Data Sets*. Computer, Vol. 22, No. 8, 1989: 27-36.
- Helman, Hesselink, *Visualizing Vector Field Topology in Fluid Flows*. IEEE Computer Graphics and Applications, Vol. 11, No. 3, 1991: 36-46.
- Globus, Levit, Lasinski, *A Tool for Visualizing the Topology of Three-Dimensional Vector Fields*. IEEE Visualization '91 Proceedings: 33-40.

Feature Oriented Methods in Flow Visualization: Topological Methods

Streamline Integration

- High accuracy required close to critical points: strong variations of norm and direction
- Tetrahedral grids: piecewise analytical formula
Nielson, Jung, *Tools for Computing Tangent Curves for Linearly Varying Vector Fields over Tetrahedral Domains*, TVCG 5(4):360-372, 1999
- General case: Runge Kutta 4th order with adaptive step size
Press, Flannery, Teukolsky, Vetterling, *Numerical Recipes in C (2nd ed.)*, Cambridge University Press, 1992
- Remark: smoothing effect of RK-4, nice for CFD applications (noise)



Feature Oriented Methods in Flow Visualization: Topological Methods

Stream Surface Integration

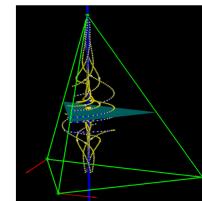
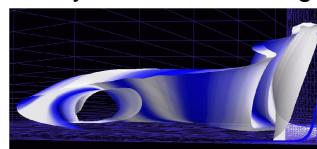
- Hultquist: uses RK2 with fixed step size to control triangulation quality: too inaccurate

Hultquist, *Constructing Stream Surfaces in Steady 3D Vector Fields*, IEEE Visualization '92 Proceedings, 171-178

Feature Oriented Methods in Flow Visualization: Topological Methods

Stream Surface Integration

- Implicit Stream Surfaces:
 - Rely on seeding strategy
 - Accuracy depends on grid resolution
- van Wijk, **Implicit Stream Surfaces**, IEEE Visualization '93 Proceedings, 1993, 245-252.
- Mahrous, Bennett, Scheuermann, Hamann, Joy, **Topological Segmentation in Three-Dimensional Vector Fields**, IEEE TCVG 10(2), 2004, 198-205.

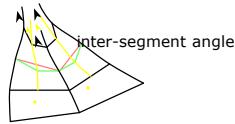
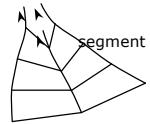
Feature Oriented Methods in Flow Visualization: Topological Methods

Stream Surface Integration

- Extension to stream surfaces of Nielson's technique for piecewise analytic streamline integration

Pictures courtesy of G. Scheuermann

- Scheuermann, Bobach, Hagen, Mahrous, Hamann, Joy, Kollmann, **A Tetrahedra-Based Stream Surface Algorithm**. IEEE Visualization '01 Proceedings, 151-158.
- Nielson, Jung, **Tools for Computing Tangent Curves for Linearly Varying Vector Fields over Tetrahedral Domains**, TCVG 5(4):360-372, 1999

Feature Oriented Methods in Flow Visualization: Topological Methods

Stream Surface Integration

- Improved Hultquist's method:
 - RK4 / adaptive step size + arc length control
 - Control of front curvature: avoid crease

Garth, Tricoche, Salzbrunn, Bobach, Scheuermann, **Surface Techniques for Vortex Visualization**, Joint Eurographics - IEEE TCVG Symposium on Visualization, 2004

Feature Oriented Methods in Flow Visualization: Topological Methods

Saddle Connectors

- To avoid occlusion: replace separating stream surfaces by streamlines of interest
- Saddle connector: streamline connecting two saddle points of opposite indices (inflow vs. outflow plane)
- Found by computing intersection of polygonal fronts integrated from both saddle points

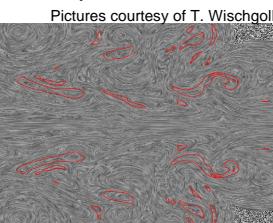
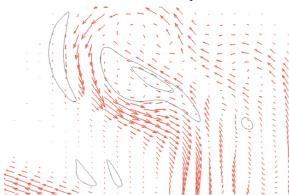
Theisel, Weinkauf, Hege, Seidel, **Saddle Connectors: An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields**, IEEE Visualization 2003 Proceedings, 225-232

Feature Oriented Methods in Flow Visualization: Topological Methods

Saddle Connectors

Pictures courtesy of H. Theisel
<http://www.mpi-sb.mpg.de/~theisel/gallery/>

Theisel, Weinkauf, Hege, Seidel, **Saddle Connectors: An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields**, IEEE Visualization 2003 Proceedings, 225-232.

