[I4GPU

20.
wvieOd
V/ IJO) ﬂus““ I.U.Kﬂs

October 10-15

lan Buck

Graphics Lab
Stanford University

L)
&o

Aaron Lefohn

Institute for Data Analysis
and Visualization
University of California, Davis

[)
f*.:'ﬁ
[
teJ
John Owens

Institute for Data Analysis
and Visualization
University of California, Davis

Robert Strzodka

Caesar Institute
Bonn, Germany

GPGPU: Genera Purpose Computation on Graphics Processors
| EEE Visualization 2004 Tutorial

October, 2004

Abstract

In the last three years, commaodity graphics processors (GPUs) have evolved from fixed-function graphics units
into powerful data-parallel processors. These streaming processors are capable of sustaining computation rates of
greater than ten times that of a single CPU. Researchers in the evolving field of general-purpose computation on
graphics processors (GPGPU) have demonstrated mappings to these processors for a wide range of computationally
intensive tasks. Examples include ray tracing, molecular dynamics, and surface processing. This tutorial provides
a detailed introduction and overview of the GPGPU field to the visualization community. Attendees will gain an
understanding of modern GPU architecture, the GPGPU programming model, and the techniques and tools required
to apply GPUs to their own applications.

This tutorial will be of interest to the visualization community for several reasons. First, GPU acceleration of
partial differential equation solvers, 2D and 3D image processing, and physical simulations directly affects the visu-
alization community. Examples of this are the GPU-based interactive 3D segmentation algorithms published at IEEE
Visualization last year. Second, until recently visualization has primarily focused on exploration of pre-captured data.
The ability to perform GPGPU-based interactive simulation on a desktop PC, however, opens up a wealth of new
visualization research challenges. Lastly, despite recent advances in GPU programming languages, GPGPU prac-
titioners are predominantly graphics specialists. This tutorial presents the background, tools, and implementation
details required for researchers in other fields to leverage the computational power of GPUs.

The tutorial speakers are experts in the field of general-purpose computation on GPUs and streaming architec-
tures. They have presented papers, conference courses, and university courses on the topic at IEEE Visualization,
SIGGRAPH, Graphics Hardware, Stanford, UCDavis, and elsewhere.

Organizer

Aaron Lefohn University of California, Davis

Name of Speakers

lan Buck Stanford University
Aaron Lefohn University of California, Davis
John Owens University of California, Davis

Raobert Strzodka Caesar Institute, Bonn, Germany

Length

Full day

Level

Intermediate

Speaker Biographies

lan Buck is a fi fth year Ph.D. candidate in Computer Science at the Stanford University Graphics Lab researching
general-purpose computing models for GPUs. His research focuses on programming language design for graphics
hardware as well as genera computing applications which map to graphics hardware architectures. His latest work
includes Brook, a general-purpose data-parallel programming language, and a complete compiler and runtime system
for compiling to programmable graphics hardware. lan has given numerous talks on general-purpose computation
and is a speaker at the GPGPU course at ACM SIGGRAPH 2004. He received his B.S.E. in Computer Science from
Princeton University in 1999 and is arecipient of Stanford School of Engineering and NVIDIA fellowships.

Aaron LefohnisaPh.D. student in computer science at the University of Californiaat Davis and a part-time graphics
software engineer at Pixar Animation Studios. His Ph.D. research focuses on general -purpose computation on graphics
hardware and high-quality interactive rendering. Aaron’s masters thesis research focused on the acceleration of level-
set deformable surface models using graphics hardware. He has given talks on the subject of general-purpose com-
putation on graphics hardware at SIGGRAPH, |EEE Visualization, MICCAI, IBM Watson Research, ATI, NVIDIA
and Pixar. Aaron completed an M.S. in computer science at the University of Utah in 2003, an M.S. in theoretical
chemistry from the University of Utah in 2001, and a B.A. in chemistry from Whitman College in 1997. Aaronisan
NSF graduate fellow in computer science.

John Owens is an assistant professor of electrical and computer engineering at the University of California, Davis,
where he leads projects in graphics hardware and sensor networks. He earned his Ph.D. in electrical engineering in
2003 from Stanford University, where he was an architect of the Imagine Stream Processor. His dissertation work
concentrated on graphics on stream architectures such as Imagine. He also holds a M.S. in electrical engineering
(Stanford University, 1997) and a B.S. in electrical engineering and computer sciences (University of California,
Berkeley, 1995).

Raobert Strzodka is a fi fth year Ph.D. candidate in Numerical Mathematics at the University Duisburg-Essen. He
was supported by a research fellowship of the German National Academic Foundation and received his diploma in
Mathematics with distinction from University Bonn in 1999. His research focuses on error analysis and effi cient im-
plementation of PDE solvers on data-stream-based architectures including graphics cards, FPGAs and reconfi gurable
computing machines. In 2000 he was among the fi rst to demonstrate the effi cient use of graphics hardware for PDE
based image processing. Currently he explores the enrichment of data stream processing with adaptive numerical
concepts.

GPGPU Tutorial Schedule

@ Section 1: Introduction

e 8:30 Introduction and Tutorial Overview Lefohn A

e 9:00 A Data-Parallel Genealogy: The GPU’s family tree Owens B
@ Section 2: GPGPU Programming

e 9:30 The Programming Model Lefohn Cc

@ 10:00 Break

@ 10:30 GPGPU Programming Languages Buck D
® Section 3: GPGPU Computational Primitives

e 11:20 Mathematical Primitives Strzodka E

e 12:15 Lunch

e 145 General Algorithmic Primitives Owens F

@ Section 4: “Getting Your Hands Dirty”

e 2115 Data Formatting and Addressing Lefohn G
® 245 Computation Tips and Tricks Buck H
e 3:15 Developer Tools Strzodka 1
@ 345 Break

® Section 5: Case Studies

e 415 Level-Set Surface Deformation Lefohn J

@ 435 Advanced Image Processing Strzodka K

@ 3:55 Ray Tracing and Molecular Dynamics Buck L
@ Section 6: Conclusions

e 515 The Future Owens M

e 5:30 Open Question and Answer All

&3 vISou

v1§00‘I

[ddGPU

Introduction and Overview

GPU

-
L
lan Buck Aaron Lefohn John Owens Robert Strzodka ? Aaron Lefohn
Graphics Lab Institute for Data Analysis Institute for Data Analysis Caesar Institute v Institute for Data Analysis and Visualization
S e oo o University of California, Davis
vish
Motivation Motivation: GPU Compute Power

@® Challenge Statement
- GPGPU signifies the dawn of the data-parallel desktop computing age

504
» 409 === NVIDIA NV30, 35, 40
o
&30l = ATIR300, 360, 420
d == DPentium 4
OBNE

10

0 T T T T T

July01 Jan02 July02 Jan03 July03 Jan 04

Figure courtesy of lan Buck, Stanford University

&33 as Vlénl]‘l

=

Cloud Simulation (Harris)

Level-Set Surface Deformation (Lefohn) Photon Mapping (Purcell)

53 “ iS04

Tutorial Introduction

@® General-Purpose Computation on GPUs (GPGPU)
@ Modern GPUs can accelerate “appropriate” algorithms >10x

@® Achieving this speedup currently requires a large amount of
GPU-specific knowledge—We want to change this!

@ Tutorial goal
@ Give visualization researchers/engineers the knowledge and
tools to leverage the computational power of the GPU

a3 = ey

Tutorial Topics

@ What kinds of algorithms map well to GPUs?
@ Why are GPUs faster than CPUs?
® GPGPU implementation details

@ Programming model
@ Basic building blocks
@ Nitty-gritty details

@ Real-world examples

@® The future of GPGPU

%3 “ 5o

Motivation: Why GPGPU?

@ Beginning of data-parallel desktop computing age
@ GPUs are the first commodity, data-parallel architecture

@ Advatages of data-parallelism
@ GPUs are >10x faster than CPU for appropriate problems
@ GPU performance increasing faster than CPU performance

@ Advantages of commodity
® GPUs are inexpensive
@ GPUs are ubiquitous: Desktops, laptops, PDAs, cell phones
@ 1980's data-parallel architectures cost millions of dollars

53 50

Motivation: Why GPGPU Now?

@ GPU feature set only recently matured

@ Programmability 2001
@ Read/write memory 2001
@ Floating point 2002
@ Conditional execution (?) 2004...

@ GPU evolution driven by computer game market

® GPU power rapidly increasing

¥ 50

Motivation: GPU Compute Power

Multiplies per Second

504
. 404 === NVIDIA NV30, 35, 40
% 103 === ATI R300, 360, 420
[' == DPentium 4
[OBTE
104
01 : : : :

.
July01 Jan02 July02 Jan03 July03 Jan 04

@® Figure courtesy of lan Buck

a3 ey

Brief History of GPGPU

See http://www.gpgpu.org for a more complete history

1990 Lengyel Motion planning
1999 Hoff Voronoi diagrams
2000 Peercy Renderman with OpenGL
2001 Strzodka 2D PDE image processing
2002 Purcell / Carr Ray tracing
Harris Cellular automata
2003 Krueger / Boltz / Goodnight Linear algebra
Lefohn 3D level-set solver
Rottger / Krueger Ray casting
2004 Govindaraju Database operations
Buck / McCool GPGPU languages
L)
[A10 200
i vis04

Brief History of GPGPU

@ Where are we now?
@ Transitioning from “What can we do” to “What should we do”
® Examples
@ Lefohn et al., Univ. of Utah technical report 2002
@ Unpublished brute force solution gave no speedup

@®Buck et al., Siggraph 2004, BrookGPU Language
@® Clarifies GPGPU programming model

@ Fatahalian et al., Graphics Hardware 2004

@ Describes why matrix-matrix multiplication can never
be fast on current GPUs

IS

Motivation: Why GPGPU Vis Tutorial?

@ Visualization community can benefit from GPGPU
@® 2D and 3D image processing
@ Segmentation, registration, tone mapping, ...
® Simulation
® New rendering algorithms
@ Interactive “Visulation”
@ Familiarity with graphics programming makes transition easier

@ Harnessing power of GPU is hard
® Data-parallel algorithm mappings
® Mapping from graphics primitives to compute primitives
® Many performance pitfalls

S a1z V]%“U‘I

Tutorial Prerequisites

® We assume

@ Basic knowledge of interactive graphics and graphics hardware

@® Basic knowledge of vertex and fragment shaders

@ Target audience
@® Researchers interested in GPGPU

@® Engineers interested in GPU acceleration of their applications

@ Attendees wishing a survey of this exciting new field

&3—3 a3 v]gnllll

Tutorial Speakers (Alphabetical)

@ lan Buck
@ Ph.D. student, Pat Hanrahan
@ Stanford University

@ Aaron Lefohn
@ Ph.D. student, John Owens
@ University of California, Davis
@ Graphics software engineer, Pixar Animation Studios

@ John Owens
@ Assistant professor, Electrical and Computer Engineering
@ University of California, Davis
@ Ph.D., Bill Dally and Pat Hanrahan, Stanford University

@® Robert Strzodka
@ Staff researcher, Caesar Institute, Bonn, Germany
@ Ph.D., Martin Rumpf, University of Duisburg

s
N A
&

) v1§”0‘l

Tutorial Schedule Overview

@ Morning
@ Introduction
® GPU/data-parallel architecture overview
® GPGPU programming model and languages
@ Computational building blocks

@ Afternoon
@ “Getting your hands dirty: Making it work”
@ Case studies
® The future

Tutorial Schedule

e QA
& Ats V]énﬂq

@ Section 1: Introduction
® 8:30 Introduction and Tutorial Overview
Motivation, introduction, and overview of the day

@ 9:00 A Data-Parallel Genealogy: The GPU'’s family tree
Data-parallel architectures, stream processing, GPUs

@ Section 2: GPGPU Programming
@ 9:30 The Programming Model
Building computational primitives out of OpenGL calls

@ 10:00 Break

@ 10:30 GPGPU Programming Languages
Beyond OpenGL: Data-parallel GPU languages

Lefohn

Owens

Lefohn

Buck

>

s
N A
&

vé"ﬂ‘!

Tutorial Schedule

@ Section 3: GPGPU Computational Primitives
® 11:20 Mathematical Primitives Strzodka
Linear algebra, PDEs, FEMs

@ 12:15 Lunch

@ 1:45 General Algorithmic Primitives Owens
Sorting, Searching

&3—3 a \nénllll

Tutorial Schedule

@ Section 4: “Getting Your Hands Dirty”
® 2:15 Data Formatting and Addressing Lefohn
GPU memory model and data structures

® 2:45 Computation Tips and Tricks Buck
Performance tips, working around GPU limitations

@ 3:15 Developer Tools Strzodka
Compiling, debugging, profiling

@ 3:45-4:15 Break

%3 s o

Tutorial Schedule

@ Section 5: Case Studies
@® 4:15 Level-Set Surface Deformation Lefohn
Computation and visualization of dynamic, sparse PDEs

® 4:35 Advanced Image Processing Strzodka
Registration, segmentation, and skeletons

® 3:55 Ray Tracing and Molecular Dynamics Buck
Particle simulations and light transport

&33 Ats Vé‘hu

Tutorial Schedule

@ Section 6: Conclusions
@ 5:15 The Future Owens
The future of commodity data-parallel computing

@ 5:30 Open Question and Answer All
Q&A

¥ = sy

Coming Next...

@ “A Data-Parallel Genealogy: The GPU’s Family Tree”
@ John Owens
@ Introduction to data-parallel and streaming architectures
@ The bigger picture of GPGPU

&3—3 Azt v]gnllll

A-6

A Data-Parallel Genealogy:
The GPU Family Tree

[[14GPU

t«'::»a John Owens
&»

Department of Electrical and Computer Engineering
Institute for Data Analysis and Visualization
University of California, Davis

Outline

@ Moore’s Law brings opportunity

@® Gains in performance ...

@ ... and capabilities.

@ What has 20+ years of development brought us?
@ How can we use those transistors?

@ Microprocessors?

@ Stream processors
® Today’s commodity stream processor: the GPU

pd 25 pd
vish & = 504
The past: 1987 The future: 2007
20 MIPS CPU
1987 1 Billion Transistors
2007
‘HH‘HH‘\H HH‘HH‘H\
[courtesy Anant Agarwal] [courtesy Anant Agarwal]
25 2 24 2
&3 8 Vlsnﬂll & > VISDM

B-1

Today’s VLSI Capability
~ s |+ 0.5mm

64-bit FPU
(to scale)
50pJ/FLOP
} 12mm |
[cour{esy Pat Hanrahan]
Dy croru
D 5 uens 2
&0 xJJn:'veDmy of Califomia, Davis, USA B5 vljs%q

Today’s VLSI Capability

64-bit FP
1. Exploits
Ample
Computation!
} 12mm |
[cour{esy Pat Hanrahan]
Dy croru
> 2
&0 t‘i‘weomv‘vyegcﬂhmmm. Davis, USA B6 vljs%q

Today’s VLSI Capability

64-bit FP
1. Exploits
Ample
Computation!
2. Requires
Efficient
Communication!
} 12mm |
[cour{esy Pat Hanrahan]
Dy crory
b S 2
&0 xJJn:'veDrmy of Califomia, Davis, USA B7 vljs%q

SGI Historicals (Depth Buffered)

Year Product Zbuf rate Yr rate ZTri rate Yr rate
1984 Iris 2000 100K - 0.8K -
1988 GTX 40M 4.5 135K 3.6
1992 RealityEngine 380M 1.8 2M 2.0
1996 InfiniteReality 1000M 1.3 12M 1.6
2.2 2.2

... yearly growth well above Moore’s Law!

