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A Vortex?

* Not well defined!
« Vorticity is sufficiently strong — not enough to detect
e [Lugt‘72]:

— A vortex is the rotating motion of a multitude of material particles
around a common center

Dther Definitions (1)

[Robinson ‘91]:
— A vortex exists when its streamlines, mapped onto a plane

normal to its core, exhibit a circular or spiral pattern, under an
appropriate reference frame

[Portela ‘97]:

— A vortex is comprised of a central core region surrounded by swirling
streamlines

Automatic Analysis
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Feature verification

Feature representation




A Full-fledged Solution
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Previous Methods ...

* Feature detection but not verification

« Feature tracking but poor representation

A paucity of work on feature association

* Note:
— Not every component is necessary for all features
— But they are there and can be adjusted and refined

Scalar Methods

 Isosurfaces of a scalar field
— Low-pressure region [Robinson et al. 91]
— Normalized helicity [Levy et al. 90]

— Swirl parameter [Berdhal and Thompson 93]

— Lambda2 [Jeong and Hussain 95]

« Disadvantage

— Difficulty in distinguishing individual vortices

| ine-Based Methods

Vorticity lines [Banks and Singer 95]

« Eigenvector method [Sujudi and Haimes 94]

Parallel vectors method [Roth and Peikert 98]

Disadvantage
— Memory intensive and computationally expensive




Geometry-based Methods

« 2D winding angle [Sadarjoen et al. 98]

e Curvature center density [Pagendarm et al. 99]

« Flow directional winding angle of streamlines [Portela97]

« Disadvantage
— Inherently limited to 2D

Core Detection Algorithm

Jiang et al., Vissym 02, Barcelona

Local, aggregate approach based on ideas from
combinatorial topology

Its qualities are:
— Extract individual vortex core regions
— Simple, fast, and effective

However, it is only heuristic and can produce false
positives

On the other hand so can almost every other method !

Core Detection (2)

« Really simple and very efficient!

¢ Point-based approach using ideas from combinatorial
topology

e Sperner's Lemma:

Every properly labeled subdivision of a simplex has an odd
number of distinguished simplices

« Brouwer's Fixed Point Theorem:
Every continuous mapping has a fixed point

Sperner’s Lemma

« Every Sperner labeled triangulation has an odd number

of fully labeled subtriangles.
— At least one subtriangle has all three labels: {A, B, C}

« Provided a simple and elegant proof to Brouwer’s Fixed

Point Theorem:

— Every continuous mapping of a compact domain onto itself has a
fixed point.




Vector Field Labeling

« Vectors can be labeled c
according to their directions

e
— A label corresponds to a /‘/T
direction range v N

* Fully labeled subtriangle > TA ‘ -
direction spanning property

Direction Ranges Direction Labeling

* An odd number of critical )
points exist in a vector field if B~
the direction spanning i 4
property is satisfied.

| abeling Duality

Sperner labeling of a triangulation

Vector labeling of an unstructured grid
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Why Does It Work ?

PD Algorithm

For each grid point, examine
its immediate neighbors for
direction spanning property

Possible flow types captured:
— Switching flows
— Swirling flows

Topological cleanup of non-
swirling regions




Direction Quantization

» Three direction ranges may not o S
be sufficient!
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Algorithm Outline

1. for all grid cells do

2:  compute swirl plane normal n at cell center
3: project v from surrounding nodes

4 for all v, in swirl plane do

5: compute its angle « from local x-axis

G label direction range for a

7. end for

8:  if all direction ranges are labeled then

9 mark grid cell as vortex core

10:  end if

11: end for
e

3D Algorithm

* Must compute the core
direction a priori
— Vorticity vector (cheap)
— Real eigenvector
(expensive)
« Combinatorially, check for
fully labeled tetrahedrons
— Project immediate
neighbors onto the swirl
plane
 Direction quantization >
robustness to variations in
core direction
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Rankine vortices
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2D Topological Cleanup

Rankine vortices LIC dataset

Wake simulation

3D Results
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3D Rankine vortex

3D Results

Bent helical vortex

Blunt Fin Dataset
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Blunt fin on flat plate




Delta Wing Dataset

Verification - Visual Inspection

Delta wing from NASA

False Positives

Yellow: Good, Green:Bad '

Yellow ones really swirl !

Green ones do not !

Did | get the correct ones ?

Feature Verification

No formal definition — No formal verification

* Human visual inspection
— Swirling streamlines
— Contrary to automatic detection
— Infeasible for large-scale datasets




Automatic Verification

« Automate visual inspection process
— ldentify swirling streamlines
— Eliminate false positives

¢ [Portela 97 and Sadarjoen 98] approach:

— 2p swirling criterion
— Sufficient for 2D vortices
— Incomplete for 3D vortices

« 3D verification — Jiang et al. Vis02

\Verification Process

Tangent
vectors

Probe
vectors

Tangent space

M

Tangent profile

2p Swirling Criterion

3D Rankine Vortex

» Concentrated vorticity in its core region
» Decay of circumferential velocity




Tangential Alignment

N

No alignment
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With alignment

Delta Wing Dataset

Verification Algorithm

1: uniformly distribute seed points at start position
2: for all seed points do

3. fori=0to N do

4 trace next streampoint

5: compute tangent vector t and probe vector
6: probe vortex core for swirl plane normal n
7 align n to z-axis and save transformation
8: apply transformation to t — t,

9: project t, on (x.y)-plane — t,

10: if Z(t).t}) > 27 then

11: accept candidate vortex core

12: end if

13:  end for

14: end for

=liminating False Positives

2p

0.5p

10



Application: Characterization

Step 1 Step 2 Step 3
Hybrid Framework Radial Marching Ellipse Fitting
Core Path Extraction Max. Tangential Velocity Attribute Computation

Core Line Extraction

Region-based approach:
Contiguous
No sense of direction

Line-based approach:
Sense of direction

Not contiguous

Hybrid Framework

Extraction Algorithm:
For N iterations
Start with seed point
Trace both directions
Search more neighbors

Fit
Cubic
Bspline

Surface Generation
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Oxygen Post Dataset

More Work is Needed

« Modify detection algorithm
— Require Galilean invariance
— Properly handle unsteady flow fields

Work Not Done — Unsteady Flows

Research Directions

Verification
— Seeding and continuation strategies
— Include dynamics
— Unsteady flows
— Apply it more detection algorithms

Characterization
— Robust extraction
— Use of dynamical characteristics

Develop feature matching algorithm

— Efficiency is the key to feature tracking

— Build on top of shape-based representation
— Use parameter space matching

Develop feature association mining
— Gain new insights into evolutionary phenomena
— Analyze feature-to-feature interactions
— Discover physical laws governing such behavior
— Mine frequent patterns in time-varying datasets
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