Rendering Primitives

Ken Martin
Kitware Inc.

Outline

Introduction to Rendering
Visualization Data Model
VTK’s Graphics Subsystem
Rendering a Polygonal Mesh
Rendering an Image

Introduction to Rendering ZIhll.

In the context of visualization rendering is the process of
converting visualization primitives into a 2D image

more generally it is converting visualization primitives into
something that can be visually perceived by the user, this
iIncludes physical models (such as from stereo
lithography), 3D images, etc

Typically the resulting image is a series of pixels each
containing a Red, Green, and Blue value.

The physical world is vastly more complicated and many
rendering engines support (or approximate) some of this
complexity (functions over wavelength, polarity, etc)

In visualization we can take advantage of this complexity

Introduction to Rendering ZIhll.

What are visualization primitives?
2D surface elements such as triangles, and polygons

3D volumetric elements such as tetrahedra and voxels
= (Lisa will discuss this in her section of Volume Rendering)

Higher order elements such as NURBS, etc
Analytic primitives (less widely supported)
0D and 1D elements such as points and lines

All the above are typically represented in a 3D world
coordinate system

Introduction to Rendering ZIhll.

What information goes with a visualization primitive?
e Geometry (the 3D positions)

e Topology (the connectivity of the elements)

e Normals (a unit vector normal to the surface)
®

Color (RGBA)

= Emissive (Ambient)
= Diffuse

= Specular

= Specular Power

Texture Coordinates
Texture Map
Other Generalizations (Displacement Maps etc)

Introduction to Rendering ZIhll.

What information goes with a visualization primitive?

e Interpolation (Phong, Gouraud, Flat)
e Backface / Frontface properties

Visualization algorithms map from the data being visualized
to visualization primitives

e Density scalar values = colors, isosurfaces
e Velocity vector fields - streamlines, glyphs

Visualization Data Model ZIhll.

e To understand rendering for visualization we will look at
the original data and the rendering process

e We will use VTK as a framework (and examples) for this
discussion (other toolkits have similar concepts and
names)

e VTIK s a visualization toolKit
Designed and implemented using object-oriented principles
C++ class library (400,000 LOC, <150,000 executable lines)
Automated Java, TCL, Python bindings
Portable across Unix, Windows9x/NT

Supports 3D/2D graphics, visualization, image processing, volume
rendering

Visualization Data Model

e Data Objects

= represent data
= provide access to data

= compute information particular to data
(e.g., bounding box, derivatives)

e Represent a “blob” of data
contain instance of vikFieldData

an array of arrays
no geometric/topological structure

typically not used in pipelines (but its subclasses such as
vikDataSet are)

e Can be converted to vikDataSet
= vikDataObjectToDataSetFilter

Visualization Data Model ZIhll.

e vikDataObiject is a “blob” of data
= (Contains an instance of vikFieldData

e vikDataSet is data with geometric & topological structure;
and with attribute data

Geometry Points
& Topology & Cells

Data Set Point Data
Attributes Cell Data

Visualization Data Model

e A dataset is a data object with structure

e Structure consists of

cells (e.g., polygons, lines, voxels

points (x-y-z coordinates

cells defined by connectivity list referring to points
implicit representations

explicit representations

o:

Sy
ekt
e,
Epbyd
St

e
b,
et ey

bbbttt
iyt
)
ek
L

X o e o o

o
o
o

o

X e e
o

e T 2 e

”
w
iyt
]
]

o
o

o
o

e 2 2 2
o

o
o
bttty

e
e
o
ﬁj+
L
o

o

-
]
]

iyt

!

o
o

‘_<
o
1)
1)
1)

o

]

ity
!

o

o
L
i

5
T
A

Visualization Data Model

Qi

vikStructuredPoints

vikRectilinearGrid

vtkPolyData

vikUnstructuredGrid

vikStructuredGrid

[N
N

Visualization Data Model

e vtkDataArray labeled as:
= Scalars — single value
= Vectors - 3-vector
Tensors - 3x3 symmetric matrix
Normals - unit vector
Texture Coordinates 1-3 values
Field Data (arbitrary arrays)

e The values in the data arrays must be mapped to values of
visualization primitives