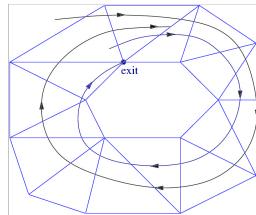



Feature Oriented Methods in Flow Visualization: Topological Methods

Cycle Extraction

- Cycle finally extracted as fixed point of Poincaré map

- Wischgoll, Scheuermann, **Detection and Visualization of Closed Streamlines in Planar Flows**, TVCG 7(2):165-172
- Wischgoll, Scheuermann, **Locating Closed Streamlines in 3D Vector Fields**, Joint Eurographics - IEEE TCVG Symposium on Data Visualization 2002: 227-232.

Feature Oriented Methods in Flow Visualization: Topological Methods

Cycle Extraction

- Poincaré-Bendixson theorem
- Check along edges if flow is *captured* by cell-wise region

Feature Oriented Methods in Flow Visualization: Topological Methods

Local Topology

- Inflow / outflow regions on boundary are limit sets of local topology
- Tangential flow: additional separatrices

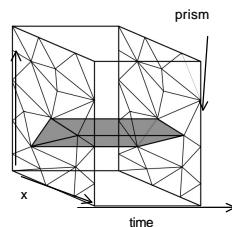
Picture courtesy of G. Scheuermann

- Scheuermann, Hamann, Joy, Kollmann, **Visualizing Local Vector Field Topology**, Journal of Electronic Imaging 9(4):109-116, 2000
- Weinkauf, Theisel, Hege, Seidel, **Boundary Switch Connectors for Topological Visualization of Complex 3D Vector Fields**, Joint Eurographics and IEEE TCVG Symposium on Visualization (2004)

Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Tracking

- Visualize continuous evolution of parameter-dependent topology
- Requires time interpolation: $(n+1)D$ grid
- Detect, identify and display bifurcations
- Methods:
 - *Cell-wise singularity tracking*
 - *Feature flow fields*

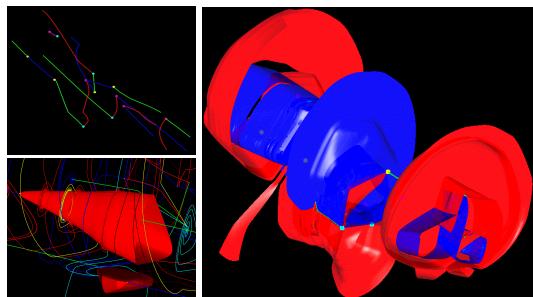

Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Tracking

- Cell-wise singularity tracking

- *n+1D linear interpolation*
- *Compute paths*
- *Creations/cancellations occur on faces*
- *Integrate separatrices*
- *Monitor connectivity*

- Tricoche, Wischgoll, Scheuermann, Hagen, *Topology Tracking for the Visualization of Time-Dependent Two-Dimensional Flows*. In Computer & Graphics (26), Elsevier, 2002.
- Garth, Tricoche, Scheuermann, *Tracking of Vector Field Singularities in 3D Unstructured Data Sets*. IEEE Visualization '04 Proceedings.



Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Tracking

- Cell-wise singularity tracking

Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Tracking

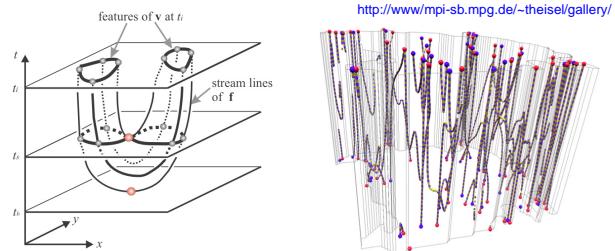
- Feature flow fields:

- *Track path of critical points through streamline integration in a vector field defined over the $(n+1)D$ space-time domain*

$$\vec{f}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix} \quad \vec{g} = \nabla u \times \nabla v$$

- *The value of \vec{f} (e.g. $\vec{0}$) is constant along streamlines of \vec{g}*

- Theisel, Seidel, *Feature Flow Field*. Proceedings of Joint Eurographics and IEEE TCVG Symposium on Visualization (2003)



Feature Oriented Methods in Flow Visualization: Topological Methods

Topology Tracking

- Feature flow fields:

Theisel, Seidel, *Feature Flow Field*. Proceedings of Joint Eurographics and IEEE TCVG Symposium on Visualization (2003)

Feature Oriented Methods in Flow Visualization: Topological Methods

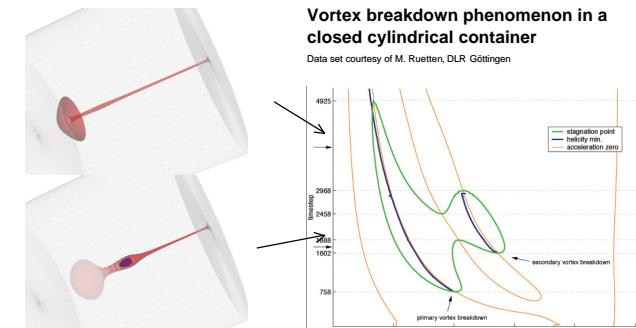
Outline

- Motivation
- Theory basics
- Implementation
- **Applications**
- Pro and Contra

Feature Oriented Methods in Flow Visualization: Topological Methods

Vortex Breakdown Analysis

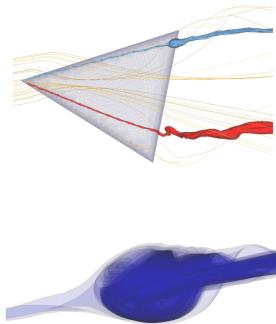
- Efficient analysis of large transient data
- Identification of interesting time steps
- Investigation of interplay between different physical quantities
- Visualization of essential structures
- **Track critical points of velocity with extrema of acceleration and helicity**
- **Handle noisy and turbulent data**



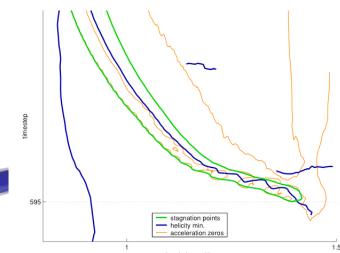
Feature Oriented Methods in Flow Visualization: Topological Methods

Vortex Breakdown Analysis

Vortex breakdown phenomenon in a closed cylindrical container
Data set courtesy of M. Ruetten, DLR Göttingen


Garth, Tricoche, Scheuermann, *Tracking of Vector Field Singularities in 3D Unstructured Data Sets*. IEEE Visualization '04 Proceedings.

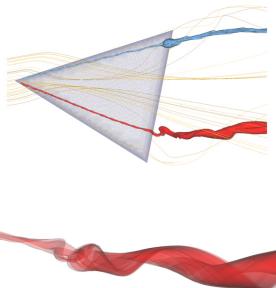
Feature Oriented Methods in Flow Visualization: Topological Methods



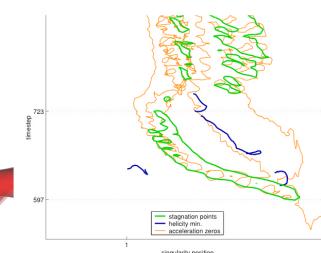
Vortex Breakdown Analysis

Vortex breakdown phenomenon in a delta wing simulation (right bubble)

Data set courtesy of M. Ruetten, DLR Göttingen


Garth, Tricoche, Scheuermann, *Tracking of Vector Field Singularities in 3D Unstructured Data Sets*, IEEE Visualization '04 Proceedings.

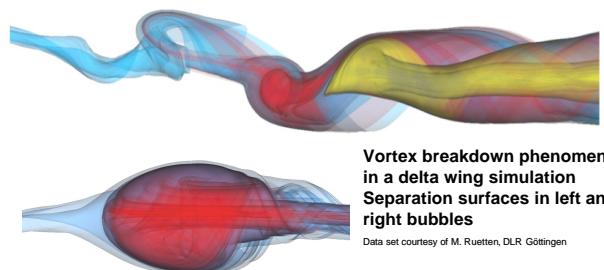
Feature Oriented Methods in Flow Visualization: Topological Methods



Vortex Breakdown Analysis

Vortex breakdown phenomenon in a delta wing simulation (right bubble)

Data set courtesy of M. Ruetten, DLR Göttingen


Garth, Tricoche, Scheuermann, *Tracking of Vector Field Singularities in 3D Unstructured Data Sets*, IEEE Visualization '04 Proceedings.