Qo GPGPU 2
John Owens B8
9 Universly of Califomia, Davis, USA VIJS

NVIDIA Historicals

Season | Product Fill rate Yrrate |Trirate Yr rate
2H97 Riva 128 20M - 3M -
1H98 Riva ZX 31M 24 3M 1.0
2H98 Riva TNT 50M 2.6 6M 4.0
1H99 TNT2 75M 2.3 9M 2.3
2H99 GeForce 120M 2.6 15M 2.8
1HOO GeForce2 200M 2.6 25M 2.8
2H00 NV16 250M 1.6 31M 1.5
1HO1 NV20 500M 4.0 30M 1.0
2.5 2.2

GPU History: Features

... yearly growth well above Moore’s Law! 1992-2000 2000-
‘?5 2 RS 2
i & v|30l14 & o VISD(]‘I
Outline Characteristics of Our Applications

@ Moore’s Law brings opportunity

@ Gains in performance ...

@ ... and capabilities.

@ \What has 20+ years of development brought us?
® How can we use those transistors?

@® Microprocessors?

@® Stream processors
@ Today’s commodity stream processor: the GPU

&33 811 vénl]‘l

@ Lots of arithmetic

@ Lots of parallelism

@® Multiple stages

@® Simple control

@ Latency-tolerant / deep pipelines

Microprocessors: A Solution?

@ Microprocessors address a
different application space
@ Scalar programming model with
no native data parallelism
® Excel at control-heavy tasks

@ Not so good at data-heavy,
regular applications

@ Few arithmetic units — little area

@ Optimized for low latency not
high bandwidth

Pentium Il -28.1M T

Stream Programming Abstraction

® |et’s think about our problem

in a new way stream
® Streams

@ Collection of data records

@ All data is expressed in streams stream
® Kernels

@ Inputs/outputs are streams

@ Perform computation on

streams - - N
@ Can be chained together

:.3,: B13 Vlélhq :.3; B14 Vlghq
Why Streams? Graphics Apps are Stream Apps

@ Ample computation by exposing parallelism
@ Streams expose data parallelism
@ Multiple stream elements can be processed in parallel
@® Pipeline (task) parallelism
@ Multiple tasks can be processed in parallel
@ Efficient communication
@ Producer-consumer locality
® Predictable memory access pattern
@ Optimize for throughput of all elements, not latency of one
@® Processing many elements at once allows latency hiding
@ High arithmetic intensity

53 = 50

@ Lots of arithmetic

® Lots of parallelism

@ Multiple stages

® Feed forward pipelines

® Latency-tolerant / deep
pipelines

Display

:..::; B16 Vlghq

Taxonomy of Streaming Processors

@ In common:
® Exploit parallelism for high computation rate
@ Each stage processes many items in parallel (d.p.)
@ Several stages can run at the same time (t.p.)
@ Efficient communication
@ Minimize memory traffic
@ Optimized memory system
® What's different?
@ Mapping of processors to tasks in graphics pipeline

<Q>
% " yish

Stream Processors

@ Fewer compute units than tasks
@ “Time multiplexed” organization
@ Each stage fully programmable
@ Stanford Imagine
@ 32b stream processor for image and signal
processing (2001)
@ Stanford Merrimac

@ 64b stream processor for scientific
computing (2004)
@ Core of Stanford Streaming
Supercomputer
@ Challenge:

@ Efficiently mapping all tasks to one
processor - no specialization

[Stanford Imagine - 2001]
W FEE
ij HEIEE

Kk
EEEE
méﬁ\““

—_—
TZ5mm

[Stanford Merrimac - 2004]

£

4

)

E

T0zmm

1

N
EEE

f‘.?'?
2

" iS04

MIT RAW: Tiled Processor Architecture

G

§ More processors than tasks
§MIT RAW, IBM Cell
§ Each tile is programmable
§ Streams connect tiles
§ “Task parallel” organization
§ Lots of ALUs and registers
§ Short, programmable wires
§ Challenge: Software support

[courtesy Anant Agarwal]
a
3 200
0 = g4

R UL I e @

GPU: Special-Purpose Graphics Hardware

Task-parallel
organization

Each module hardwired
to specific task - huge
performance advantage!
Provides ample
computation resources
Efficient communication
patterns

Dominant graphics
architecture

! [ATI Flipper — 51M T]

- i

Today’s Graphics Pipeline

T [ics i i :
Application Graphics is well swtec_j to
@ The stream programming model
Command

@ Stream hardware organizations
@ Especially GPUs!
[What_if we could apply these
techniques to more general-

purpose problems?

@ On appropriate problems,
hardware with
® ample computation and
@ efficient communication
should excel!

@ What's missing?

The Programmable Pipeline

gle Setup
ction Dis

Shader Instruction Dispatch

Z-Cul

AU A 2 Zn 2 S 2 2

SR

ERRRRRLELERRRRLD
EA BEa Ea Ea

[GeForce 6800, courtesy NVIDIA]

‘?5 2 <?= Z
&3 821 V]SU[lll & o VISDOq
Conclusions

@® Adding programmability to GPUs is exciting!
@ GPUs have great performance
@ Computation & communication
@® Programmability allows them to address many
interesting problems
@® Many challenges remain ...

@® Algorithms, programming models, architecture,
languages, tools ...

® Next speaker:
@® Aaron Lefohn
@® “The GPGPU Programming Model”

%3 = 50

B-6

The GPGPU Programming Model

[1:GPU

:1 Aaron Lefohn

v Institute for Data Analysis and Visualization
University of California, Davis

vé']ll‘l

Overview

@ Data-parallel programming basics

@ The GPU as a data-parallel computer
@® “Hello World” GPGPU Example

@ Emulating missing functionality

@ Conclusions

S c2 \nénﬂ‘i

Data-Parallel Programming Basics

@ Serial programming of loops
@ |nstructions and data access are intermixed

forEach data element, i

executeLoopBody (i)

@ Data-parallel programming
@ Separate specification of data and instructions

dataStream = specifyAllData/()
kernel = specifyLoopBody ()
forEach(dataStream, kernel)

vuzsnﬂ‘*

Explicit Data-Parallelism

@ Why write explicitly data-parallel programs?
@ Instructions stay fixed while data streams past
@ Independent computations on each data element
@ “forEach” call is parallelizable
@ Hide cost of memory access with parallelism

vé"ﬂ‘!

GPU as a Data-Parallel Computer

@® Data specification - Textures
@ Kernel specification - Fragment program
@ forEach execution - Draw single large quad

Write Data To
Texture

GPU Computational Primitives

Load Bind Textures Write
Fr t ¢ ¢ Draw Large ¢ resulq
Program Bind Fragment Quad
Program
Configure
OpenGL for
1:1 Rendering

%3 = S0

@ Operations available in kernel
@ Read-only memory (input streams) Texture sampler
@® Random access read-only (gather) Texture sampler
@ Per-data-element interpolants Varying registers
@ Temporary storage (no saved state) Local registers
@ Read-only constants Constant registers
@® Write-only memory (result streams) Render-to-texture
@ Floating-point ALUops

%3 “ 50

GPU Computational Primitives

@ What's missing?

@ No stack

® No heap

@ No integer or bitwise operations
® No scatter (a[i] = b)

@ No reduction operations (max, min, sum)
@® Data-dependent conditionals

@ Why missing?
@® Parallelism, parallelism, parallelism
@ Lack of demand from games
@ Early in GPU evolution as general data-parallel processor

GPU Computational Primitives

¢ v1§°04

@ Handling missing features
@ We'll explain how to emulate
@ Scatter
@ Global (reduction) operations
@ Conditionals

“Hello World“ GPGPU Example

@ 3 x 3 Image processing convolution
@ CPU version

image = loadImage(WIDTH, HEIGHT);
blurImage = allocZeros(WIDTH, HEIGHT);

for (x=0; x < WIDTH; xX++)
for (y=0; y < HEIGHT; y++)
for (i=-1; i <= 1; i++)
for (j=-1; j <= 1; j++)
float w = computeWeight(i,j);
blurImage[x] [y] += w * image[x+i, y+jl;

“Hello World“ GPGPU Example

% e wénllll

® GPU Version
1) Load image into texture

Figure courtesy of Mark Harris

2) Create blurImage texture to hold result

2 2
& oo \nsnﬂ‘i

“Hello World“ GPGPU Example

® GPU Version
3) Load fragment program (kernel)
Example shown in Cg

float4 blurKernel(uniform samplerRECT image,
float2 winPos : WPOS,
out float4 blurImage)

{
blurImage = float4(0,0,0,0);
for (i=-1; i <= 1; i++) {
for (j=-1; j <= 1; j++) {
float2 texCoord = winPos + float2(i,j);
float w = computeWeight (i, j);
blurImage += w * texRECT(image, texCoord);
}
}

“Hello World“ GPGPU Example

:.3,} c1 Vélhq

@ GPU Version
4) Configure OpenGL to draw 1:1
No projection or rescaling

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

gluOrtho2D(0, 1, 0, 1);
glViewport (0, 0, WIDTH, HEIGHT);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

5) Bind image and blurKernel (texture and fragment program)
6) Bind blurImage as render target

“Hello World“ GPGPU Example

@ GPU Version
7) Execute kernel on each stream element
Draw quad of size [WIDTH X HEIGHT]

glBegin(GL_TRIANGLES);
glvertex2£(0, 0);
glvertex2£(2, 0);
glvertex2£(0, 2);
glEnd () ;

% = ysh

“Hello World“ GPGPU Example

® What happened?
® blurKernel executed on each element of image
@ Rendering replaced outer two loops of CPU version

® blurKernel performed gather operation at each element

Q
o0
8

Gather

® Result (blurImage) was written to framebuffer / texture

2 2
&3 o v13004

“Hello World“ GPGPU Example

@ Get the source code for GPGPU examples

@ http://www. u.org/developer/

@ http://download.nvidia.com/developer/SDK/Individual _Samples/samples.html

Emulating Scatter

@ gpgpu_fluid
@ gpgpu_disease
@ gpu_particles

® http://www.ati.com/developer/sdk/RadeonSDK/Html/Samples/OpenGL/
HW_Image Processing.html

&3—3 o v;énl]‘l

@ Scatter
i = foo();
al[il = bar(); (:,

@ Solution 1 e‘e»e
(&)

@ Transform scatter algorithm into gather algorithm
@® See lan's “Tips and Tricks" for more details

@ Solution 2 Scatter

@ Do actual scatter

@ Vertex processor can scatter points
@ Render points instead of large triangle
@ Render-to-texture with vertex-texture-reads (PS 3.0)
@ Or render-to-vertex-array

@ Problem
@ Drawing a point for each data element is slow

Emulating Reduction Operations

@ Reductions
@ Operations that require all data elements
@ max, min, sum, norm, etc.

. Cloud figure courtesy of Mark Harris
® Solution d Y

@ Perform repeated gathers until only single data value left
@ log(WIDTH) gather operations (assuming WIDTH == HEIGHT)

@ Problem
@ Extra passes can be costly

Conditionals In a Data-Parallel World

8 504

® Data-parallel execution and conditionals are at
odds

@ |deal data-parallel model assumes all data elements
processed identically
@ Conditional execution breaks this assumption

@ Solutions
1) Statically resolve conditional with substreams
2) Occlusion query
3) Early z-culling
4) Better hardware?

8 " 1504

Conditionals in a Data-Parallel World

@ Solutions
1) Can decision be made before fragment processor?
Static branch resolution with substreams

Figure courtesy of Mark Harris

D oo ol
oooofd

Interior: A Quad Primitive

|— Boundaries: Line Primitives

Blccoooooof@
Bloccoooooof@

o oyo o ojooooao

Blo coooooof@
Bloooo

Blc o oojoooof@
Bl o ooojoooof@
Bloooojloooofd

oooooooooao

Bloooo

0 = Location of Pixels

Trick “discovered” by Lefohn, Harris, and Goodnight
Simultaneously in 2003

Conditionals in a Data-Parallel World

= s

@ Solution
2) Occlusion query

@ |dea

@ Occlusion query reports the number of fragments that
passed the depth test

@ Useful when number of loop iterations is data-dependent
Kernel kills fragments that do not need further processing
@ CPU continues to issue render until all fragments are killed

S o2 V]%“U‘I

Conditionals in a Data-Parallel World

@ Solution
3) Early depth cull

@ |dea
@ Modern GPUs can kill fragments before kernel execution

@ Kernel sets z-value to control whether or not execution
occurs

@ Problem
@ Conditionals must be block-coherent
@® More about this in lan‘s “Tips and Tricks" talk

Conditionals in a Data-Parallel World

@ Solution
4) Better hardware?

@ MIMD hardware
@ NVIDIA GeForce 6-series (NV4x) vertex processors

@ SIMD-with-conditional-support
@ NVIDIA GeForce 6-series (NV4x) fragment processor
@ Uniform branches are a win if more than ~5 instructions
@ Varying branches must be coherent across hundreds of pixels
@ Only 10s x 10s pixels—Very useful in many cases

@ Problem
@ Do we want more SIMD processors or fewer MIMD processors?