VTK’s Graphics Subsystem

A VTK scene consists of:
vtkRenderWindow - contains the final image
vitkRenderer - draws into the render window

vikActor - combines properties / geometry
= vikProp, vtkProp3D are superclasses
= vikProperty

vikLights - illuminate actors
vtkCamera - renders the scene

vtkMapper - represents geometry
= vikPolyDataMapper, vikDataSetMapper are subclasses

vtk Transform - position actors

VTK’s Graphics Subsystem

vtkSphereSource *sphere = vtkSphereSource() : :New();

vtkPolyDataMapper *sphereMapper = vtkPolyDataMapper: :New () ;
sphereMapper—>SetInput (sphere>GetOutput ()) ;

vtkActor *sphereActor = vtkActor::New();
sphereActor->SetMapper (sphereMapper) ;

vtkRenderer *renderer = vtkRenderer: :New();

vtkRenderWindow *renWin = vtkRenderWindow: :New () ;
renWin—>AddRenderer (renderer) ;

vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor: :New();
iren—>SetRenderWindow (renWin) ;

renderer->AddProp (sphereActor) ;
renderer->SetBackground(1,1,1);
renWin—->SetSize (300, 300);

renWin—->Render () ;
iren—>Start () ;

VTK’s Graphics Subsystem ZIhll.

The following is a summary of instance variables &
methods

Remember there is typically a Set_ () and Get___ ()
method to set and get the instance variable values.

Refer to Doxygen man pages, or class header files, for
more information.

VTK’s Graphics Subsystem ZIhll.

e Converting datasets to visualization primitives is mainly handled by
mappers, with some help from properties and actors

vikMapper (vtkVolumeMapper, vtkPolyDataMapper, etc

Controls which scalar array is used for vertex (or cell) colors

Defines a mapping from scalar values to colors using a lookup table
and scalar range

Defines how the vertex colors are used to control the lighting
equations

Fairly intuitive mapping from geometry and topology to visualization
primitives

VTK’s Graphics Subsystem

vikLookupTable

eNumberOfColors — number of colors in the table

e TableRange — the min/max scalar value range to map
elf building a table from linear HSVA ramp:
= HueRange — min/max hue range
= SaturationRange — min/max saturation range
= ValueRange — min/max value range
= AlphaRange — min/max transparency range
e|f manually building a table
= Build (after setting NumberOfColors)
= SetTableValue(idx, rgba) for each NumberOfColors entries

VTK’s Graphics Subsystem

vikProperty

Interpolation - shading interpolation method
(Flat, Gouraud, Phong)

Representation — how to represent itself
(Points, Wireframe, Surface)

AmbientColor, DiffuseColor, SpecularColor — a different
color for ambient, diffuse, and specular lighting

Color — sets the three colors above to the same

Ambient, Diffuse, Specular — coefficients for ambient,
diffuse, and specular lighting

Opacity — control transparency

VTK’s Graphics Subsystem ZIhll.

vikActor (subclass of vikProp)

Combines the visualization primitives from the mapper with
transformations and properties

Property — surface lighting properties

Texture — a texture map associated with the actor
Position — where it’s located

Origin — the origin of rotation

Visibility — is the actor visible?

Pickable — is the actor pickable?

Dragable — is the actor dragable?

RotateX, RotateY, RotateZ — rotate around different axes
RotateWXYZ — rotate around a vector

VTK’s Graphics Subsystem ZIhll.

vitkCamera

Position — where the camera is located

FocalPoint — where the camera is pointing

ViewUp — which direction is “up”

ClippingRange — data outside of this range is clipped

ViewAngle — the camera view angle controls
perspective effects

EyeAngle — the angle between eyes (for stereo)

ViewPlaneNormal — the normal vector to the view
plane

VTK’s Graphics Subsystem

View Up

A

View Angle

Direction o

Projection

Focal Point

Position

Front Clipping Plane

Figure 3—=11 Camera attributes.
Back Clipping Plane

VTK’s Graphics Subsystem ZIhll.

vtkCamera (cont.)

ParallelProjection — turn parallel projection on/off (no
perspective effects)

ParallelScale — used to shrink or enlarge an image

Roll, Pitch, Yaw, Elevation, Azimuth — move the camera in
a variety of ways

Zoom, Dolly — changes view angle (Zoom); move camera
closer (Dolly)

OrthogonalizeViewUp — make the view up vector
perpendicular to the view plane normal

VTK’s Graphics Subsystem ZIhll.

Elevation
Focal Point

Direction

of Projection :
Focal Point

Azimuth

\ ‘ -
: View Plane
Nelinkl

VTK’s Graphics Subsystem

vtkLight

Color — the light color

Position — where the light is

FocalPoint — where the light is pointing

Intensity — the brightness of the light

Switch — turn the light on or off

Positional — is it an infinite or local (positional) light
ConeAngle — the cone of rays leaving the light

VTK’s Graphics Subsystem ZIhll.

vitkRenderer

e AddProp (preferred), AddActor, AddVolume, AddActor2D
— add objects to be rendered

AddLight — add a light to illuminate the scene
SetAmbient — set the intensity of the ambient lighting
SetViewport — specify where to draw in the render window

SetActiveCamera — specify the camera to use render the
scene

ResetCamera — reset the camera so that all actors are
visible

VTK’s Graphics Subsystem ZIhll.

