
Rendering Primitives

Ken Martin
Kitware Inc.

2 of 50

Outline

� Introduction to Rendering
� Visualization Data Model
� VTK’s Graphics Subsystem
� Rendering a Polygonal Mesh
� Rendering an Image

3 of 50

Introduction to Rendering

� In the context of visualization rendering is the process of
converting visualization primitives into a 2D image

� more generally it is converting visualization primitives into
something that can be visually perceived by the user, this
includes physical models (such as from stereo
lithography), 3D images, etc

� Typically the resulting image is a series of pixels each
containing a Red, Green, and Blue value.

� The physical world is vastly more complicated and many
rendering engines support (or approximate) some of this
complexity (functions over wavelength, polarity, etc)

� In visualization we can take advantage of this complexity

4 of 50

Introduction to Rendering

What are visualization primitives?
� 2D surface elements such as triangles, and polygons
� 3D volumetric elements such as tetrahedra and voxels

� (Lisa will discuss this in her section of Volume Rendering)

� Higher order elements such as NURBS, etc
� Analytic primitives (less widely supported)
� 0D and 1D elements such as points and lines

� All the above are typically represented in a 3D world
coordinate system

5 of 50

Introduction to Rendering

What information goes with a visualization primitive?
� Geometry (the 3D positions)
� Topology (the connectivity of the elements)
� Normals (a unit vector normal to the surface)
� Color (RGBA)

� Emissive (Ambient)
� Diffuse
� Specular
� Specular Power

� Texture Coordinates
� Texture Map
� Other Generalizations (Displacement Maps etc)

6 of 50

Introduction to Rendering

What information goes with a visualization primitive?

� Interpolation (Phong, Gouraud, Flat)
� Backface / Frontface properties

Visualization algorithms map from the data being visualized
to visualization primitives

� Density scalar values � colors, isosurfaces
� Velocity vector fields � streamlines, glyphs

Visualization Data Model

� To understand rendering for visualization we will look at
the original data and the rendering process

� We will use VTK as a framework (and examples) for this
discussion (other toolkits have similar concepts and
names)

� VTK is a visualization toolkit
� Designed and implemented using object-oriented principles
� C++ class library (400,000 LOC, <150,000 executable lines)
� Automated Java, TCL, Python bindings
� Portable across Unix, Windows9x/NT
� Supports 3D/2D graphics, visualization, image processing, volume

rendering

Visualization Data Model

� Data Objects
� represent data
� provide access to data
� compute information particular to data

(e.g., bounding box, derivatives)

� Represent a “blob” of data
� contain instance of vtkFieldData
� an array of arrays
� no geometric/topological structure
� typically not used in pipelines (but its subclasses such as

vtkDataSet are)

� Can be converted to vtkDataSet
� vtkDataObjectToDataSetFilter

9 of 50

Visualization Data Model

� vtkDataObject is a “blob” of data
� Contains an instance of vtkFieldData

� vtkDataSet is data with geometric & topological structure;
and with attribute data

Geometry
& Topology

Data Set
Attributes

Points
& Cells

Point Data
Cell Data

Visualization Data Model

� A dataset is a data object with structure

� Structure consists of
� cells (e.g., polygons, lines, voxels)
� points (x-y-z coordinates)
� cells defined by connectivity list referring to points
� implicit representations
� explicit representations Cell

Points

Visualization Data Model

vtkPolyData

vtkStructuredPoints

vtkStructuredGrid

vtkUnstructuredGrid

vtkRectilinearGrid

Visualization Data Model

� vtkDataArray labeled as:
� Scalars – single value
� Vectors - 3-vector
� Tensors - 3x3 symmetric matrix
� Normals - unit vector
� Texture Coordinates 1-3 values
� Field Data (arbitrary arrays)

� The values in the data arrays must be mapped to values of
visualization primitives

VTK’s Graphics Subsystem

� A VTK scene consists of:
� vtkRenderWindow - contains the final image
� vtkRenderer - draws into the render window
� vtkActor - combines properties / geometry

� vtkProp, vtkProp3D are superclasses
� vtkProperty

� vtkLights - illuminate actors
� vtkCamera - renders the scene
� vtkMapper - represents geometry

� vtkPolyDataMapper, vtkDataSetMapper are subclasses

� vtkTransform - position actors

14 of 50

VTK’s Graphics Subsystem

vtkSphereSource *sphere = vtkSphereSource()::New();

vtkPolyDataMapper *sphereMapper = vtkPolyDataMapper::New();
sphereMapper����SetInput(sphere����GetOutput());

vtkActor *sphereActor = vtkActor::New();
sphereActor����SetMapper(sphereMapper);

vtkRenderer *renderer = vtkRenderer::New();
vtkRenderWindow *renWin = vtkRenderWindow::New();

renWin����AddRenderer(renderer);
vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();

iren����SetRenderWindow(renWin);

renderer����AddProp(sphereActor);
renderer����SetBackground(1,1,1);
renWin����SetSize(300,300);

renWin����Render();
iren����Start();

15 of 50

VTK’s Graphics Subsystem

� The following is a summary of instance variables &
methods

� Remember there is typically a Set__() and Get___()
method to set and get the instance variable values.

