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• basic fluid dynamics background

• vortex definitions in fluid dynamics

• vortex detection

• real world applications

• pros and cons

Overview
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Fluid dynamics basics

The dynamics of a Newtonian fluid is described by the 
continuity equation

and the Navier-Stokes equation (with no external force):

D/Dt notation means convective derivative (also called 
material d., Lagrangian d., substantive d., or Stokes d. :-)
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Fluid dynamics basics

Incompressible flow has constant density ρ, so the 
continuity equation simplifies to

Inviscid flow has no ν term (kinematic viscosity), so the 
Navier-Stokes equation simplifies to the Euler equation
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Vorticity

Definition of vorticity:

Vorticity line: integral curve of     starting at a point
(line everywhere tangent to vorticity field)

Vortex tube: integral curves of starting at a closed 
curve.

Strength of a vortex tube:

(A: cross section, n normal vector of A)
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Helmholtz’ vortex theorems for inviscid flow

(1) Strength of vortex tube is independent of the choice of 
the cross section

(2) Vortex tubes “move with the flow” (i.e. its set of particles
remains a vortex tube) and they keep their strength

u ωω
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Vorticity is Galilean invariant (same for any inertial frame of 
reference).

Vorticity of a shear flow
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Helicity

Definition of Helicity (or helicity density): [Moffat 1969]

It measures rotation about the axis given by the 
velocity vector.

Normalized Helicity: [Levy, Degani and Seginer 1990]
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Vortex definitions (0)

Basic criteria for vortices:
• High vorticity magnitude. 

Problem: Cannot separate vortices from shear.

• High (positive or negative) helicity. 

Problems: Not Galilean invariant.
Works only for longitudinal vortices.

• Low pressure. 

Problem: Constant threshold often fails. 
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Two definitions based on streamline pattern:
• Closed or spiraling streamlines. [Lugt 1979]

Problem: Not Galilean invariant (what is seen depends 
on the reference frame).

• … seen by observer viewing along the vortex core and 
moving with its center. [Robinson 1991]

Problem: Implicit definition. 
Infinitesimal version of Robinson’s definition:
• Region of complex eigenvalues of the velocity gradient 

tensor ∇u. [Chong, Perry, Cantwell 1990]

Problem: Not sharp.

Vortex definitions (I)
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Vortex definitions (II)

Two definitions based on pressure and ∇u :
• Low pressure and positive 2nd invariant Q of ∇u. 

[Hunt, Wray, Moin 1988]

Q is proportional to the pressure Laplacian: 

• λ2 criterion. [Jeong, Hussein 1995]
Regions of low “modified” pressure, calculated from ∇u :
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Navier-Stokes equation:

Gradient (matrix equation):

Symmetric part:

where
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From

remove terms #1 (unsteady irrotational straining)
and #2 (viscous effects). 

Interpret the resulting LHS

as relevant part of the pressure Hessian (times         ).
Near local pressure minima, two eigenvalues of the Hessian 

are positive. 
Hence for the eigenvalues                   of

The λ2 criterion
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DNS of mixing layer: 
[Tufo et al. 1999]

Comparison

velocity

velocity RMS

pressure

spanwise vorticity

λ2
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Sparse visualization of vortices. 
Applications: 
• flows with many vortices,
• dynamic behavior
• isolating nearby vortices 

Vortex core lines
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Definition based on normalized helicity:
• Vorticity and velocity parallel: [Levy et al. 1990]

Normalized helicity 

takes (absolute) maximum of 1 at places where

This is a vector equation for points on the core line. 

However, its 3 scalar equations are not independent, as 
can be seen by the identity:

Definitions of vortex core lines (I)
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Naive approach: solve only 2 of the 3 equations.

Problems: the pair of equations can
– have additional solutions: the 3rd equation must be checked 

(with tolerance = ?)
– lead to ill-defined intersections: must choose a different 

pair, giving consistency problems.

Finding parallel vectors
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More robust algorithm: solve 

on the cell faces of the data grid. Unknowns are λ and two 
parameters s and t for bilinear interpolation on the face.

Equations are nonlinear, but (for triangular faces) can be 
treated as an eigenvalue problem:

Avoiding singular matrix: first check for           on the cell face.

Finding parallel vectors
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Definition based on ∇u:
• complex eigenvalues, and u is eigenvector of ∇u

[Sujudi and Haimes 1995]

Reasoning: In a local reference frame moving with u:
– the critical point type is spiral-saddle
– its axis is aligned with u

• complex eigenvalues, and             parallel to u
[Roth and Peikert 1998]

Using the same criterion                     more efficiently (no 
eigenvector computations). 
The term            is the acceleration (in a steady flow).
The criterion is equivalent to saying that the curvature of 
the local streamline vanishes.

Definitions of vortex core lines (II)
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Two definitions based on pressure 
• Valley lines of pressure. [Miura and Kida 1997, Peikert and Roth 199

– Galilean invariant, in contrast to previous methods.
– Needs second derivatives.
– Applicable to “modified pressure” as in λ2 method (no 

second derivatives needed)

• Pressure minima in sections perpendicular to vorticity
lines. [Banks and Singer 1994]

– Prediction/correction scheme for searching minima

Definitions of vortex core lines (III)
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Real world applications

Vortex rope in Francis runner / drafttube

Goal: Reducing the vortex for 2 reasons:

– vibrations in the runner hub and shaft

– unstable power output
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Real world applications

Vortices in Pelton manifold:

Goal: Reducing the separation vortex and possibly other 

vortices for a qualitatively better jet (circular cross 

section, stability).

23

Conclusion, Pros and cons

+  Automatic extraction of flow features can be used for 
preprocessing large data sets prior to visualization.

+  Physically meaningful criteria can be applied.

- Several definitions of vortex (core lines) exist. Their 

choice depends on the type of flow.

- An expected feature scale must be known. Extracted 

features can look wrong when viewed in a largely 

different scale.
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