vikRenderWindow

AddRenderer() — add another renderer which draws into
this vtkRenderWindow

SetSize() — set the size of the window
SetPosition() — set the position of the window
SetWindowName() — set the name (in the titlebar)

AAFrames, FDFrames, SubFrames — used for anti-
aliasing and focal depth

e StereoType, StereoRenderOn/Off — control stereo

e AbortRender, AbortCheckMethod — methods to interrupt
the rendering process

VTK’s Graphics Subsystem ZIhll.

vtkRenderWindow (cont.)

e DesiredUpdateRate — a frame rate which is used to control
LOD (level-of-detail) actors

e DoubleBuffer — turn double buffering on/off

e PixelData, RGBAPixelData, ZbufferData — set/get the color
buffer and depth buffer for the window

VTK’s Graphics Subsystem

Example: Initial Camera View

vtkCamera *cam1 = vtkCamera::New();
cam1->SetFocalPoint(0, 0, 0);
cami->SetPosition(1,1, 1);
cam1->SetViewUp(1, 0, 0);
cam1->0OrthogonalizeViewUp();

ren1->SetActiveCamera(cam1);
ren1->ResetCamera();

VTK’s Graphics Subsystem ZIhll.

// work the the actor's property. One is created by
// default if a property has not been specified

vtkProperty *prop = actorl->GetProperty();

prop->SetDiffuseColor(0,0,1.0);
prop—>SetSpecularColor(0.0,1.0,0.0);
prop—>SetSpecular(l);
prop—>SetSpecularPower (10);
prop—>SetAmbientColor (1, 0,0);
prop—>SetAmbient (0. 3);

VTK’s Graphics Subsystem

Important vtkProp Subclasses

e vikLODActor - automated LOD creation

vikLODProp3D - manual control of LOD’s
including mixed volumes/surfaces

vikFollower - always face a camera

vtkAssembly - groups of vikProp3D’s, transformed
together.

VTK’s Graphics Subsystem ZIhll.

vikLODActor -- Changes resolution based on desired response

vikLODActor *actor = vikLODActor::New();
actor->SetMapper(mapper);
actor->SetNumberOfCloudPoints(1000);

vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->SetDesiredUpdateRate(5.0);

VTK’s Graphics Subsystem

vtkLODProp3D

® vtkLODProp3D *lod = vtkLODProp3D::New/();
lod->AddLOD volumeMapper, volumeProperty?2,

lod—->AddLOD volumeMapper, volumeProperty,

lod—>AddLOD
lod—>AddLOD

probeMapper_lres, probeProperty,
outlineMapper, outlineProperty,

(
(
1lod—>AddLOD (probeMapper_hres, probeProperty,
(
(

e from Examples/VolumeRendering/Tcl/volSimpleLOD. tcl

VTK’s Graphics Subsystem ZIhll.

vtkFollower — an actor always faces a specified camera

vtkFollower *textActor = vtkFollower: :New();
textActor—>SetMapper (textMapper);
textActor->SetScale(0.2, 0.2, 0.2);
textActor->AddPosition(0, -0.1, 0);

textActor—->SetCamera (aCamera) ;

VTK’s Graphics Subsystem

vtkAssembly -- Create hierarchies of vikProp3D’s:

vtkAssembly *cylinderActor = vtkAssembly::New();
cylinderActor—->AddPart (sphereActor);
cylinderActor—->AddPart (cubeActor);
cylinderActor->AddPart (coneActor);
cylinderActor—>SetOrigin(5, 10, 15);
cylinderActor->AddPosition(5, 0, 0);
cylinderActor—->RotateX(15);

VTK’s Graphics Subsystem ZIhll.

vtkRenderWindowiInteractor -- Key features:

e SetRenderWindow — the single render window to interact with

e Key and mouse bindings (Interactor Style)
e Light Follow Camera (a headlight)

e Picking interaction

Rendering a Polygonal Mesh

vtkLookupTable *lut = vtkLookupTable::New();
lut->SetHueRange(0.6, 0);
lut->SetSaturationRange(1.0, 0);
lut->SetValueRange(0.5, 1.0);

vikDEMReader *demModel = vikDEMReader::New();
demModel->SetFileName("C:/SainteHelens.dem");
demModel->Update();

double lo = Scale * demModel->GetElevationBounds()[0];
double hi = Scale * demModel->GetElevationBounds()[1];

Rendering a Polygonal Mesh

vikimageDataGeometryFilter *geom =
vikimageDataGeometryFilter::New();

geom->Setinput(demModel->GetOutput());

vikWarpScalar *warp = vikWarpScalar::New();
warp->Setinput(geom->GetOutput());

vikElevationFilter *elevation = vikElevationFilter::New();
elevation->Setlnput(warp->GetOutput());
elevation->SetScalarRange(lo, hi);

vikDataSetMapper *dsMapper = vitkDataSetMapper::New();
dsMapper->Setinput(elevation->GetOutput());
dsMapper->SetScalarRange(lo, hi);
dsMapper->SetLookupTable(lut);