%3 SR %3 = sy
Conditionals in a Data-Parallel World Conclusions

@ Conclusions
@ Conditionals are tough with today's GPUs

® Best case is when conditional can be staticaly resolved
and removed from computational kernel

® Future GPUs will most likely fully support conditionals
@ Solution must not interfere with parallelism
eMIMD?
@ SIMD with “Conditional Streams?”
@ Kapasi et al., Micro 33, 2000

= sy

@ GPGPU computational basics
@ Textures - Storage for data streams
@ Fragment program - Computational kernel
@ Render pass - forEach loop over data stream

@ Coming next...
@ lan Buck
@ Data-parallel languages for GPGPU programming

@® Express data-parallel programs more elegantly than
glBegin() ...glEnd ()

S o2 V]%“U‘I

References

@ ATI Developer web site, http://www.ati.com/developer/

@ GPGPU Developer web site, http://www.gpgpu.org/developer

@ N. Goodnight, C. Woolley, G. Lewin, D. Luebke, G. Humphreys, “A Multigrid Solver for
Bougdary Value Problems Using Programmable Graphics Hardware,” Graphics Hardware

@ M. Harris, W. Baxter, T. Scheuermann, A. Lastra, “Simulation of Cloud Dynamics on
Graphics Hardware," Graphics Hardware 2003

@ Hillis et al., “Data Parallel Algorithms,” Comm. ACM, 29(12), December 1986

@ Kapasi et al., “Efficient Conditional Operations for Data-parallel Architectures,” In Proc. of the
33rd Ann. Int'l Symp. on Microarchitecture, pages 159--170, 2000

® A Lefohn, J. Kniss, C. Hansen, R. Whitaker, “A Streaming Narrow-Band Algorithm:
Interactive Deformation and Visualization of Level Sets,” IEEE Transactions on Visualization
and Computer Graphics 2004

@ NVIDIA Developer web site, http:/developer.nvidia.com/page/home

= yis04

Modern Graphics Pipeline

g PS3.0 GPUs P RTTreN vees

Texture Buffer

|
|
|

Vertex) Fragment
Vertex Processor RaSteMiZeT processor Frame

Buffer(f)

C-7

GPGPU Languages

High level languages

[1:GPU

! lan Buck
Graphics Lab

Stanford University

@ Why do want them?
@ Make programming GPUs easier!
@ Don’t need to know OpenGL, DirectX, or ATI/NV extensions
@ Simplify common operations
@ Focus on the algorithm, not on the implementation
@® Sh
@ University of Waterloo
@ http://libsh.sourceforge.net
@ http://www.cgl.uwaterloo.ca
@ Brook
@ Stanford University
@ http://brook.sourceforge.net
@ http://graphics.stanford.edu/projects/brookgpu

v1§”04

- b2 wénﬁll

Sh Features

@ Implemented as C++ library
@ Use C++ modularity, type, and
scope constructs
@ Use C++ to metaprogram shaders
and kernels
@ Use C++ to sequence stream
operations
@ Operations can run on
@ GPU in JIT compiled mode
@ CPU in immediate mode
® CPU in JIT compiled mode
@ Can be used
@ To define shaders
@ To define stream kernels
@ No glue code
@® To set up a parameter, just
declare it and use it

@ To set up a texture, just declare it

Memory management

@ Automatically uses pbuffers
and/or uberbuffers

@ Arrays simulated with textures
Textures can encapsulate
interpretation code

@ Programs can encapsulate
texture data

Program manipulation

@ |Introspection

@ Uniform/varying conversion

@ Program specialization

@ Composition & concatenation

@ |Interface adaptation

Free and Open Source
http://libsh.sourceforge.net

and use it

= 604

Sh Fragment Shader

fsh = SH_BEGIN_ PROGRAM("gpu:fragment") {

ShInputNormal3f nv; // normal (VCS)
ShInputVector3f 1lv; // light-vector (VCS)
ShInputVector3f vv; // view vector (VCS)

ShInputColor3f ec; / irradiance
ShInputTexCoord2f u; // texture coordinate
ShOutputColor3f fc; // fragment color

vv = normalize(vv);

1v = normalize(lv);

nv = normalize(nv);

ShVector3f hv = normalize(lv + vv);

fc = kd(u) * ec;

fc += ks(u) * pow(pos(hv|nv), spec_exp);
} SH_END;

E * wisHd

Streams and Channels

® ShChannel<element type>
@ Sequence of elements of given type
® ShStream
@ Sequence of channels
@ Combine channels with &:
ShStream s = a & b & c;
@ Refers to channels, does not copy
@ Single channel also a stream
@ Apply programs to streams with <<
ShStream t = (x & ¥ & z);
s = p << t;

(a &b &c) =p<< (x &y & 2);

- ps vé”nu

Stream Processing: Particles

// SETUP (define particle state update kernel)
p = SH_BEGIN PROGRAM("gpu:stream") {
ShInOutPoint3f Ph, P

Shattriblf under = Ph(1) < 0.;

Ph = cond(under,
ShInOutVector3f V. Ph + ShAttrib3f(1.,0.,1.), Ph);
ShInputvVector3f A; Shvector3f va =
ShInputAttriblf delta; V * ShAttribif (0 BE
Pt = Ph; Shvector3f Vvt
A = cond(abs (Ph(1)) < 0.05, V = cond(under,
ShVector3£(0.,0.,0.), A); (1.0 - mu)*VE - eps*Vn, V);
V 4= A * delta; Ph(1) = cond(min(under, (V|V)<0.1),
v = cond((V|V) < 1., ShPointlf(0.), Ph(1));
ShVector3£(0., 0., 0.), V); Shvector3f dt = Pt - Ph;
Ph += (V + 0.5%A)*delta; Pt = cond((dt|dt) < 0.02, Pt +
ShAttriblf mu(0.1), eps(0.3); Shvector3£(0.0, 0.02, 0.0), Pt);
for (i = 0; i < num _spheres; i++) { } su_EnD;
ShPoint3f C = spheres(il.center; -
ShAttriblf r = spheres (il .radius; J define state stream
ShVector3f PRC = Ph - C; tate =
ShVector3f N = normalize (PhC) ; (pos & pos_tail & vel);
Sheoint3f s = // curry p with state and parameters
Shattriblf collide = ShProgram update =
((PRC|PhC) < r*x)*((V|N) < 0); P << state << gravity << delta;
Ph = cond(collide,
Ph - 2.0%((Ph - S) [N)*N, Ph);
ShVector3f Va = (V|N)*N;
ShVector3f VE = V - Va; //IN INNER LOOP
V = cond(collide, // execute state update (input to update is compiled in)
(1.0 - mu)*VE - eps*Vn, V); state = update;
}

- ps v|§“04

Stream Processing: Particles

Brook

@® Stream programming model
@® GPU = streaming coprocessor
@ C with stream extensions
@ Cross platform
@ ATl & NVIDIA
@ OpenGL & DirectX
@® Windows & Linux

- b V]én(lll

Streams é;

@ Collection of records requiring similar
computation
® particle positions, voxels, FEM cell, ...

Ray r<200>;
float3 velocityfield<100,100,100>;

@® Similar to arrays, but...
@ index operations disallowed: position[i]
@ read/write stream operators
streamRead (r, r_ptr);
streamWrite (velocityfield, v_ptr);

H i

Kernels (:;x

@® Functions applied to streams
@ similar to for_all construct
@ no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {
result = a + b;

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c); . for (i=0; i<100; i++)
cli] = alil+bIlil;

H o0 Vlénﬁ‘l

Kernels C;‘

® Kernel arguments
@ input/output streams

kernel void foo (float a<>,
float b<>,
out float result<>) {
result = a + b;

Kernels c:;‘

@® Kernel arguments
')
@ gather streams

kernel void foo (..., float arrayl[]) {
a = arraylil;

}

H o2 Vlé[hq

Kernels Kernels

@® Kernel arguments @® Kernel arguments
® (]
® ®
@ iterator streams)

® constant parameters

kernel void foo (..., iter float n<>) {
a=n+b; kernel void foo (..., float ¢) {

} a=c¢ + b;

E o S0y E " S0y

Reductions 6

Kernels

@ Ray triangle intersection @ Compute single value from a stream
kernel void krnIntersectTriangle(Ray ray<>, Triangle trisl[], © e .
RayState oldraystate<s, @ associative operations only

GridTrilist trilistl],
out Hit candidatehit<>) {
float idx, det, inv_det;

float3 edgel, edge2; pvec, tvec, qvec; reduce void sum (float a<>,
)

if (oldraystate.state.y > 0) { reduce float r<>)
idx = trilist[oldraystate.state.w].trinum; 4.
edgel = tris[idx].vl - tris[idx].v0; r += aj
edge2 = tris[idx].v2 - tris[idx].v0; }
pvec = cross(ray.d, edge2);
det = dot(edgel, pvec):
inv_det = 1.0f/det;
tvec = ray.o - trislidx].v0; .
candidatehit.data.y = dot(tvec, pvec) * inv det; float a<l00>;
qvec = cross(tvec, edgel); float r;
candidatehit.data.z = dot(ray.d, quec) * inv_det;
candidatehit.data.x = dot(edge2, qvec) * inv det;
candic(latehit.data.w = ddx; sum(a,r); r = al0];
else
candidatehit.data = float4(0,0,0,-1); for (int i=1; i<100; i++)
} r += alil;

E v S04 E v S0y

&~

Reductions

@ Multi-dimension reductions

@ stream “shape” differences resolved by reduce
function

reduce void sum (float a<>,
reduce float r<>)
r += a;

EEEE [Eeee
(.

float a<20>;
float r<5>;

for (int i=0; i<5; i++)
r[i]l = a[i*4];
for (int j=1; j<4; j++)
r[i]l += ali*4 + jl;

H o17 Wé‘hq

sum(a,r);

Stream Repeat & Stride

&

@ Kernel arguments of different shape
@ resolved by repeat and stride

kernel void foo (float a<>, float b<>,

out float result<>);

float a<20>;

float b<5>;
float c<10>;

foo(a,b,c);

foo(al0], b[0], c[0])
foo(al2], bI[0], c[l])
foo(al4], bI[1l], cl2])
foo(al6], bI[1l], cI3])
foo(al8], b[2], cl4])
foo(a[10], b[2], cI[5])
foo(al12], b[3], cI[6])
foo(all4]1, bI3]1, cl[7]1)
foo(a[l6], b[4], c[8])
foo(all8], bl4]l, cI9])

D18 Vlénoq

Matrix Vector Multiply &

kernel void mul (float a<>, float b<>,
out float result<>) {

result = a*b;

reduce void sum (float a<>,
reduce float result<>) {
result += a;

float matrix<20,10>;
float vector<l, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul (matrix, vector, tempmv) ;
sum (tempmv, result) ;

<
I

- pte V]énﬂll

Matrix Vector Multiply

-~

kernel void mul (float a<>, float b<>,
out float result<>) {
result = a*b;

reduce void sum (float a<>,
reduce float result<>) {
result += a;

float matrix<20,10>;
float vector<l, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul (matrix, vector, tempmv) ;
sum (tempmv, result) ;

= 0

System Outline é’

foo.br brcc
Source to source compiler
@ Generate CG & HLSL code

brec ® CGC and FXC for shader assembly
@ Virtualization

brt

Brook run-time library

@ Stream texture management
brt @ Kernel shader execution

| Directx | OpenGLI ey |
- D21 Vlé%q

7N\

foo.cpp

Running Brook ?5'

® Compiling .br files

Brook CG Compiler

Version: 0.2 Built: Apr 24 2004, 18:11:59

bree [-hvndktyAN] [-o prefix] [-w workspace] [-p shader] foo.br
help (print this message)
verbose (print intermediate generated code)
no codegen (just parse and reemit the input)
debug (print cTool internal state)
keep generated fragment program (in foo.cg)
disable kernel call type checking
emit code for ATI 4-output hardware
enable address virtualization (experimental)
deny support for kernels calling other kernels
-0 prefix prefix prepended to all output files
-w workspace workspace size (16 - 2048, default 1024)
-p shader cpu / ps20 / fp30 / cpumt (can specify multiple)
-f compiler favor a particular compiler (cgc / fxc / default)

LhiAAAs LS

H o2 VIénﬁ‘l

Eliminating GPU Limitations %~

Treating texture as memory
@ Limited texture size and dimension
@® Compiler inserts address translation code

float matrix<8096,10,30,5>;

H o2 wé‘hq

Eliminating GPU Limitations %

Extending kernel outputs
@ duplicate kernels, let cgc or fxc do dead code elimination
@ better solution:

"Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware”
Tim Foley, Mike Houston, and Pat Hanrahan

"Mio: Fast Multipass Partitioning via Priority-Based Instruction Scheduling”
Andrew T. Riffel, Aaron E. Lefohn, Kiril Vidimce, Mark Leone, and John
D. Owens

H o2 v1§"0‘l

Running Brook

@ BRT_RUNTIME selects platform
@ CPU Backend:
BRT_RUNTIME = cpu
@ OpenGL ARB Backend:
BRT_RUNTIME = arb
@ DirectX9 Backend:
BRT_RUNTIME = dx9

= 50

Runtime

@® Accessing stream data for graphics aps
@ Brook runtime api available in C++ code
@ autogenerated .hpp files for brook code

brook::initialize("dx9", (void*)device);

// Create streams
fluidStream0 = stream::create<float4>(kFluidSize, kFluidSize);
normalStream = stream::create<float3>(kFluidSize, kFluidSize);
// Get a handle to the texture being used by
// the normal stream as a backing store
normal e = (IDirect3D: e9*)

normalst >getI iel Data (0) ;

// call the simulation kernel
simulationKernel(fluidStream0, fluidStream0, controlConstant,
fluidStreaml);

H o26 \nénﬂll

Applications

FFT edge detect Linear algebra

Performance

o2 wé‘hq

7_ ATI Radeon X800 XT
NVIDIA GeForce 6800
Pentium 4 3.0 GHz

Compared against:

o Intel Math Library

 Atlas Math Library

o cached blocked segmentation
o FFTW

« Wald ['04] SSE Ray-Triangle

Relative Performance
T

SAXPY Segment SGEMV FFT Ray-tracer

H o2s VI,ZS,DU"

Understanding Performance «

GPU wins when...
@® |imited data reuse

v SAXPY

% FFT

Pentium 4 3.0 GHz
44 GB/sec peak cache bandwidth

Relative Performance

NVIDIA GeForce 6800 Ultra
36 GB/sec peak memory bandwidth

SAXPY FFT

= 50

Understanding Performance «

1/3 ops per word

7_
§ 6 GPU wins when...
g 5+ @ Arithmetic intensity
5 v
Kl Segment
o] 3.7 ops per word
o % SGEMV
()]
=
ey
L
[J]
[

- Segment SGEMV

H b3 \nénﬂll

Efficiency «

Brook version within 80% of hand-coded GPU
version

FFT

ATI Pentium 4

[y

Relative Performance

Hand Brook Hand C
coded coded

H oat wé‘hq

Brook for GPUs

@® Release v0.3 available on Sourceforge
® Project Page

@ http://graphics.stanford.edu/projects/brook
@ Source

@ http://www.sourceforge.net/projects/brook
@ Over 6K downloads!