� Refer to Doxygen man pages, or class header files, for
more information.

16 of 50

VTK’s Graphics Subsystem

� Converting datasets to visualization primitives is mainly handled by
mappers, with some help from properties and actors

vtkMapper (vtkVolumeMapper, vtkPolyDataMapper, etc

� Controls which scalar array is used for vertex (or cell) colors
� Defines a mapping from scalar values to colors using a lookup table

and scalar range
� Defines how the vertex colors are used to control the lighting

equations
� Fairly intuitive mapping from geometry and topology to visualization

primitives

VTK’s Graphics Subsystem

vtkLookupTable

�NumberOfColors – number of colors in the table
�TableRange – the min/max scalar value range to map
�If building a table from linear HSVA ramp:

� HueRange – min/max hue range
� SaturationRange – min/max saturation range
� ValueRange – min/max value range
� AlphaRange – min/max transparency range

�If manually building a table
� Build (after setting NumberOfColors)
� SetTableValue(idx, rgba) for each NumberOfColors entries

VTK’s Graphics Subsystem

vtkProperty

� Interpolation - shading interpolation method
(Flat, Gouraud, Phong)

� Representation – how to represent itself
(Points, Wireframe, Surface)

� AmbientColor, DiffuseColor, SpecularColor – a different
color for ambient, diffuse, and specular lighting

� Color – sets the three colors above to the same
� Ambient, Diffuse, Specular – coefficients for ambient,

diffuse, and specular lighting
� Opacity – control transparency

VTK’s Graphics Subsystem

vtkActor (subclass of vtkProp)

� Combines the visualization primitives from the mapper with
transformations and properties

� Property – surface lighting properties
� Texture – a texture map associated with the actor
� Position – where it’s located
� Origin – the origin of rotation
� Visibility – is the actor visible?
� Pickable – is the actor pickable?
� Dragable – is the actor dragable?
� RotateX, RotateY, RotateZ – rotate around different axes
� RotateWXYZ – rotate around a vector

VTK’s Graphics Subsystem

vtkCamera

� Position – where the camera is located
� FocalPoint – where the camera is pointing
� ViewUp – which direction is “up”
� ClippingRange – data outside of this range is clipped
� ViewAngle – the camera view angle controls

perspective effects
� EyeAngle – the angle between eyes (for stereo)
� ViewPlaneNormal – the normal vector to the view

plane

21 of 50

VTK’s Graphics Subsystem

22 of 50

VTK’s Graphics Subsystem

vtkCamera (cont.)

� ParallelProjection – turn parallel projection on/off (no
perspective effects)

� ParallelScale – used to shrink or enlarge an image
� Roll, Pitch, Yaw, Elevation, Azimuth – move the camera in

a variety of ways
� Zoom, Dolly – changes view angle (Zoom); move camera

closer (Dolly)
� OrthogonalizeViewUp – make the view up vector

perpendicular to the view plane normal

23 of 50

VTK’s Graphics Subsystem

VTK’s Graphics Subsystem

vtkLight

� Color – the light color
� Position – where the light is
� FocalPoint – where the light is pointing
� Intensity – the brightness of the light
� Switch – turn the light on or off
� Positional – is it an infinite or local (positional) light
� ConeAngle – the cone of rays leaving the light

VTK’s Graphics Subsystem

vtkRenderer

� AddProp (preferred), AddActor, AddVolume, AddActor2D
– add objects to be rendered

� AddLight – add a light to illuminate the scene
� SetAmbient – set the intensity of the ambient lighting
� SetViewport – specify where to draw in the render window
� SetActiveCamera – specify the camera to use render the

scene
� ResetCamera – reset the camera so that all actors are

visible

VTK’s Graphics Subsystem

vtkRenderWindow

� AddRenderer() – add another renderer which draws into
this vtkRenderWindow

� SetSize() – set the size of the window
� SetPosition() – set the position of the window
� SetWindowName() – set the name (in the titlebar)
� AAFrames, FDFrames, SubFrames – used for anti-

aliasing and focal depth
� StereoType, StereoRenderOn/Off – control stereo
� AbortRender, AbortCheckMethod – methods to interrupt

the rendering process

27 of 50

VTK’s Graphics Subsystem

vtkRenderWindow (cont.)