Feature Oriented Methods in Flow Visualization: Topological Methods

Vortex Breakdown Analysis

Vortex breakdown phenomenon in a delta wing simulation
Separation surfaces in left and right bubbles

Data set courtesy of M. Ruetten, DLR Göttingen

Garth, Tricoche, Scheuermann, *Tracking of Vector Field Singularities in 3D Unstructured Data Sets*, IEEE Visualization '04 Proceedings.

Feature Oriented Methods in Flow Visualization: Topological Methods

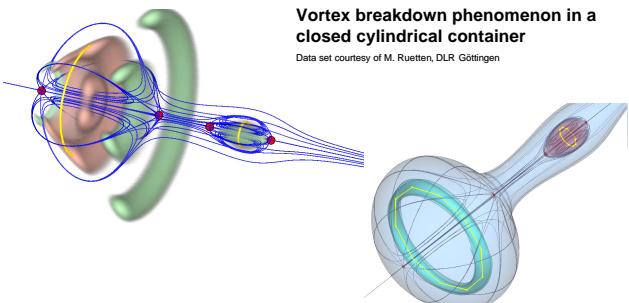
Volume Exploration

- Vortical flows exhibit intricate structures
 - *Multiple vortices*
 - *Recirculation bubbles*
- 3D topology is typically cluttered
- Stream surfaces are insufficient
- **Idea: unfold complex structures**

Feature Oriented Methods in Flow Visualization: Topological Methods

Volume Exploration

- Method: walk through 3D structures
- Moving cutting plane
 - smoothly sweeping along prescribed curve
 - Automatic orientation (maximize crossing flow)
- Track 2D topology of projected flow
 - Curve = parameter space
 - Filter out small-scale (“time”, space) features
- Map geometry back in 3D physical space
- Combined visualization with DVR for context


Feature Oriented Methods in Flow Visualization: Topological Methods

Volume Exploration

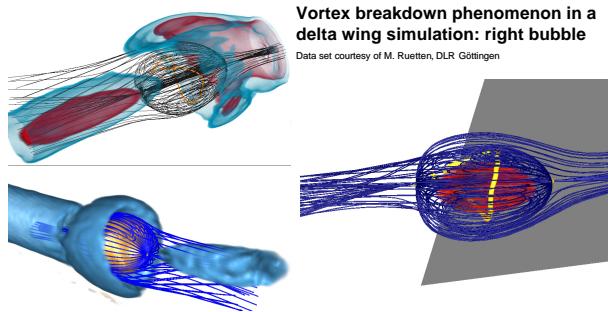
Vortex breakdown phenomenon in a closed cylindrical container

Data set courtesy of M. Ruetten, DLR Göttingen

Tricoche, Garth, Kindlmann, Deines, Scheuermann, Rütten, Hansen, *Visualization of Intricate Flow Structures for Vortex Breakdown Analysis*. IEEE Visualization '04 Proceedings.

Volume Exploration

Tricoche, Garth, Kindlmann, Deines, Scheuermann, Rütten, Hansen, *Visualization of Intricate Flow Structures for Vortex Breakdown Analysis*. IEEE Visualization '04 Proceedings.


Feature Oriented Methods in Flow Visualization: Topological Methods

Volume Exploration

Vortex breakdown phenomenon in a delta wing simulation: right bubble

Data set courtesy of M. Ruetten, DLR Göttingen

Tricoche, Garth, Kindlmann, Deines, Scheuermann, Rütten, Hansen, *Visualization of Intricate Flow Structures for Vortex Breakdown Analysis*. IEEE Visualization '04 Proceedings.

Feature Oriented Methods in Flow Visualization: Topological Methods

Outline

- Motivation
- Theory basics
- Implementation
- Applications
- **Pros and cons**

Feature Oriented Methods in Flow Visualization: Topological Methods

Topology is a Powerful Approach

- Very efficient computation
- Abstract representation:
 - *Synthetic depiction*
 - *Data reduction for interpretation*
 - *Unified framework: scalars, vectors, tensors, multi-fields*
- Building block for specific visualization techniques

Feature Oriented Methods in Flow Visualization: Topological Methods

But Topology Alone is Not Sufficient

- Topological structures \neq “features”
- Needs right coordinate frame
- Can be non-intuitive
- Clutter and occlusion problems in 3D

Feature Oriented Methods in Flow Visualization: Topological Methods

Acknowledgments

- Christoph Garth
University of Kaiserslautern
- Gerik Scheuermann
University of Leipzig
- Holger Theisel
Max-Planck-Institut Saarbrücken
- Thomas Wischgoll
UC Irvine

Feature Oriented Methods in Flow Visualization: Topological Methods