Brook for GPUs: Stream Computing on Graphics Hardware
SIGGRAPH 2004
lan Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian,
Mike Houston, Pat Hanrahan

H 032 Vlé,[hq

Fly-fishing ﬂz images from The English Fly Fishing Shop

Mathematical Primitives

[1:GPU

-’. @ Robert Strzodka

caesar research center
Bonn, Germany

vé']ﬂ‘l

Overview

@ Mathematical GPU Functionality

@ Partial Differential Equations (PDEs)
® Examples
@ Time and Space Discretization
@ Local and Global Operations
@ Matrix Vector Product
@ Gather — Scatter

@ Advanced Topics
@ Discretization Grids
@ Discretization Schemes
@ Quantization

»

" B2 \nénﬂ‘i

GPU as a Data-Parallel Computer

@ Data specification > Textures
@ Kernel specification —>|{Fragment program
@® General execution - Draw single large quad

Write Data To
Texture

Load Blnd Textures Write
Frag Draw Large resuttyey
Program Bind Fragment Quad
Program
C -a
OpenGL for
1:1 Rendering
slide from ‘The GPGPU Programming Model’ E3 200
2 . presentation by Aaron Lefohn VIS q'

Fragment Processor Functionality as
seen from a High Level Language

@ Float data types:
@ 16-bit & 32-bit (NVIDIA), 24-bit (ATI)
@ Vectors, structs and arrays:

] s vecl6] , s arr[10][20],

@ Arithmetic and logic operators:
@ N S

@ Trignonometric, exponential functions:
[] s , y , y e

@ User defined functions
L.}

@ Conditional statements by predication, unrollable loops:
e if, for, , dynamic branching in PS3

@ Arbitrary texture positions can be accessed

- 2

e “ iS4

E-1

Overview

® Mathematical GPU Functionality

@ Partial Differential Equations (PDEs)
® Examples
@ Time and Space Discretization
@ Local and Global Operations
@ Matrix Vector Product
@ Gather — Scatter

@ Advanced Topics
@ Discretization Grids
@ Discretization Schemes
@ Quantization

e = S

PDE Examples

cloud dynamics

fluid ™~

dynamics

boiling

Z0¢ ages courtesy
e of Mark Harris = VIS "I

PDE Examples

visualization

image
processing

A Common PDE Model

We seek a function u(x,7) : (Q,R*) = R",Q < R* which satisfies

PDE 0,u+ Flu,u]=0 in R*xQ
initial value u(0)=u, in Q
boundary d,u=b, or u=b, on R x0Q

We distiguish between linear u and non-linear v dependencies in F[u,v]
d
ERS
Flu,v]=-Av = _;Q

non-linear diffusion equation: F[u,v]=—div(g(|| V. u |)Vv)

linear diffusion equation:

Theory and numerical analysis of PDEs are extensive subjects. There are many other PDE types,
discretization methods and in general approaches than presented in the following slides.

L “ ysou

E-2

Denoising by a linear and a non-linear
diffusion process

linear
diffusion

non-linear
diffusion

'L B v]éuﬂll

Diffusion Example - PDE

Initial image u,, : Q —[0,1], unknown u :(,R)— R

9,u—div(G(Vu,)Vu)=0 inR*xQ
u(0)=u, in Q
9,u=0 on R xoQ
« linear
Gv)=1 gx
« isotropic non-linear
G(v)=g(|v]]) scalar
* anisotropic
G(v)=B" (v)("lﬂ””’ . (OHVH))B(V) | .
'L E10 \nénﬂ‘i

Time Discretization

n+l

ou+Flu,u]=0 — %+F[u7,u7]=0

Explicit W= =" Flut ']
New solution can be computed directly from the previous one.
Strong restrictions on the time step width.

|mp||C|t un+l +T” F[unn’uml]:un
A non-linear solver must be used to obtain the solution.

The time step width is not restricted.

Semi-implicit w7 Flu" u")=u"
A linear equation solver suffices to obtain the new solution.
Time step restrictions depend on the problem, often none.

In any case we obtain a discrete sequence of results {u"}neN .

E'L B Vénl]ll

Space Discretization

[J Transition [J

Continuous Discrete

Q u", Vu", Flu",v"] B v, v,u", FIU" V"]

The discrete function U"can be represented by a (U;)HEQ“
which contains the values at the grid nodes Q, .
Linear operations translate into
Au" — A-U"
Non-linear operations become multi-dimensional functions
on the vector components Flu"l - Fh((U,;’)a)

L'l E12 vénﬂll

Diffusion Example - Discretization

0,u—div(G(Vu,)Vu)=0
u™ 7" div(G(Vul)V) =u"

continuous model
time disc. (semi-implicit)

space disc. (Finite Differences) vt div,, (G(V;,U;)Vr,U”H)=U"

(v,7) ._L[Z —m,o)J 7). 7)o
W e T vV 17
"\ Ve =Vaoy Vevoy Vo Vi

X o
(?] =G(V,U)WV,7)

Diffusion Example — Linear Algebra

U -7 div (G, UV,)=U"

U/1+1 _ T”L[V,YUH] . Enﬂ — Uﬂ

Z

AV, U"-U™ =U", AV, U"l=1-7"L[V,U"]

@ Typical situation in semi-
implicit schemes

@® Matrix A depends non-
linearly on explicit data

@ Solvers on GPUs have similar
requirements as on parallel computers

@ Parallel processing of matrix entries

@ No direct write-read-modify cycles

1)7 (v v \a e Li r equation s . .
[d[yD = Feian=Fot T T) e mustbesoved Crmson, bccoR. e conuaate
2 2
e = 504 s = 504
Local Gather Operation Global Gather Operation
Step n Step n+1
. F, ((7; }/}—a‘i(‘) E, ((17/;)ﬁey*)
A, V)
A,,»ﬂ@” Z a.p’ B
B|p-alsC
I7 n 7 n+l (Vk) I7k
(ﬁ%—asc Va B /pey *
2 2
s v us 504

Matrix Vector Product on GPUs

@® Pure matrix vector product is bandwidth bound on GPU
@ Number of processing elements against bandwidth increases
@ Try to occupy the many processing elements with computations
@ Three possibilities for a matrix vector product A-V if A
depends on some data and must be computed itself
@ On-the-fly: compute entries of A for each A-V appliction
@® Lowest memory requirement
® Good for simple entries or seldom use of A
@ Partial assembly: apply A on-the-fly with some precomputed results
@ Allows to balance computation and bandwidth requirements
@ Good choice of precomputed results requires also little memory
@ Full assembly: precompute all entries of A, use these in A-V
® Good if other computations hide bandwidth problem in A-V

Diffusion Example — Matrix Vector
Product

ANV, T"T =(=2"L[V,T")-V =V —7" div,(G(V, TV, 7)

Partial Assembly: Precompute G(V,U.)
Perform A[V,U"]-¥ on-the-fly

o 1 170[_17117“0) (31:17)0, (al\’V)mu.m
V)= —
h\V, _Va—w,l) Vewor Vi Vet
be ——— '
[?] =GV, 0(V,7) | \

(X 1/- _ _ X, ®urcrn
dlvh[7] :=Z(Xa+(l,0)_Xa+ D(+(U‘l)_Ya) *~————e

@ Otherwise try to use partial assembly Y (A,/@)
'L B vénllll 'L E18 \nénﬂ‘i
Matrix Assembly Gather - Scatter

@ Avoid assembling dense matrices
@ A dense matrix for a 1000x1000 grid has 1T=1000G entries
@® In practice most matrices are sparse

@ Local gather operations produce band matrices

@ Each band (corresponding to a stencil position) requires one
vector for storage, e.g. 9 vectors for a general 3x3 stencil

@ Stencil values are often symmetric, separable or have other
intrinsic structure, which reduces the storage requirements

@ Exploit in global gather operations
@ For simple entries store only their
@ Consider the interchangability

’ 9 - E19 Vlélhu

Interaction types between node values (vector components)

AT =Y 117 e7)

Fed Q %) '
AV =(4, V), ¥ A =(4
4, =(4,,), &»g«e 6«8»8 (Ye7),:

Gather Scatter

N
<

—_

(X))

a’ aty

Both types are interchangeable in matrix vector products
@ Easy conversion if gather and scatter positions are static

@ Dynamic gather is ok for GPU, dynamic scatter rather slow

L] - images courtesy
2 of Mark Harris

£20 v1§"0‘l

Object recoginition by the Generalized
Hough Transform

Generalized Hough Transform

Generate
original poses Store pose k
image edge of different asalistof
image perspective Q offset vectors "
and scale
the result
first second
detected
dett)ected cube "
cube — " oy iy _
Clixy) = DI+, y+15) Cay) = Crxy) /1%
i=1
L4 Zl]n L 200
- E21 - E22
¢ vis04 : vis04
Overview Discretization Grids on GPUs
@ Mathematical GPU Functionality @ An equidistant grid
. . . . @ Easy to implement
@ Partial Differential Equations (PDEs) viome
e Examples @ One texture holds all values
@ Time and Space Discretization @ Deformed tensor grid
@ Local and Global Operations .
@ Matrix Vector Product @ Parallel dynamic updates
@ Gather — Scatter @ One texture for values
second for deformation
@ Advanced Topics @ Unstructured grid
e Di - ;
D!scret!zat!on Grids @ Good performance for static,
@ Discretization Schemes poor for dynamic grid topology
° -
Quantization @® Several indirections are needed
:) " §b
E23 E24 -
ue vis04 ue vis04

Discretization Schemes

@ Finite Differences
® Interpolative approach: simple and fast

® Usually interaction with direct neighbors

/\\,
@ Finite Volumes
@ \/olumetric approach: mass conservation
@ Good at discontinuities, less for smooth data
@ Interaction over element boundaries

@ Finite Elements
@ Approximative approach: error minimization

® Good handling of deformed, unstructured grids

@ Interaction of basis functions (all neighbors) i
S S N N

'. - E25 Vlénnq

Quantization

Roundoff examples for the format

additive roundoff
multiplicative roundoff
cancellation c=a,b

a= 1 +0.00000004
b= 1.0002 * 0.9998 =41
(c-1)* 108

fI1

=

Cancellation promotes the small error 0.00000004
to the absolute error 4 and an infinite relative error.

Order of operations can be crucial:
1+ 0.00000004 —1=,40
1—1+0.00000004=; 0.00000004

Cancellation cannot be avoided automatically, so

= st

Uncontrolled and Controlled Roundoff
Effects on Diffusion in 8 bit

E-7

Topics

General Algorithm Primitives

[1:GPU

f«'::-a John Owens
&»

Department of Electrical and Computer Engineering
Institute for Data Analysis and Visualization
University of California, Davis

@ Two fundamental algorithms!
@ Sorting
@ Sorting networks

@® Search
@ Binary search
@® Nearest neighbor search

@ Raytracing on GPUs: [Purcell 2002]
@ Photon mapping on GPUs: [Purcell 2003]

2 > o2
visoH s yiso
Assumptions Sorting

@ Data organized into 1D arrays
® Rendering pass == screen aligned quad
@ Not using vertex shaders
® PS 2.0 GPU
@ No data dependent branching at fragment level

@ Given an unordered list of elements, produce
list ordered by key value
@ Fundamental kernel: compare and swap

@® GPUs constrained programming environment
limits viable algorithms
@® Oblivious sort (does not rely on data values)
@ Bitonic merge sort [Batcher 68]
@ Periodic balanced sorting networks [Dowd 89]

&33 F3 wé‘hu

S F4 V]%“U‘I

F-1

Bitonic Merge Sort Overview

@® Repeatedly build bitonic lists and then sort them
@ Bitonic list is two monotonic lists concatenated
together, one increasing and one decreasing.
eList A: (3,4,7,8) monotonically increasing
@ListB: (6,5,2, 1) monotonically decreasing
eListAB: (3,4,7,8,6,5,2,1) bitonic
@ Bitonic lists can be easily sorted into monotonic lists
@ Strategy: Divide and conquer

Bitonic Merge Sort

8 504

3
7
4
8
6
2
1
B 8x monotonic lists: (3) (7) (4) (8) (6) (2) (1) (5)
4x bitonic lists: (3,7) (4,8) (6,2) (1,5)
&3—3 Fe v|§004

Bitonic Merge Sort (1/3)

|
|
|
|

Sort the bitonic lists (Step 1 of 1)

Bitonic Merge Sort (1/3 done)

a3 " s

= O O N A 00O N W

4x monotonic lists: (3,7) (8,4) (2,6) (5,1)
2x bitonic lists: (3,7,8,4) (2,6,5,1)

e vé"ﬂ‘!

Bitonic Merge Sort (2/3)

Sort the bitonic lists (Step 1 of 2)

Bitonic Merge Sort (2/3)

N OO OO N o M W

1
Sort the bitonic lists (Step 2 of 2)

a3 " sy %3 o ysou
Bitonic Merge Sort (2/3) Bitonic Merge Sort (2/3 done)
l 3
4
l 7
8
‘ 6
5
2 2x monotonic lists:
| 1 (3,4,7,8) (6,5,2,1)
1x bitonic list:
Sort the bitonic lists (Step 2 of 2) (3,4,7,8,6,5,2,1)
“.‘::" F11 200 G2 F12 200
& VIS I & VIS i

F-3

Bitonic Merge Sort (3/3)

Bitonic Merge Sort (3/3)

3
4
2
1
6
5
7
8
Sort the bitonic list (Step 1 of 3) Sort the bitonic list (Step 2 of 3)
a3 SR %3 e ysod
Bitonic Merge Sort (3/3) Bitonic Merge Sort (3/3)
2
1
3
4
6
5
7
8
Sort the bitonic list (Step 2 of 3) Sort the bitonic list (Step 3 of 3)
a3 L %3 " ysod

Bitonic Merge Sort (3/3)

—_— — — —

Sort the bitonic list (Step 3 of 3)

af.} Fi7 v]gnllll

Bitonic Merge Sort (Complete)

0 N O O B~ ODN =

Done!

%3 s

Bitonic Merge Sort Summary

@ Separate rendering pass for each set of swaps
@ O(log?n) passes
@ Each pass performs n compare/swaps
@ Exploits parallelism
@ Each swap is oblivious
@ Total compare/swaps: O(n log?n)

@ Limitations of GPU cost us factor of log n over best
CPU-based sorting algorithms

S F19 V]énﬂq

Searching

S F20 V]%“U‘I

Types of Search

® Search for specific element
@ Binary search

@ Search for nearest element(s)
@ k-nearest neighbor search

® Both searches require ordered data

Binary Search

® Find a specific element in an ordered list

@ Implement just like CPU algorithm
@ Assuming hardware supports long enough shaders
@ Finds the first element of a given value v
@ If v does not exist, find next smallest element > v
@ Search algorithm is sequential, but many
searches can be executed in parallel

@® Number of pixels drawn determines number of
searches executed in parallel
@ 1 pixel == 1 search

af.} 2t v]énllll

%3 = sy

Binary Search

@ Search for vO
Initialize
Search starts at center of

sorted array

v2 >=v0 so search left half
of sub-array

Sorted List [vo [vo [vo [v2[v2]v2a[vs] vs |
4

&33 P22 V;é‘hu

Binary Search

@® Search for vO

Step 1

v0 >=v0 so search left half
of sub-array

Sorted List [vo [vo [vo [v2a|ve|v2][vs] vs]
4 5 6 7

S F24 V]%“U‘I

F-6

Binary Search

@ Search for vO

v0 >=v0 so search left half
Step 2 of sub-array

SortedList [vo [vo [vo [v2a[ve|v2[s[5 |

% = s

Binary Search

@ Search for vO

Step 3 El

At this point, we either
have found vO or are 1
element too far left

One last step to resolve

SortedList [vo] vo [vo[v2[ve|va[vs]vs]

f-.'::a
&»

v1§00‘l

Binary Search

@ Search for vO

Done!