� DesiredUpdateRate – a frame rate which is used to control
LOD (level-of-detail) actors

� DoubleBuffer – turn double buffering on/off

� PixelData, RGBAPixelData, ZbufferData – set/get the color
buffer and depth buffer for the window

VTK’s Graphics Subsystem

Example: Initial Camera View

vtkCamera *cam1 = vtkCamera::New();
cam1->SetFocalPoint(0, 0, 0);
cam1->SetPosition(1, 1, 1);
cam1->SetViewUp(1, 0, 0);
cam1->OrthogonalizeViewUp();

ren1->SetActiveCamera(cam1);
ren1->ResetCamera();

29 of 50

VTK’s Graphics Subsystem

// work the the actor's property. One is created by

// default if a property has not been specified

vtkProperty *prop = actor1->GetProperty();

prop->SetDiffuseColor(0,0,1.0);

prop->SetSpecularColor(0.0,1.0,0.0);
prop->SetSpecular(1);

prop->SetSpecularPower(10);
prop->SetAmbientColor(1,0,0);

prop->SetAmbient(0.3);

VTK’s Graphics Subsystem

Important vtkProp Subclasses

� vtkLODActor - automated LOD creation

� vtkLODProp3D - manual control of LOD’s
including mixed volumes/surfaces

� vtkFollower - always face a camera

� vtkAssembly - groups of vtkProp3D’s, transformed
together.

VTK’s Graphics Subsystem

vtkLODActor -- Changes resolution based on desired response

vtkLODActor *actor = vtkLODActor::New();
actor->SetMapper(mapper);
actor->SetNumberOfCloudPoints(1000);

vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->SetDesiredUpdateRate(5.0);

32 of 50

VTK’s Graphics Subsystem

vtkLODProp3D

� vtkLODProp3D *lod = vtkLODProp3D::New();
lod->AddLOD (volumeMapper, volumeProperty2, 0.0);

lod->AddLOD (volumeMapper, volumeProperty, 0.0);
lod->AddLOD (probeMapper_hres, probeProperty, 0.0);
lod->AddLOD (probeMapper_lres, probeProperty, 0.0);
lod->AddLOD (outlineMapper, outlineProperty, 0.0);

� From Examples/VolumeRendering/Tcl/volSimpleLOD.tcl

VTK’s Graphics Subsystem

vtkFollower – an actor always faces a specified camera

vtkFollower *textActor = vtkFollower::New();

textActor->SetMapper(textMapper);

textActor->SetScale(0.2, 0.2, 0.2);

textActor->AddPosition(0, -0.1, 0);

textActor->SetCamera(aCamera);

VTK’s Graphics Subsystem

vtkAssembly -- Create hierarchies of vtkProp3D’s:

vtkAssembly *cylinderActor = vtkAssembly::New();

cylinderActor->AddPart(sphereActor);

cylinderActor->AddPart(cubeActor);

cylinderActor->AddPart(coneActor);

cylinderActor->SetOrigin(5, 10, 15);

cylinderActor->AddPosition(5, 0, 0);

cylinderActor->RotateX(15);

VTK’s Graphics Subsystem

vtkRenderWindowInteractor -- Key features:

� SetRenderWindow – the single render window to interact with

� Key and mouse bindings (Interactor Style)

� Light Follow Camera (a headlight)

� Picking interaction

36 of 50

Rendering a Polygonal Mesh

vtkLookupTable *lut = vtkLookupTable::New();
lut->SetHueRange(0.6, 0);
lut->SetSaturationRange(1.0, 0);
lut->SetValueRange(0.5, 1.0);

vtkDEMReader *demModel = vtkDEMReader::New();
demModel->SetFileName("C:/SainteHelens.dem");
demModel->Update();

double lo = Scale * demModel->GetElevationBounds()[0];
double hi = Scale * demModel->GetElevationBounds()[1];

37 of 50

Rendering a Polygonal Mesh

vtkImageDataGeometryFilter *geom =
vtkImageDataGeometryFilter::New();

geom->SetInput(demModel->GetOutput());

vtkWarpScalar *warp = vtkWarpScalar::New();
warp->SetInput(geom->GetOutput());

vtkElevationFilter *elevation = vtkElevationFilter::New();
elevation->SetInput(warp->GetOutput());
elevation->SetScalarRange(lo, hi);

vtkDataSetMapper *dsMapper = vtkDataSetMapper::New();
dsMapper->SetInput(elevation->GetOutput());
dsMapper->SetScalarRange(lo, hi);
dsMapper->SetLookupTable(lut);