Rendering an Image

There are multiple ways to render an image
= Direct mapping to pixels
= Texture mapped onto a plane
= Converted into polygons as in the prior example
= Use to modify (texture, etc) a different geometry

Direct mapping to pixels has the advantage of straight forward,
advanced interpolation or scaling can be done algorithmically

Texture mapping leverages graphics hardware to perform interpolation
and scaling, this is very fast

Other approach depend on the specific of the visualization

Rendering an Image ZIhll.

e ImageViewer2 - simple one step solution
= RenderWindow
= Renderer
= vikimageActor
= viklmageMapToWindowLevelColors

e vitklmageActor can make use of hardware interpolation
and scaling

e Mipmaps, etc, can be used (in hardware) to address
aliasing issues

Rendering an Image

Image Display Methods
e Setlnput

e Set/GetZSlice

e GetWholeZMin/Max

o

SetColorWindow — width that determines which data values are
displayed
SetColorLevel — data value that centers the window

ColorWindow

ColorLevel

Rendering an Image

e Coordinate Systems
Viewport Pixels (0 to size — 1)
Normalized Viewport 0, 1
Display Pixels (0 to size — 1)
Normalized Display 0, 1
View -1, 1
World -inf, inf

Texture Mapping

Ken Martin
Kitware Inc.

Texture Mapping ZIhll,

e How to use texture mapping for visualization

e Static texture maps
= Satellite (or photo etc) imagery mapped onto geometry
= Texture maps used to illustrate geometry
= Texture maps used for scalar coloring
= Texture maps used to modulate a visualization through opacity

e Dynamic texture maps

= Used in vector field visualization to denote flow direction and
velocity

= Used in 4D visualization to show imagery over time

Texture Mapping Zlhll,

e Static texture maps
= Satellite (or photo etc) imagery mapped onto geometry

Texture-Mapping

e Satellite (or photo etc) imagery mapped onto geometry

vikTexturedSphereSource *tss = vikTexturedSphereSource::New();
tss->SetThetaResolution (18);
tss->SetPhiResolution (9);

vikPolyDataMapper *earthMapper = vikPolyDataMapper::New();
earthMapper->Setlnput (tss->GetOutput());

vtkActor *earthActor = vtkActor::New();
earthActor->SetMapper (earthMapper);

vikTexture *atext = vikTexture::New();
vikPNMReader *pnmReader = vikPNMReader::New();
pnmReader->SetFileName (“C:/Data/earth.ppm*);

atext->Setlnput (pnmReader->GetOutput());
atext->InterpolateOn ();
earthActor->SetTexture (atext);

Texture Mapping V-Ié[hll.

mustm, texns

e Static texture maps
= Texture maps used to illustrate geometry

Texture-Mapping

Static texture maps - Texture maps used to illustrate geometry

vikTriangularTexture *aTriangularTexture = vikTriangularTexture::New();
aTriangularTexture->SetTexturePattern(2);
alriangularTexture->SetScaleFactor(1.3);

vtkSphereSource *aSphere = vikSphereSource::New();

vtkTriangularTCoords *tCoords = vtkTriangularTCoords::New();
tCoords->Setlnput(aSphere->GetOutput());

vtkPolyDataMapper *dsMapper = vikPolyDataMapper::New();
dsMapper->Setlnput(tCoords->GetOutput());

vikTexture *aTexture = vtkTexture::New();
aTexture->Setlnput(aTriangularTexture->GetOutput());

vtkActor *anActor = vikActor::New();
anActor->SetMapper(dsMapper);
anActor->SetTexture(aTexture);

Qi

Texture Mapping ZIhll,

Static texture maps -- Texture maps used for scalar coloring

e OpenGL interpolates colors from the vertices, can instead use texture
coordinates and then use a texture map to perform per pixel coloring

\

Texture Mapping ZIhll,

Static texture maps
= Texture maps used to modulate a visualization through opacity

For example, generate texture coordinates based on
scalar values (can be 1D or higher)

then create a RGBA or |IA texture map that defines some
texture coordinate ranges to be transparent, etc.

Apply this to any visualization streamlines, isosurfaces of
one value textured by another etc.

Texture Mapping ZIhll,

Dynamic texture maps

= Used in vector field visualization to denote flow direction and
velocity

Create a series of texture maps that can be cycled
Create a vector field visualization such as with hedgehogs

Apply the texture maps to the hedgehogs and then
animate through the texture maps