Step 4 IIl

SortedList [vo]vo[vo[v2|v2|[v2a]vs]vs]|
4

% = yis0H

Binary Search

@® Search for vO and v2

Initialize 4 4

Search starts at center of
sorted array

Both searches proceed to
the left half of the array

Sorted List [vo [vo [vo [v2][va]v2a][vs] vs |

f-.'::a
&»

~ i

F-7

Binary Search

@ Search for vO and v2

Step 1 2 2

The search for vO
continues as before

The search for v2
overshot, so go back to the
right

SortedList [vo [vo [vo]va[ve|v2[s[5 |

f-.'::a
&»

vé']ll‘l

Binary Search

@ Search for vO and v2

We've found the proper v2,

but are still looking for vO

Both searches continue

Step 2 3

SortedList [vo[vw][vw v2 v2|v2[s[5 |
7

S Fao \nénﬂ‘i

Binary Search

@ Search for vO and v2

Stp3 [0] 2

Now, we’ve found the
proper v0, but overshot v2

The cleanup step takes
care of this

Sorted List |) |)

v2|v2|v2|v5|v5|

<
NS

0 1

5

f-.'::a
&»

F31 Vlélhu

Binary Search

@® Search for vO and v2

Done! Both v0 and v2 are
located properly

Step 4 El 3

SortedList [vo]|wo|[vo v2 v2|v2[vs] 5|
7

S Faz V]%“U‘I

F-8

Binary Search Summary

@ Single rendering pass
@® Each pixel drawn performs independent search

@ O(log n) steps

Nearest Neighbor Search

& SRk %3 sl
Nearest Neighbor Search kNN-grid Algorithm
@ Given a sample point p, find the k points nearest
p within a data set °le
@ On the CPU, this is easily done with a heap or RO I
priority queue R >
@ Can add or reject neighbors as search progresses
@® Don’t know how to build one efficiently on GPU + sample point
@ kNN-grid candidate neighbor
@® Can only add neighbors... * neighbors found
Want 4 neighbors
& = 50 &3 = s

kNN-grid Algorithm

* sample point
candidate neighbor
* neighbors found

Want 4 neighbors

@® Candidate neighbors
must be within max
search radius

@ Visit voxels in order of
distance to sample point

kNN-grid Algorithm

* sample point
candidate neighbor
* neighbors found

Want 4 neighbors

@ If current number of
neighbors found is less
than the number
requested, grow search
radius

2 2 2 2
& SRIL & = S0
kNN-grid Algorithm kNN-grid Algorithm
@ If current number of @ Don’t add neighbors
of e neighbors found is less o e outside maximum search
0 F— than the number 0% —¢ radius
Yslo Nhe requested, grow search /6 ° \N\e @ Don't grow search radius
Q"o * e radius %ol ® ol)° when neighbor is outside
N N maximum radius
o r 2 o

® sample point
candidate neighbor
¢ neighbors found

Want 4 neighbors

[
e)
.-
[]

¢ sample point

candidate neighbor

¢ neighbors found

Want 4 neighbors

[
e)
.-
[]

vé"ﬂ‘!

F-10

kNN-grid Algorithm

* sample point
candidate neighbor
* neighbors found

Want 4 neighbors

@ Add neighbors within
search radius

kNN-grid Algorithm

)

4

* sample point
candidate neighbor
* neighbors found

Want 4 neighbors

@ Add neighbors within
search radius

%3 ST %3 e sy
kNN-grid Algorithm kNN-grid Algorithm

® sample point
candidate neighbor
¢ neighbors found

Want 4 neighbors

@ Don’t expand search

radius if enough
neighbors already found

[
e)
.-
[]

¢ sample point
candidate neighbor
¢ neighbors found

Want 4 neighbors

@® Add neighbors within

search radius

[
e)
.-
[]

vé"ﬂ‘!

F-11

kNN-grid Algorithm

kNN-grid Summary

@ Visit all other voxels @ Finds all neighbors within
°l° accessible within o| e a sphere centered about
0° d determined search radius 0° d sample point
L °4 ° Ne @ Add neighbors within °gle o @ May locate more than
°°.:/) ° search radius °{. ¢ 9 ° requested k-nearest
< S neighbors
6 6
* sample point * sample point
candidate neighbor candidate neighbor
* neighbors found * neighbors found
Want 4 neighbors Want 4 neighbors
2 2 2 2
& SRIL & S0
References

@® Timothy J. Purcell, lan Buck, William R. Mark,
and Pat Hanrahan. Ray tracing on
programmable graphics hardware. ACM
Transactions on Graphics, 21(3):703-712, July
2002.

@ Timothy J. Purcell, Craig Donner, Mike
Cammarano, Henrik Wann Jensen, and Pat
Hanrahan. Photon mapping on programmable

graphics hardware. In Graphics Hardware 2003,
pages 41-50, July 2003.

&33 Fer V]éoﬂq

F-12

Overview
® GPU Memory Model
GPGPU Memory Model °
(]
a
<9 Aaron Lefohn
& R
Institute for Data Analysis and Visualization
University of California, Davis
2 2 2

CPU Memory Model GPU Memory Model

@ Random Memory Access at Any Program Point e MUCGf":LTzre fels'ffided memory access
. . (.} ernels
@ Read/write to registers @ Read/write to registers
® Read/write to local (stack) memory @ No local stack memory
@ Read/write to global (heap) memory @ No disk access

. . @ Read-only global
@ Read/write to disk 3a= ?[{;‘;,0 & memory aceess
@ Write to global memory at end of pass

@ Pre-computed memory addresses (no scatter)

@ Write location set by fragment position
al[fragPos] = bar(b);

GPU Memory Model

@® Where is GPU Data Stored?
@ Vertex buffer
@® Texture
@® Frame buffer

°
.E
K °

Vertex Buffer

Render-to-Texture

® |dea

@ Write rendering result to texture memory
@® Enables GPU-based computational iterations

Texture Data

e ZU[] 3o 200
& = yisht & = yisH
Render-to-Texture Render-to-Vertex-Array
@ OpenGL Support @ |dea
@ Save up to 16, 32-bit floating values per pixel @ Write rendering results to vertex array
Multiple Render Targets (MRTs) on ATl and NVIDIA @ Allows GPU to loop back to beginning of pipeline
1. Copy-to-texture
glCopyTexSublmage
2. Render-to-texture
@ WGL_ARB_render_texture
Pbuffers: Current state of the art VN
@ GL_EXT_render_target E_’ o o e -
Proposed extension
@ Superbuffers : Vertex Data
Proposed extension | e
ZUU 3> ZI]0
G7 2 G8
vis04 & visO4

Render-To-Vertex-Array

@® OpenGL Support
@ Copy-to-vertex-array
® GL_EXT_pixel_buffer_object
®NVIDIA and ATI

@ Render-to-vertex-array
@ Superbuffers

@ Semantics Still Under Development...

8 = yish

Fbuffer: Capturing Fragments

® |dea
@ Save all fragment values instead of one per pixel
@ “Rasterization-Order FIFO Buffer”

H
B

Frame
Buffer(s

%3 504

Fbuffer: Capturing Fragments

@ Details

@® Designed for multi-pass rendering with transparent geometry

@ Mark and Proudfoot, Graphics Hardware 2001

http://graphics.stanford.edu/projects/shading/pubs/hwws2001-fbuffer/

@ New possibilities for GPGPU
@ Varying number of results per pixel
@ RTT and RTVA with an fbuffer

@ OpenGL Support
@ ATI Radeon 9800 and newer ATl GPUs
@ Not yet exposed to user (ask for it!)

s
N G11
&

vuzsnﬂ‘*

Overview

L)
® GPU-Based Data Structures
')

S o1z V]%“U‘I

GPU-Based Data Structures

@® Building Blocks
@ GPU memory addresses
® Address Generation
® Address Use

GPU Memory Addresses

® Where Are GPU Addresses Generated?

@ CPU Vertex stream or textures
@ Vertex processor Input stream, ALU ops or textures
@ Rasterizer Interpolation

@ Pointers @ Fragment processor Input stream, ALU ops or textures
L)
®
CPU Vertex Rasterizer Fragment
Processor Processor
L) L)
[0 2! [0 2!
&3 o1s v]snllll & o VISDOq

GPU Memory Addresses

@ Where Are Addresses Used?
@ Vertex textures (PS3.0 GPUs)
® Fragment textures

Texture Data

GPU Memory Addresses
@ Floating-Point Addressing

@ Normalized addresses [0,1]
@ GL_TEXTURE_1D, _2D, _3D, _CUBE

@ Non-Normalized addresses [0,N]
@ GL_TEXTURE_RECTANGLE

@ Warning: Floating-point can leave unaddressable texels
NVIDIA FP32: 16,777,217

Counting numbers
ATI 24-bit float: 131,073

Counting numbers

NVIDIA FP16: 2,049 Counting numbers
Courtesy of lan Buck
2 s 2
G15 P G16
vish o ViSO

GPU Memory Addresses

® Pointers

GPU-Based Data Structures

@ Building Blocks

@ Store addresses in texture [
@® Dependent texture read ®
[
float2 addr = tex2D(addrTex, texCoord); [
float2 data = tex2D(dataTex, addr); @ Multi-dimensional arrays and structs
®
Address Texture Data Texture
0| 3 Data |0
1 3 Data |1
2 1 Data |2
3] 1 Data |3
L) L)
3> 2 3> 2
& * iS04 & w0 pshy

GPU Arrays

@ Large 1D Arrays
@ Current GPUs limit 1D array sizes to 2048 or 4096
® Pack into 2D memory
@ 1D-to-2D address translation

¥

G19 V.Ié[hu

GPU Arrays
@ 3D Arrays

® Problem

@ GPUs do not have 3D frame buffers

@ No RTT to slice of 3D texture with pbuffers
@® Solutions

1. Stack of 2D slices

2. Multiple slices per 2D buffer T IIIITIATT

[T IIITT

G-5

GPU Arrays

@® Problems With 3D Arrays for GPGPU

GPU Arrays

@ Cannot read stack of 2D slices as 3D texture
@® Must know which slices are needed in advance
@® Visualization of 3D data difficult

@ Solutions
@ Flat 3D textures
@ Need render-to-slice-of-3D-texture
® GL_EXT_render_target and Superbuffers
@ Volume rendering of slice-based 3D data
@ Course 28, “Real-Time Volume Graphics”, Siggraph 2004

@ Higher Dimensional Arrays
@® Pack into 2D buffers
@ N-D to 2D address translation
@® Same problems as 3D arrays if data does not fit in a single
2D texture

af.} et v]gnllll

a3 = 150

GPU Structures

@ Store each member in a different “array” (texture)
@ Update structs with Multiple-Render Targets (MRTs)

struct Foo { float4 Foo_alN];
float4 a; :> float4 Foo bI[N];
float4 b;

};

Foo fool[N];

&33 oz V]énﬂq

GPU-Based Data Structures

@ Building Blocks
®
[}
[
[
[
@® Sparse representations

S o2 V]%“U‘I

Sparse Data Structures

@ Why Sparse Data Structures?
® Reduce memory pressure
@ Reduce computational workload

@ Examples
® Sparse matrices
@ Krueger et al., Siggraph 2003
@Bolz et al., Siggraph 2003

Premoze et al.
Eurographics 2003

® Deformable implicit surfaces (sparse volumes/PDEs)
@ Lefohn et al., IEEE Visualization 2003

rse D r r

@ Basic Idea
@® Pack “active” data elements into GPU memory
@ For more information
@ Linear algebra section in this course : Static structures
@ Level-set case study in this course : Dynamic structures

L)
3> 2 2
e = ViS4 = 1504
GPU Data Structures Overview
@ Conclusions P
@ Fundamental GPU memory primitive is a fixed-size 2D array ®
® GPGPU needs more general memory model @ Pbuffer Survival Guide
® Building and modifying complex GPU-based data structures
is an open research topic...
2 [) 2
G27 Vlsouq & G28 VISDU"

Pbuffer Survival Guide

Pbuffer Survival Guide

@ Pbuffers Give us Render-To-Texture
@ Designed to create an environment map or two
@® Never intended to be used for GPGPU (100s of pbuffers)

@ Problem
@ Each pbuffer has its own OpenGL render context
@ Each pbuffer may have depth and/or stencil buffer
® Changing OpenGL contexts is slow

@ Solution
@ Many optimizations to avoid this bottleneck...

1. Use Multi-Surface Pbuffers
® Each RGBA surface is its own render-texture
@® Front, Back, AuxN (N =0,1,2,...)
@® Greatly reduces context switches
@® Technically illegal, but “blessed” by ATI and NVIDIA

% = i

5 Pbuffers 1 Pbuffer
1 RGBA Surface Each 5 RGBA Surfaces

2, 2
& > pshy

Pbuffer Survival Guide

Pbuffer Survival Guide

1. Using Multi-Surface Pbuffers
a) Allocate multi-surface pbuffer (Front/Back/AUX buffers)
b) Set render target to back buffer
glprawBuffer (GL_BACK)
c) Bind front buffer as texture
wglBindTexImageARB (pbuffer, WGL_FRONT_ ARB)
d) Render

e) Switch buffers
wglReleaseTexImageARB (pbuffer, WGL_FRONT_ ARB)
glDrawBuffer (GL_FRONT)
wglBindTexImageARB (pbuffer, WGL_BACK ARB)

2. Pack 2D domains into large buffer
® “Flat 3D textures”
@® Be careful of read-modify-write hazard

[TTTTITTTTTT

[TTTIFIIITLL

La

3D Volume Flattened Volume

ot wé‘hq

:.i,} 632 Vlé'hq

Conclusions Selected References

@ GPU Memory Model Evolving

@ J.Boltz, I. Farmer, E. Grinspun, P. Schoder, “Spare Matrix Solvers on the GPU:

@ Writable GPU memory forms loop-back in an otherwise feed- Conjugate Gradients and Multigrid,” SIGGRAPH 2003
forward streaming pipeline @ N. Goodnight, C. Woolley, G. Lewin, D. Luebke, G. Humphreys, “A Multigrid Solver
X) for Boundary Value Problems Using Programmable Graphics Hardware,” Graphics
@ Memory model will continue to evolve as GPUs become more Hardware 2003
general stream processors @ M. Harris, W. Baxter, T. Scheuermann, A. Lastra, “Simulation of Cloud Dynamics on

Graphics Hardware,“ Graphics Hardware 2003
@ H.Igehy, M. Eldridge, K. Proudfoot, “Prefetching in a Texture Cache Architecture,”