Rendering an Image

� There are multiple ways to render an image
� Direct mapping to pixels
� Texture mapped onto a plane
� Converted into polygons as in the prior example
� Use to modify (texture, etc) a different geometry

� Direct mapping to pixels has the advantage of straight forward,
advanced interpolation or scaling can be done algorithmically

� Texture mapping leverages graphics hardware to perform interpolation
and scaling, this is very fast

� Other approach depend on the specific of the visualization

Rendering an Image

� ImageViewer2 - simple one step solution
� RenderWindow
� Renderer
� vtkImageActor
� vtkImageMapToWindowLevelColors

� vtkImageActor can make use of hardware interpolation
and scaling

� Mipmaps, etc, can be used (in hardware) to address
aliasing issues

Rendering an Image

Image Display Methods
� SetInput
� Set/GetZSlice
� GetWholeZMin/Max
� SetColorWindow – width that determines which data values are

displayed
� SetColorLevel – data value that centers the window

0

255

ColorLevel

ColorWindow

Rendering an Image

� Coordinate Systems
� Viewport Pixels (0 to size – 1)
� Normalized Viewport 0, 1
� Display Pixels (0 to size – 1)
� Normalized Display 0, 1
� View -1, 1
� World -inf, inf

Texture Mapping

Ken Martin
Kitware Inc.

43 of 50

Texture Mapping

� How to use texture mapping for visualization
� Static texture maps

� Satellite (or photo etc) imagery mapped onto geometry
� Texture maps used to illustrate geometry
� Texture maps used for scalar coloring
� Texture maps used to modulate a visualization through opacity

� Dynamic texture maps
� Used in vector field visualization to denote flow direction and

velocity
� Used in 4D visualization to show imagery over time

44 of 50

Texture Mapping

� Static texture maps
� Satellite (or photo etc) imagery mapped onto geometry

45 of 50

Texture Mapping

� Satellite (or photo etc) imagery mapped onto geometry

vtkTexturedSphereSource *tss = vtkTexturedSphereSource::New();
tss->SetThetaResolution (18);
tss->SetPhiResolution (9);

vtkPolyDataMapper *earthMapper = vtkPolyDataMapper::New();
earthMapper->SetInput (tss->GetOutput());

vtkActor *earthActor = vtkActor::New();
earthActor->SetMapper (earthMapper);

vtkTexture *atext = vtkTexture::New();
vtkPNMReader *pnmReader = vtkPNMReader::New();
pnmReader->SetFileName (“C:/Data/earth.ppm“);

atext->SetInput (pnmReader->GetOutput());
atext->InterpolateOn ();
earthActor->SetTexture (atext);

46 of 50

Texture Mapping

� Static texture maps
� Texture maps used to illustrate geometry

47 of 50

Texture Mapping

Static texture maps - Texture maps used to illustrate geometry

vtkTriangularTexture *aTriangularTexture = vtkTriangularTexture::New();
aTriangularTexture->SetTexturePattern(2);
aTriangularTexture->SetScaleFactor(1.3);

vtkSphereSource *aSphere = vtkSphereSource::New();

vtkTriangularTCoords *tCoords = vtkTriangularTCoords::New();
tCoords->SetInput(aSphere->GetOutput());

vtkPolyDataMapper *dsMapper = vtkPolyDataMapper::New();
dsMapper->SetInput(tCoords->GetOutput());

vtkTexture *aTexture = vtkTexture::New();
aTexture->SetInput(aTriangularTexture->GetOutput());

vtkActor *anActor = vtkActor::New();
anActor->SetMapper(dsMapper);
anActor->SetTexture(aTexture);

48 of 50

Texture Mapping

Static texture maps -- Texture maps used for scalar coloring

� OpenGL interpolates colors from the vertices, can instead use texture
coordinates and then use a texture map to perform per pixel coloring

49 of 50

Texture Mapping

� Static texture maps
� Texture maps used to modulate a visualization through opacity

� For example, generate texture coordinates based on
scalar values (can be 1D or higher)

� then create a RGBA or IA texture map that defines some
texture coordinate ranges to be transparent, etc.

� Apply this to any visualization streamlines, isosurfaces of
one value textured by another etc.

50 of 50

Texture Mapping

� Dynamic texture maps
� Used in vector field visualization to denote flow direction and

velocity

� Create a series of texture maps that can be cycled
� Create a vector field visualization such as with hedgehogs
� Apply the texture maps to the hedgehogs and then

animate through the texture maps