@ GPGPU Data Structures Graphics Hardware 1998
. P T i @ J. Krueger, R. Westermann, “Linear Algebra Operators for GPU Implementation of
@ Basic memory primitive is limited-size, 2D texture Numerical Algorithms,” SIGGRAPH 2003
@ Use address translation to fit all array dimensions into 2D @ A Lefohn, J. Kniss, C. Hansen, R. Whitaker, “A Streaming Narrow-Band Algorithm:

Interactive Deformation and Visualization of Level Sets,” IEEE Transactions on
Visualization and Computer Graphics 2004

@ Render-To-Texture
@ Use pbuffers with care and eagerly adopt their successor

= ViS4

v1§00‘l

Selected References OpenGL References

® A. Lefohn, J. Kniss, C. Hansen, R. Whitaker, “Interactive Deformation and
Visualization of Level Set Surfaces Using Graphics Hardware,” IEEE Visualization

2003 @ GL_EXT_pixel_buffer_object
@® W. Mark, K. Proudfoot, “The F-Buffer: A Rasterization-Order FIFO Buffer for Multi- http:/lwww.nvidia ¢ penglspecs/GL_EXT_pixel_buffer_object.txt
Pass Rendering,” Graphics Hardware 2001 @ GL_EXT_render_target,
@ T.Purcell, C. Donner, M. Cammarano, H. W. Jensen, P. Hanrahan, “Photon http://www.opengl.org/resources/features/GL_EXT_render_target.txt
Mapping on Programmable Graphics Hardware,” Graphics Hardware 2003 @ OpenGL Extension Registry
@ A. Sherbondy, M. Houston, S. Napel, “Fast Volume Segmentation With http://oss.sgi.com/projects/ogl-sample/registry/
Simultaneous Visualization Using Programmable Graphics Hardware,” IEEE @ Superbuffers
Visualization 2003 http://lwww.ati I per/gdc/SuperBuffers.pdf

@ WGL_ARB_render_texture
http://oss.sgi.com/projects/ogl-sample/registry/ARB/wgl_render_texture.txt
http://oss.sgi. Iproj logl le/registry/ARB/wgl_pbuffer.txt

%3 * y1504 % = 1504

Acknowledgements

Nick Triantos, Craig Kolb, Cass Everitt, Chris Seitz at NVIDIA
Mark Segal, Rob Mace, Arcot Preetham, Evan Hart at ATI
Brian Budge, Ph.D. student at UCDavis and NVIDIA intern
The other GPGPU IEEE Visualization 2004 course presenters

9 909

John Owens, Ph.D. advisor, Univ. of California Davis
Ross Whitaker, M.S. advisor, SCI Institute, Univ. of Utah

L]

@ National Science Foundation Graduate Fellowship

@ Pixar Animation Studios, summer internships

e Interchangeable mobile GPUs

s 20[]
N G37

i vis04

G-10

Computing Strategies and Tricks

[1:GPU

! lan Buck
Graphics Lab

Stanford University

Strategies & Tricks:

DirectX or OpenGL?

pd pd
\nsnllll H H v15004
@® DirectX @ OpenGL
+ Render to Texture + 0 to N texture addressing
@ SetRenderTarget() @ GL_TEXTURE_RECTANGLE_EXT
+Write once run + Vendor Features Strategies & Tricks:
;n;t/)wher © tool + Readback is fast 9)
* Debugging tools — Render-to-Texture not finalized H
— Short programs @ SuperBuffers U n de I'Sta n d in g
Re Ogg 51|i |.nstr |"mn| ® GL_EXT_render_target P rf
B 3?50 r\aag/sel,-i siow: — Specialized float formats for errormance
ATl and NV
2 2|
- H V]g”[lll - He \nsnﬂll

Locality, Locality, Locality

® ® CPU
@ Pentium 4 3.0 GHz

25]
® 44 GB/sec peak Cache

§ 0] @ 6 GB/sec peak Seq

F s

g 1 @ Output Reuse

o) @ CPU can cache outputs

@ GPU must write outputs to
memory

Cache Seq Ramd
NVIDIA rp32
1-Component Textures

E = yi60

Compute Performace

multiplies per second

50

404 e=s== NVIDIA NV30, 35, 40
%]
=Y e==e== ATI R300, 360, 420
O 304
i amgmm Pentium 4
o 204

10

O T T T T T T
Julyol Jan02 July02 Jan 03 July 03 Jan 04

- He wénﬁll

Bandwidth Gap

0] GFLOPS
40
7x Gap
20
- —® GFloats/sec
0

R300 R360 R420
ATI Hardware

- H v;énl]ll

Compute vs. Bandwidth

Arithmetic Intensity =
Compute-to-Bandwidth ratio

Graphics Pipeline
® Vextex
@BW: 1 vertex = 32 bytes;
@ OP: 100-500 f32-ops / vertex
@® Fragment
@BW: 1 fragment = 10 bytes
@ OP: 300-1000 i8-ops/fragment

E " s

Considering Readback

@® GPUs need to download and readback results
® Time to complete = download + compute + readback
@ Not a problem on CPU
® Readback
@ Getting a lot better!
@> 600 MB/sec NVIDIA OpenGL
®GL_UNSIGNED_BYTE: BGRA
@Floating Point: RGBA

- "o vé”nu

Strategies & Tricks:

Understanding
Floating Point

H Hio Vlénﬁq

Floating Point Precision

‘ S ‘exponent‘ mantissa ‘

sign * 1.mantissa * 2(exponent+bias)
@ NVIDIA FP32
@s23e8
@ ATI 24-bit float
®s16e7
@ NVIDIA FP16
®s10e5

H it Vlé‘hq

Floating Point Precision

® Common Bug
@ Pack large 1D array in 2D texture
® Compute 1D address in shader
@ Convert 1D address into 2D

@® FP precision will leave unaddressable texels!

Largest Counting Number
NVIDIA FP32: 16,777,217
ATI 24-bit float: 131,073
NVIDIA FP16: 2,049

H w2 Vlénﬂq

Strategies & Tricks:

Implementing Scatter

ali] = p

H Wi v]gﬂllll

Scatter Techniques

@® Problem: a[ij=p
@ |ndirect write
@® Can't set the x,y of fragment in pixel shader
@ Often want to do: a[i] +=p

H Hia Vlénﬁq

Scatter Techniques

@ Solution 1: Convert to Gather

for each spring
f = computed force
mass_ force[left] +
mass_force[right] -

Scatter Techniques

@® Solution 1: Convert to Gather

for each spring
f = computed force
for each mass
mass_ force = flleft] -
flrightl];

0e)000000009000900 fm2)

f2

9""”””
f1

Scatter Techniques

@ Solution 2: Address Sorting
® Sort & Search
@ Shader outputs destination address and data
@ Bitonic sort based on address

@ Run binary search shader over destination buffer
@ Each fragment searches for source data

Scatter Techniques

H e v]gnllll

@® Solution 3: Vertex processor
@® Render points
@ Use vertex shader to set destination
@ or just read back the data and re-issue
@ Vertex Textures
@ Render data and address to texture

@ [ssue points, set point x,y in vertex shader using
address texture

@® Requires texld instruction in vertex program

H His Vlénﬁ‘l

Strategies & Tricks:

Conditionals

- Hie Vé”[]q

Conditionals

® Problem:
if (a) b = £();
else b=g(:

@ Limited fragment shader conditional support

- H20 V]énﬂll

H-5

Conditionals

@ Solution 1: Predication

@ Execute both if (a) b £();
efandg else b =g();

@ Use LRP instruction
@®LRPb,a,f,g b=a?f:g
@® Executes all conditional code

H ot v]gﬂllll

Conditionals

@® Solution 1: Predication

@ Use DP4 instruction a
eDP4bx,a,f £
@® Executes all conditional code

= (ol 11 OI 0)
(x, v, 2z, W)

if (a.x) b = x;
else if (a.y) b = y;
else if (a.z) b = z;
else if (a.w) b

H a2 Vlénﬁq

Conditionals

@ Solution 2: Using early Z-kill
@ Set Z buffer to a
@Clear Zto 1.0f
@®Render quad at z=0.3
@ Evaluate conditional and kill to set Z

if (@) b = £0; [N
else b g(); DD

- Has \néoﬂll

Conditionals

@ Solution 2: Using early Z-kill
@ Set Z buffer to a
@® Z-test can prevent shader execution
@glEnable(GL_DEPTH_TEST)
@ Good only if locality in conditional

if (a) b
else b

£0; [N
g(); DD

H Haa Vlénﬂq

H-6

Conditionals

if (rand)
b=£f();

Time

o.o. 01 02 03 04 05 06 07 08 09
Branch Taken ATI X800

H Has v]gﬂllll

Conditionals

Time

(4%

if (block)
b=£(0;

——T—T—T—T—T—TT
00 01 02 03 04 05 06 07 08 09

Branch Taken

ATI X800

H26 Vlénoq

Conditionals

@ Solution 2: Using early Z-kill
@ Very Sensitive!

AT NV3X:

* Zoutin shader
« alpha test enabled
« texkill is shader

+ Alpha test, alpha-to-
coverage, user clip planes,

« Pixel kill in shader (KIL),
shader alters Z

NV4X:

NV3X & NV4X:

« Changing depth test
direction invalidates for
remainder of frame

« Writing stencil while rejecting
based on stencil

+ Changing stencil
func/ref/mask invalidates for
remainder of frame

H e Vlélhq

Conditionals

® Solution 3: Conditional Instructions
@ Available with NV_fragment_program2

MOVC CC, RO;
IF GT.x;

MOV RO, Rl; # executes if RO.x > 0

ELSE;

MOV RO, R2; # executes if RO.x <= 0

ENDIF;

=y

H-7

Conditionals

o
£ .
- if (block)
b = £()
0.; 011 072 0.‘3 014 0.‘5 0:6 0:7 0:8 019
Branch Taken GeForce 6800

H Has Vlélhq

o
=
N

i

Strategies & Tricks:
Optimizing Execution

H Hao v1§°0‘l

Optimizing Execution

@ Two methods for GPGPU shader execution

glBegin(GL_QUADS);

glVertex2f(left, bottom);
glVertex2f(right, bottom);

glVertex2f(right, top);
glVertex2f(left, top);
gIEnd();

glViewport(0,0,width,height)
glBegin(GL_TRIANGLE);
glVertex2f(0, 0);
glVertex2f(width*2, 0);
glVertex2f(0, height*2);
glEnd();

H31 vlélhu

Optimizing Execution

Triangle vs. Quad

Relative Performance

™ Quad Trl Quad
NVIDIA ATI

H32 Vlg%q

Strategies & Tricks:
Multiple Outputs

H a3 Vlélhq

Multiple Outputs

@ Software solution
@ Let driver, cgc, or fxc do dead code elimination

kernel void foo (float3 a<>,
float3 b<>, ..,
out float3 x<>,
out float3 y<>)

@® Works well if shader is separable

kernel void fool(float3 a<>, kernel void foo2(float3 a<>,
float3 b<>, .., float3 b<>, ..,
out float3 x<>) out float3 y<>)

H s \nénﬂll

GPUBench

@ http://graphics.stanford.edu/projects/gpubench
@ http://sourceforge.net/projects/gpubench

EER|

- - Y s wélhq

Developer Tools

[[14GPU

’. @ Robert Strzodka

caesar research center
Bonn, Germany

Window
manager
=) eg.
GLUT, Qt, \
Win32, Motif Operating Graphics

Choices in GPU Programming

system hardware

I cg |mmp| g

\ Windows, Unix, Radeon (ATI),
Graphics API ’
‘ eg.
OpenGL,
DirectX
L]

Linux, MacOS GeForce (NV)

pd pd
vishe us * iS04
DirectX Choices DirectX Tools
@ Operating System @ FX Composer, NVPerfHUD (NVIDIA)
Window: ® HLSL shader IDE and performance analysis, real-time statistics
. ows @ www.developer.nvidia.com/page/tools.html
® Window manager @® RenderMonkey (ATI)
Win32, Qt @ HLSL, GLSL shader IDE and performance analysis
. @ www.ati.com/developer/tools.html
@ Programming languages @ EffectEdit (Microsoft)
C/C++/C#, Basic, Delphi, Perl, .NET Framework @ Interactive HLSL renderer
@ msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/
@ Shader Ianguages directx/graphics/TutorialsAndSamples/Samples/EffectEdit.asp
HLSL, Cg, DirectX pixel- and vertex-shader @ ShaderWorks (Mad Software)
@ Stream languages @ HLSL shader IDE
CgFX, Brook @ www.shaderworks.com
- 2 L] 2!
[L ° Vlsnl]ll n® " VISD(]‘I

-1

IV Comper - Giov)
G G tow @i g Do e th

=@ s=m o o S AR
[. dame | e o
e % = EGZ] % (§T5_0JUTS NORMALIZEA
e o [Cot 1= tosab (ol Frifoe hie

Col 1= taxab (Govsanyz, IN.TexCoorail * (P75 2/ VTS HORNAL 17

£10a04 B3 _Yodel (v3_OUTRUT Tl + coLow
‘

ioata Col = IM.Diruce * cexzD (ModsiTexsomy, floatd (IN.Texcoor
/7 saa glow on cay ot weaeL

- exaD(Slovsanp, fioacz (O

.
‘

)+ (uTs_a/uTs noRmaL1ze | (B8 84
a

Vet

s

-

AR o,

Ml

100,000,100

167 039013 013016131 065 0650
100000001001.00000000000 7.0
o

FX Composer
courtesy of NVIDIA

—
Eleal L F I IR X]
il Sl

[Eemp—

o g

B aro o R

Bt ors

i =
>

RenderMonkey
courtesy of ATI

NVPerfHUD
courtesy of NVIDIA|

OpenGL Choices

@ Operating System
Linux/Unix, Windows, MacOS, 0S/2, BeOS
® Window manager
GLUT, Qt, Motif
@ Programming languages
C/C++, Java, Fortran, Ada, Python, Perl, Pike
@® Shader languages
GLSL, Cg, OpenGL fragment- and vertex-shader
@ Stream languages
Brook, Sh

TE o vénﬂll

OpenGL Tools

@ NVShaderPerf (NVIDIA)
@ HLSL, OpenGL fragment shader performance analysis
@ www.developer.nvidia.com/page/tools.html
@ RenderMonkey (ATI)
@ HLSL, GLSL shader IDE and performance analysis
® www.ati.com/developer/tools.html
@® Babelshader (D. Horn)
@ Translator: DirectX pixelshader to OpenGL fragment shader
@ www.graphics.stanford.edu/~danielrh/babelshader.html
@® OpenGL Panther Tools (Apple)
@® OpenGL vertex and fragment shader IDE, profiling tools
@ developer.apple.com/opengl/panther.html
@ OpenGL Shader Designer (Typhoon Labs)
@ GLSL shader IDE
® www.typhoonlabs.com

Shader Debugger

@ Visual debugging with the shader IDEs (Windows)
@ FX Composer (DX), RenderMonkey (DX&GL), EffectEdit (DX),
ShaderWorks (DX), OpenGL Panther (GL)
@ Shader Debugger Tool (Microsoft)
@ HLSL debugger extension for Visual Studio IDE
@ msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/tools/shaderdebugger.asp
@ Imdebug — The Image Debugger (B. Baxter)
@ Analysis of images output by shaders, easy integration
@ www.cs.unc.edu/~baxter/projects/imdebug/
@ Shadesmith (T. Purcell, P. Sen)
@ Interactive OpenGL fragment shader debugger
@ graphics.stanford.edu/projects/shadesmith/

001 HOVR RO, £[TEX0]: # the interpolated normal
o0z MOVR Ri, £[TEX1]: # the interpolated model-space point
o3 mOVR R2, flcOLO]: # the interpolated color

004 HOVR R3, £ITEX2]: # the texture coords

L images courtesy of M1 200
T e ormr vis04

L4 pd L pd
[L ° wsnllll n* 1o \nsnﬂ‘i
Shader Debugger Many More Tools
e |
@ Plug-ins for various content creator programs
imdebug @ Texture conversion and compression
® Normal maps
@® esh optimization
|
- - AR MO D E ST RS |
[G1, 1 = [7mm, 159, A=, 7251 [Fnfas smn . X
@ Available online for free
e @ www.msdn.microsoft.com/library/default.asp?url=/libr
Shadesmith f s ';’}'“'“‘ NN - ary/en-us/directx9_c/directx/graphics/Tools/Tools.asp

® www.developer.nvidia.com/page/tools.html
® www.ati.com/developer/tools.html

3 - n2 Vlé%q

How To Get Started?

® Visit the GPGPU base: papers, code, news, links
@ www.gpgpu.org

@ Get the ‘Hello GPGPU’ example and experiment
@ www.gpgpu.org/developer/

@® Get a SDK with plenty of examples
@ www.developer.nvidia.com/object/sdk_home.html
® www.ati.com/developer/radeonSDK.html

@ For discussion go to
® www. gpgpu.org/forums
@ www.shadertech.com

’. - "3 vlénnq

Interactive Level-Set Deformation
On the GPU

[[14GPU

25 Aaron Lefohn
&

v Institute for Data Analysis and Visualization
University of California, Davis

Problem Statement

@ Goal
@ Interactive system for deformable surface manipulation
® Level-sets

@ Challenges
® Deformation is slow
@® Deformation is hard to control

@ Solution
@® Accelerate level-set computation with GPU
® Visualize computation in real-time

2 2 2
visoy &3 sy
Collaborators Overview
@ Why?
@ Motivation and previous work
L)
)
University of Utah L)
Joe Kniss ®
Joshua Cates
Charles Hansen ®
Ross Whitaker e
[]
‘?5 2 ‘?5 Z
&3 s v130l]4 &3 s VISDU‘I

J-1

Deformable Surfaces

Introduction

® Applications of Level-Sets
@ Fluid simulation
@ Surface reconstruction for 3D scanning
@ Surface processing
@® Image / Volume segmentation

Introduction

Level-Set Method

@ Implicit surface

Si = {x|¢(x,t) = k}

@ Distance transform
¢ denotes inside/outside

@ Surface motion
e ¢(x,t+ At) = ¢(x,t) + AtF|Ve|

@® F = Signed speed in direction of normal

2 5 pd 2y o 2
e — » sy e — * sl
Introduction Introduction
CPU Level-Set Acceleration GPU Level-Set Acceleration
@ Strzodka et al. 2001
@ Narrow-Band/Sparse-Grid ® 2D level-set solver on NVIDIA GeForce 2
® Compute PDE only near the surface @ No narrow-band optimization
@ Adalsteinson et al. 1995
@ Whitaker et al. 1998 ® Lefohn et al. 2002
@ Peng et al. 1999 @ Brute force 3D implementation on ATI Radeon 8500
@ No faster than CPU, but ~10x more computations
@ No narrow-band optimization
@ Time-dependent, sparse-grid solver
Domain Domain
‘?5 oS 2 <?= et 2
2 S 7 IS0l %S e o iy

Algorithm

Overview GPU Narrow-Band Solver
® @ Sparse Volume Computation
® @ CPU algorithm: Traverse list of active voxels
@ GPU algorithm: Compute all active voxels in parallel
@ How?
@ Streaming narrow-band Initialize Update
e Domain Domain
[
[
[
® @ Data structures change after each PDE time step
2 2 2 2
& » 508 &3 sl
Algorithm Algorithm
Algorithm Goals Algorithm Solutions
GPU Narrow-Band Solver @® Pack Active Voxels Into 2D Texture
« Goals ® Increase parallelism, reduce computation and memory use
1. Leverage GPU parallelism @ Efficient GPU-to-CPU Message Passing
2. Perform sparse computation @® Fast update of packed data structure
3. Minimize GPU memory usage @
4. Fast update of sparse data structures °®
5. Interactive visualization
33 2 : 2
:..:; Jn V]S[hq :.-; J12 Vlsnoq

Algorithm

A Dynamic, Sparse GPU Data Structure

@ Multi-Dimensional Virtual Memory
@® 3D virtual memory
® 2D physical memory
® 16 x 16 pixel pages

Virtual memory space Unused pages_ Physical memory space

¥ ml B AN
Al NN T

Active pages

Inside Outside

Algorithm

A Dynamic, Sparse GPU Data Structure

@ GPU: Computes PDE
@ Level-set computation (2D physical memory)
@ Issues memory requests
@ CPU: Manages memory
@ Memory manager
@ Page table (3D virtual memory)

Physical Addresses for
Active Memory Pages

PDE
Computation
15-250 passes,

Memory Requests

&3—3 o \nénllll

af.} " V]énﬂ‘i

Algorithm

A Dynamic, Sparse GPU Data
Structure 0@

@® Problem
@ Neighbor lookups across page boundaries
@ Branching slow on GPU

i
T—Corner

i

Interior

@ Solution |
@ Substreams cdge Interior
@ Create homogeneous data streams
@ Resolve conditionals with geometry
@ Lefohn 2003, Goodnight 2003, Harris 2003
@ Optimizes cache and pre-fetch performance
@ Kapasi et al., Micro 33, 2000

Algorithm

GPU-to-CPU Message Passing

@ Problem: Active Voxel Set is Time-Dependent
® GPU memory request mechanism
@ Low bandwidth GPU-to-CPU communication

@® Solution
@ Compress GPU memory request
@® Use GPU computation to save GPU-to-CPU bandwidth

Mipmapping

S e V]%“U‘I

Visualization

Direct Volume Rendering of Level Set

Overview
® @ Reconstruct 2D Slice of Virtual Memory Space
° @ On-the-fly decompression on GPU
@® Use 2D geometry and texture coordinates
@ How?
[}
ning leveksetalgortom A |
@ Real-time visualization (with Joe Kniss)) i —
e evelSet Data
[
o ~
[}
L) L)
3> 2 3> 2
e S0 e " yishd
Visualization
Direct Volume Rendering of Level Set Overview
@ Deferred Filtering: Volume Rendering Compressed Data ®
® 2D slice-based rendering: No data duplication *
@ Tri-linear interpolation
@ Full transfer function and lighting capabilities ®
H aen e
[
@

Reconstructed
slices (@, V)

& opacity

@ Does it work?
@ Demonstration
[

%3 = oy

J-5

Application

Level-Set Segmentation Application

@ |dea: Segment Surface from 3D Image
@® Begin with “seed” surface
@ Deform surface into target segmentation

Results

Demo

@ Segmentation of MRI volumes
@® 1283 scalar volume

@ Hardware Details
® ATI Radeon 9800 Pro
@® 2.4 GHz Intel Pentium 4

@ 1 GB of RAM
2 2
:..:; J22 Vlslhq
Results
GPU Narrow-Band Performance Overview
®
@® Performance PS
® 10x — 15x faster than optimized CPU version (Insight Toolkit)
® Linear dependence on size of narrow band ®
®
@ Bottlenecks o
@ Fragment processor (~80%) é

@® Conservative time step
@ Need for global accumulation register (min, max, sum, etc.)

&33 9z V]éoﬂq

@ Does it work?
[
® User study (with Josh Cates)

S vz V]%“U‘I

Evaluation

Evaluation User Study

@ Goal
@ Can a user quickly find parameter settings to create an
accurate, precise 3D segmentation?

@ Relative to hand contouring

Evaluation

User Study Results

@ Efficiency
@® 6 + 3 minutes per segmentation (vs multiple hours)
@ Solver idle 90% - 95% of time

@ Precision
@ Intersubject similarity significantly better
@ 94.04% + 0.04% vs. 82.65% + 0.07%

@ Accuracy
@® Within error bounds of expert hand segmentations
® Compares well with other semi-automatic techniques
@ Kaus et al., Radiology, 2001

&3 = &y &3 = 8y
Conclusions Conclusions
Summary Future Directions

@ Interactive Level-Set System
® 10x — 15x speedup over optimized CPU implementation
@ |ntuitive parameter tuning
@ User study evaluation

@® Algorithm Developments
@ Multi-dimensional virtual memory
@ Substreams
@ GPU-to-CPU Message passing
@ Volume rendering packed data

sz wé‘hq

@ Other Level-Set Applications

@ Surface processing, surface reconstruction, physical simulation

@ Integrate GPGPU Code Into Open Source Software
@ The Insight Toolkit (www.itk.org)?

® “Interactive Visulation”
® GPGPU allows for simultaneous visualization and simulation
@® What problems can be solved with “interactive visulation?”
@ What is the user interface for a visulation?

%3 = doy

Acknowledgements

@ Joe Kniss — Volume rendering

@ Josh Cates — Tumor user study

@ Gordon Kindlmann — “Teem” raster-data toolkit

@ Milan Ikits — “GLEW” OpenGL extension wrangler
@ Ross Whitaker, Charles Hansen, Steven Parker and John Owens

59

299509

ATI: Evan Hart, Mark Segal, Jeff Royle, and Jason Mitchell
Brigham and Women’s Hospital

National Science Foundation Graduate Fellowship
Office of Naval Research grant #N000140110033
National Science Foundation grant #ACI1008915 and #CCR0092065

Interchangeable mobile GPUs

Questions?

&3—3 9z v]gnllll

For More Information
Google “Lefohn level set”
http://graphics.cs.ucdavis.edu/~lefohn/

Journal Papers Based on this Work

Lefohn, Kniss, Hansen, Whitaker, “A Streaming Narrow Band
Algorithm: Interactive Computation and Visualization of
Level Sets,” |IEEE Transactions on Visualization and Computer
Graphics, 10 (40), Jul / Aug, pp. 422-433, 2004

Cates, Lefohn, Whitaker, “GIST: An Interactive, GPU-Based
Level-Set Segmentation Tool for 3D Medical Images,”
Medical Image Analysis, to appear 2004

%3 = 8y

J-8

Advanced Image Processing

Overview

@ Classic Image Processing

@ Denoising
@® Segmentation
@ Registration

@
mG P U @ Object recognition
@ Object classification
’. @ Robert Strzodka @ Motion estimation
caesar research center
Bonn, Germany
vish s < yi§ou
D.en0|.smg by a linear and a non-linear Diffusion PDE
diffusion process
Initial image u, : Q —[0,1]
0,u—div(G(Vu,)Vu)=0 in R xQ
Zri]f(fel?srion u(0)=u, in Q
9,u=0 on R*xoQ
« linear
G(v)=1
non-linear « isotropic non-linear
diffusion G(v)=g(||v|) scalar
* anisotropic
! | Goy=5" M 0 o) N

'Ll K Vlénﬂll T K4 vénﬂll

K-1

Denoising by anisotropic diffusion

Segmentation by the level-set method

Level-set equation

Initial image and level - set function p, ¢, : Q —[0,1]

9,9+ f°[p, 9l V=0 inR*xQ
»(0)=g, in Q
d,9=0 on R* xoQ

The level-set is driven by different forces [p,p]:=

Lnles + flolss + 4

image based internal forces dependent forces, e.g.
forces dependent on the form of level-sets, an advection field
onp,Vp e.g. curvature «[g] from a simulation
- 2[)0
it 7 g4

Segmentation by the level-set method

“ v1§"0‘l

K-2

Registration by a reguralized
gradient flow

distorted image original image initial error

Cascaded gradient flow on a multi-
scale hierarchy

Input images 7, R : Q —[0,1]

Elu] = %J.\To(1+u)—R\z

Q

Energy measure

Gradient regularization A(o)=1- %ZA
d,u+ A(0) " grad , E[u]=0 in R+ xQ
u(0)=0 in Q
d,u=0 NN xQ
Multi-scale on 7., = S(€"T, R, =S(eHR 9 \‘
multi—gr_id . . 2 %
deformation registration result result error regularization E[u]= EQ.[T o(1+u)—R, . ..:z_y%
- 2 - 2
" Ko v]snllll L k1o \”5004
Registration by a reguralized .
gt y 9 Overview
gradient flow
® Classic Image Processing
@ Denoising
® Segmentation
@ Registration
[
@® Object recognition
@ Object classification
@ Motion estimation
- 2) 2
8 - K11 V]S[)Uu 3 L] K12 V]SDUq

K-3

Object recoginition by the Generalized
Hough Transform

Generalized Hough Transform

Generate
poses
of different

Store pose k

original
image edge as a list of)
image perspective Q offset vectors [**
and scale
the result
N second
g:ttecte " detected
cube cube .]
Crxy) = Y I+, y+1") Cteey) = CHey) /|1¥ |
i=1
- 2 % Al
. K13 VIS I} 2" K14 VIS I}

Object recoginition by the Generalized
Hough Transform

Object classification by skeletons

original r'—; \\/\ distance
boundary & transform
5 Y

fine /% trimmed
skeleton Y XN skeleton
f {/\)’\\\\ o
AT
] Zl]0
.. K16 VIS q

Adaptive Generalized Distance
Transform

boundary . ey, .
coarse image Ay o coarse solution
full solution

urrent -
a st
index

distance transform

B

Distance Transforms and Voronoi
Diagrams

@m Generalized weighted Voronoi diagram

2 L] K18 Vlénoq

Motion estimation by an eigenvector
analysis of the spatio-temporal tensor

?‘ i} '-
Q',J»

(5

Motion estimates as weighted least
square minimizers
Input image sequence u(£): E —[0,1], Z:=(Q,R"), &:=(x,1)

Brightness change constraint equation, one equation two unknowns
—du —(u du duwy,(x W N\ _. gT
0=4 =59 @Gha) =dp
Local continuity assumption of the flow p gives the minimization problem

[wg-ala” @ p@) (@' &) p@))dg = p’ @J(&)pE) — min

J(&) = I_ w(E—ENd(E)d (E') dE, w:E —[0,1] weight function

The of the symmetric spatio-temporal 3x3 tensor
J=VAV", V eigenvector basis, A diagonal eigenvalue matrix
gives a as the solution to the minimization problem
o W

o v) . .
p=(2,2 =8ty cigenvector to smallest eigenvalue
’

n® 0 VIZSDM

K-5

Motion estimation by an eigenvector
analysis of the spatio-temporal tensor

LGL

= st

References

Classic Image Processing
M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware. In Proceedings ICIP'01, volume 3, pages 11031106,

M. Rumpfand R. Strzodka. Nonlinear diffusion in graphics hardware. In Proceedings of EG/IEEE TCVG Symposium on
Visualization VisSym "01, pages 75-84. Springer, 2001b.

M. Rumpfand R. Strzodka. Using graphics cards for quantized FEM computations. In Proceedings VIIP'01, pages 193-202,
2001c.

R. Strzodka, M. Droske, and M. Rumpf. Image registration by a regularized gradient flow - a streaming implementation in DX9
graphics hardware. Computing, 2004. to appear.

Computer Vision

R. Strzodka, I. Thrke, and M. Magnor. A graphics hardware implementation of the generalized hough transform for fast object
recognition, scale, and 3d pose detection. In International Conference on Image Analysis and Processing (ICIAP 2003), pages
188-193,2003.

R. Strzodka and A. Telea. Generalized distance transforms and skeletons in graphics hardware. In Proceedings of EG/IEEE
TCVG Symposium on Visualization VisSym 04, 2004.

R. Strzodka and C. Garbe. Real-time motion estimation and visualization on graphics cards. In Proceedings Visualization 04,
2004.

Homepage

http://www.numerik.math.uni-duisby htm

K-6

Ray Tracing on GPUs

! lan Buck
Graphics Lab

Stanford University

vé']ﬂ‘l

Ray Tracing

g/ Point Light
I

Occluder_/ S

Em -

;
pa—
s/
’ \S
; \
,

Camera

1
/ v

Diffuse

Material
Specular
Material T

Diffuse
Material

- L2 \nénﬁll

Ray Tracing slides courtesy of Tim Purcell

Implementation Options

@ GPU as a ray-triangle intersection engine [Carr et al.
2002]
@ Rays and geometry streamed to GPU
@ Intersection calculation results read back
@ Acceleration structure traversal done on host CPU

@ GPU as a ray tracing engine [Purcell et al. 2002]
@ Scene geometry and acceleration structure stored on GPU

@ GPU performs ray generation, acceleration structure traversal,
intersection, and shading

@ Host provides camera info

- L v;énl]ll

Streaming Ray Tracer

Generate Eye
Rays
i

Traverse —

Acceleration

Structure []

1
Intersect
rangtes Triangles [*]
]

Shade Hits and

Shading Rays

- ¥

H v1§"0‘l

Techniques Used

@ Data structure navigation
® Texture memory stores data structures
@ Dependent texture fetches walk through data
@ Flow control
@® Kernel binding based on occlusion query results
@ Efficient selective execution of kernels using early-z
occlusion culling
@ Difficulty in flow control disappearing with newest
graphics cards
@PS 3.0

H L vé”ﬂ‘l

Texture Memory Organization

Uniform Grid | Vvox0 vox1 vox2 vox3 vox4 vox5 voxM
3D Luminance |[0 3 11| 38| .. |564

Texture \

Triangle List | vox0 vox2
1D Luminance | [0 [3 D<U 1 [3 [7 [21[2t6] .. |

Texture
tri0 tri1 tri2 tri3 tri4 tri5 triN
Triangles |vO|xyz | xyz | xyz | xyz | xyz | xyz | .. | xyz
3')I('e1XDtuRr§SB vi | Xyz | xyz | xyz | xyz | Xyz | Xyz | | Xyz |
v2| xyz | Xyz | xyz | Xyz | xyz | xyz | | xyz |

- L v|§004

Efficient Selective Execution

@® Rendering giant screen
filling quad not ideal
@ Not all pixels need to
process every rendering
pass
@ Use early fragment kill
@® Computation mask
@ Controllable early-Z
occlusion culling
@ Trade computation for
bandwidth

- o Vé”[]q

Cornell Box — Ray Traced Shadows

Rendered using a Radeon 9700 Pro

- L V]énﬂll

L-2

Teapotahedron

Rendered using a Radeon 9700 Pro

E o sy

Quake 3 — Ray Traced Shadows

7

e

Rendered using a Radeon 9700 Pro

H v1§°0‘l

Performance Results

@ Radeon 9700 Pro
@ 100M ray-triangle intersections/s

@ 300K to 4.0M rays/s
@ Between 3 — 12 fps @ 256x256 pixels

@ CPU implementation
@® 20M intersections/s P3 800 MHz [Wald et al. 2001]

@ 800K to 7.1M ray/s 2.5 GHz P4 [Wald et al. 2003]
@ With simple shading: 1.8M to 2.3M rays/s

H L wé‘hq

Molecular Dynamics on Graphics
Hardware

- lan Buck
Graphics Lab

Stanford University

visou

Folding@home: Vijay Pande

20E * 120w eow

What does Folding@Home do?
Folding@Home is a distributed
computing project which studies
protein folding, misfolding,
aggregation, and related diseases.
We use novel computational
methods and large scale distributed
computing, to simulate timescales
thousands to millions of times longer
than previously achieved. This has
allowed us to simulate folding for the
first time, and to now direct our
approach to examine folding related
disease.

Results from Folding@Home

simulations of villin

E v yly

GROMACS: Erik Lindahl

® GROMACS provides extremely high performance
compared to all other programs.
@ Lot of algorithmic optimizations:
@ Own software routines to calculate the inverse
square root.
@ Inner loops optimized to remove all conditionals.
@ Loops use SSE and 3DNow! multimedia
instructions for x86 processors
@ For Power PC G4 and later processors: Altivec
instructions provided
@® normally 3-10 times faster than any other
program.

H L1e vé”ﬂ‘l

Nonbonded forces

@ Accounts for 80% of the
runtime in C/Fortran code .?

@ Most common form:

V. — 1 4gigj Cio Cg
nb _Z 4meq T4 ri2 6
i\j 0 Tt ij i

Electrostatics
Lennard-Jones

- L15 Vlélhu

Using cutoffs & neighbor lists

@ Neighbor list constructed every 10 steps.

@ In practice: 10,000-100,000 atoms, with
100-200 neighbors in each list

25 _o¢ Neighbor list for atom 13 =
0% 0P {8,9,11,12, 15, 16, 17}
14 15 16
17 18

ViS4

What we do in the inner loop?

For each i atom {

fetch atom i data

i_force = 0;

For each j atom in our neigborlist {
fetch atom j data
Calculate vectorial distance; dr = e
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r?)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

Inner loop

}

Store i_force;

H L Vlélhq

What we do in the inner loop?

For each i atom {

fetch atom i data

i_force = 0;

For each j atom in our neigborlist {
fetch atom j data
Calculate vectorial distance; dr = rer
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force <«

) i_force += force; Writing to memory

Store i_force; 4__

Reading from memory

H Lrs Vlénﬁ‘l

What we do in the inner loop?

For each i atom {

fetch atom i data

i_force = 0;

For each j atom in our neigborlist {
fetch atom j data
Calculate vectorial distance; dr = r-r;
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force <«

) i_foroe += force; Writing to memory

Store i_force; e

Texture Fetch
Reading from memory
Texture Fetch

- Lo V]énﬂll

What we do in the inner loop?

For-eachatem-{ For each fragment {
fetch atom i data
i_force = 0;
For each j atom in our neigborlist {
fetch atom j data
Calculate vectorial distance; dr = rir;
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force <«
} i_force += force; Writing to memory

Store i_force; e Output Color

Texture Fetch
Reading from memory
Texture Fetch

- L2 V]énﬂll

L-5

What we do in the inner loop?

Fer-eachater-{ For each fragment {

fetch atom i data

i_force = 0;

For each j atom in our neigborlist {
fetch atom j data
Calculate vectorial distance; dr = e
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r?)
Calculate potential and vectorial force
Subtract the force from the j atom force <« SCATTER
i_force += force;

Texture Fetch
Reading from memory
Texture Fetch

} Writing to memory

Store i_force; L= Output Color

H 21 Vlélhq

What we do in the inner loop?

Fer-each-+ater-{ For each fragment {

fetch atom i data

i_force = 0;

For each j atom in our neigborlist {
fetch atom j data
Calculate vectorial distance; dr = rer
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtractthe-force-fromrthej-atom-force—gem==———SCATTER-

i_force += force;

Texture Fetch
Reading from memory
Texture Fetch

} Writing to memory

Store i_force; L= Output Color

Perform each force computation twice

H 122 VIénﬁ‘l

Inner loop

C Version Cg Version
jnr = jinrikl; jnr = fltexlD (jjnr, k);
BERE el
ix = j = f3texl1D(pos, jnr);
v -
jz =
dx = d=4i-73
dy =
dz =

rsq = dot(d, d);
rinv = rsqrt(rsq);

iz -
rsq = dx*dx+dy*dy+dz*dz;
rinv = 1.0/sqrt (rsq) ;

rinvsg = rinverinv; rinvsg = rinverinv;
rinvsix = rinvsqrrinvsqrrinvsq; rinvsix = rinvsqrrinvsgrrinvsg;

t3A = ntiA+2*type[jnr]; tjA = ntiA+2*fltex1D(type, jnr);

vib6 = rinvsix*nbfp[tjA]; vib6 = rinvsix*fltexlD(nbfp, tjA);

vnbl2 = rinvsix*rinvsix*nbfp[tjA+l]; vnbl2 = rinvsix*rinvsix*fltexlD(nbfp, tjA+l);
vnbtot = vnbtot + vnbl2-vnbé; vnbtot = vnbot+vnbl2-vnbé;

qq = iqA*charge[jnr]; = igA * fltexlD(charge, jnr);
veoul = qgrrinv; ;
f£s = (twelve*vmbl2- f£s = (twelve*vnbl2-
six*vnbé+vcoul) *rinvsqg; six*vnbé+vcoul) *rinvsq;
vctot = vetot + veoul; vctot = vectot + vcoul;
tx = dx*fs; t =d=* fs;
ty = dy*fs;
tz = dz*fs;
= fix +
fiy = fiy + t©
- fiz + t

- L23 Vlélhu

Challenges

@ Scalar inner loop code
@ Solution: Perform 4 force calc per loop iteration
@ Duplicate force calculations
® Bad: 2x computation than CPU
@ Good: Much less bandwidth!!!
@ Don't have to output partial forces

@ Overall bandwidth much more expensive than
compute on GPUs

@ Inner loop unrolling
® 20 interactions before instruction limit

H L2 v1§"0‘l

Off-line to on-line to real-time ...

The Future: What’s Next for

G P U 2 1mo. 4100 time CoURtesy Frank Crow, Interval
S 1005 1297 Famatical
T week]
1 day
1005 Possible Teddy
Thr.
100 \ < e ‘j
1 min.)Q
§i6:8 Interacyikifchen Table 10 GI's
=
2 0F 3 B EF cemeeroome
s g - © 8 log performance
t..,:b John Owens
‘U’J Department of Electrical and Computer Engineering
[Courtesy of Crow/Hanrahan/Akeley]

Institute for Data Analysis and Visualization
University of California, Davis

S z
& mz \nsnﬂll

ViS04

Semiconductor Scaling Rates

Motivation: Computational Power

m

@ From: Digital Systems Engineering, Dally and Poulton

s
GPU

2002 2003

1980 2000 2001

e [Courtesy of Naga Govindaraju]

w a0l 93 S,

1
1007 1908

** |gnores multi-layer metal, 8-layers in 2001

DRAM “Memory Wall”
Speed Gap between DRAM and CPU

)

et F L]

© PU .

@ 1000 H p

3 60%/year &

S 100/ o

2 ' d Increasing

o ’ 4 The Gap

S 10] o

] . e

£ -:::.-...---".7%/year

1c__> TR ‘ ‘ DBAM ‘

[

o 80 85 90 95 00

Year
[Courtesy of Mark Horowitz, from Junji Ogawa 1998 presentation]

L)
[) 2
& v sy

Hardware Considerations

@ “Memory wall”
@ Continued migration of functionality onto GPU
@ Physics & simulation
@ Higher-level graphics functionality
@ Size of design teams
® Intel design teams increase in size 40% / generation
@ Validation for increasingly complex designs

@® Power ...

% " 504

Power Considerations

t

Sun’s
Surface

E
2
a
&
=

[Courtesy Bob Colwell]

53 " S0

Architecture/Microarchitecture

@® Current programming model:

@ MIMD for vertex processing

@® SIMD for fragment processing
@ Can we share units between the stages?
@ To what will the instruction sets converge?

@ Are these the only stages that will be
programmable?

@ How will the CPU interact with the GPU?

@ How can we extend to multiple GPUs and
multiple CPUs?

53 " iS04

Generalized Graphics Pipeline?

Future GPUs?

Object Space [appiipation | Texture Spaces @ Programmable stages
operate on primitives
(“process”)
[tessetation]
—— | e Torre ® Fragrnent, vertex programs Stream of X
image Space [rmmessmmy @ Hardwired or
— L programmable stages
r——— convert” one kind of
. o] primitive to another Stream
FB L oes @® Rasterization, composite of Y
@ Could define own pipelines!
Display @ Reyes, raytracing ...
[From Akeley and Hanrahan, Real-Time Graphics Architectures]
s Zl)n 3o 200
& " g4 i " ns04
Algorithms Tools and Programming Models

® Much to be done!
@ New/optimized stream algorithms
@ New features of graphics hardware
@® Move from kernels to applications
@ Scientific computation
@® Simulation (game physics?) + visualization
@ What will be first “killer app” on GPUs?
@® Ask for new features ...
® ... but don’t lose what gives the GPU high
performance

=y

s
N M
&

vuzsnﬂ‘*

@® CPU programmers have it easy!
@ Straightforward programming model
@ Many languages
@ Great compilers
@ Optimization tools
@ Debuggers
@ Profiling and performance tools
@ GPU: Long way to go
@ Vendors working hard to provide these (but targeted primarily at
games)
@ Active academic research

® Brook is a great start, but domain specific languages and
other design philosophies are needed

@ People who need these tools should help design them!

S w2 V]%“U‘I

What should we map to GPUs?

® Problems with high compute requirements
® Problems with regular structure

@® Problems with predictable communication
needs

@® Problems that require interaction with the
graphics system

@® Enormous opportunity at frontiers of

applications, software, and hardware!

s
R
J

&

M13 v]gl)nq

Backup slides

we S0y

International Technology Roadmap ’01

160

w0 I\
\\\ /
a—
" ~ P
60 \ /
«© \‘_ ,_-/'/
2 /
, ,
9000 / 3000
8000 /
o 2000 [~e~Signal
o — e
o
3000 / 1000
o
: .
2 2
GeoD
& M15 1}
v VIS

