
Aaron Lefohn

Institute for Data Analysis 

and Visualization

University of California, Davis

John Owens

Institute for Data Analysis 

and Visualization

University of California, Davis

Ian Buck

Graphics Lab

Stanford University

Robert Strzodka

Caesar Institute

Bonn, Germany



GPGPU: General Purpose Computation on Graphics Processors
IEEE Visualization 2004 Tutorial

October, 2004

Abstract

In the last three years, commodity graphics processors (GPUs) have evolved from fixed-function graphics units
into powerful data-parallel processors. These streaming processors are capable of sustaining computation rates of
greater than ten times that of a single CPU. Researchers in the evolving field of general-purpose computation on
graphics processors (GPGPU) have demonstrated mappings to these processors for a wide range of computationally
intensive tasks. Examples include ray tracing, molecular dynamics, and surface processing. This tutorial provides
a detailed introduction and overview of the GPGPU field to the visualization community. Attendees will gain an
understanding of modern GPU architecture, the GPGPU programming model, and the techniques and tools required
to apply GPUs to their own applications.

This tutorial will be of interest to the visualization community for several reasons. First, GPU acceleration of
partial differential equation solvers, 2D and 3D image processing, and physical simulations directly affects the visu-
alization community. Examples of this are the GPU-based interactive 3D segmentation algorithms published at IEEE
Visualization last year. Second, until recently visualization has primarily focused on exploration of pre-captured data.
The ability to perform GPGPU-based interactive simulation on a desktop PC, however, opens up a wealth of new
visualization research challenges. Lastly, despite recent advances in GPU programming languages, GPGPU prac-
titioners are predominantly graphics specialists. This tutorial presents the background, tools, and implementation
details required for researchers in other fields to leverage the computational power of GPUs.

The tutorial speakers are experts in the field of general-purpose computation on GPUs and streaming architec-
tures. They have presented papers, conference courses, and university courses on the topic at IEEE Visualization,
SIGGRAPH, Graphics Hardware, Stanford, UCDavis, and elsewhere.

Organizer

Aaron Lefohn University of California, Davis

Name of Speakers

Ian Buck Stanford University
Aaron Lefohn University of California, Davis
John Owens University of California, Davis
Robert Strzodka Caesar Institute, Bonn, Germany

Length

Full day

Level

Intermediate

1



Speaker Biographies

Ian Buck is a fifth year Ph.D. candidate in Computer Science at the Stanford University Graphics Lab researching
general-purpose computing models for GPUs. His research focuses on programming language design for graphics
hardware as well as general computing applications which map to graphics hardware architectures. His latest work
includes Brook, a general-purpose data-parallel programming language, and a complete compiler and runtime system
for compiling to programmable graphics hardware. Ian has given numerous talks on general-purpose computation
and is a speaker at the GPGPU course at ACM SIGGRAPH 2004. He received his B.S.E. in Computer Science from
Princeton University in 1999 and is a recipient of Stanford School of Engineering and NVIDIA fellowships.

Aaron Lefohn is a Ph.D. student in computer science at the University of California at Davis and a part-time graphics
software engineer at Pixar Animation Studios. His Ph.D. research focuses on general-purpose computation on graphics
hardware and high-quality interactive rendering. Aaron’s masters thesis research focused on the acceleration of level-
set deformable surface models using graphics hardware. He has given talks on the subject of general-purpose com-
putation on graphics hardware at SIGGRAPH, IEEE Visualization, MICCAI, IBM Watson Research, ATI, NVIDIA
and Pixar. Aaron completed an M.S. in computer science at the University of Utah in 2003, an M.S. in theoretical
chemistry from the University of Utah in 2001, and a B.A. in chemistry from Whitman College in 1997. Aaron is an
NSF graduate fellow in computer science.

John Owens is an assistant professor of electrical and computer engineering at the University of California, Davis,
where he leads projects in graphics hardware and sensor networks. He earned his Ph.D. in electrical engineering in
2003 from Stanford University, where he was an architect of the Imagine Stream Processor. His dissertation work
concentrated on graphics on stream architectures such as Imagine. He also holds a M.S. in electrical engineering
(Stanford University, 1997) and a B.S. in electrical engineering and computer sciences (University of California,
Berkeley, 1995).

Robert Strzodka is a fifth year Ph.D. candidate in Numerical Mathematics at the University Duisburg-Essen. He
was supported by a research fellowship of the German National Academic Foundation and received his diploma in
Mathematics with distinction from University Bonn in 1999. His research focuses on error analysis and efficient im-
plementation of PDE solvers on data-stream-based architectures including graphics cards, FPGAs and reconfigurable
computing machines. In 2000 he was among the first to demonstrate the efficient use of graphics hardware for PDE
based image processing. Currently he explores the enrichment of data stream processing with adaptive numerical
concepts.
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GPGPU Tutorial Schedule
Section 1: Introduction

8:30 Introduction and Tutorial Overview Lefohn A
9:00 A Data-Parallel Genealogy: The GPU’s family tree Owens B

Section 2: GPGPU Programming
9:30    The Programming Model Lefohn C
10:00 Break
10:30    GPGPU Programming Languages Buck D

Section 3: GPGPU Computational Primitives
11:20 Mathematical Primitives Strzodka E
12:15 Lunch
1:45 General Algorithmic Primitives Owens F

Section 4: “Getting Your Hands Dirty”
2:15 Data Formatting and Addressing Lefohn G
2:45 Computation Tips and Tricks Buck H
3:15 Developer Tools Strzodka I
3:45 Break

Section 5: Case Studies
4:15 Level-Set Surface Deformation Lefohn J
4:35 Advanced Image Processing Strzodka K
3:55 Ray Tracing and Molecular Dynamics Buck L

Section 6: Conclusions
5:15 The Future Owens M
5:30 Open Question and Answer All



A-1

Aaron Lefohn
Institute for Data Analysis 
and Visualization
University of California, Davis

John Owens
Institute for Data Analysis 
and Visualization
University of California, Davis

Ian Buck
Graphics Lab
Stanford University

Robert Strzodka
Caesar Institute
Bonn, Germany

Aaron Lefohn
Institute for Data Analysis and Visualization
University of California, Davis

Introduction and OverviewIntroduction and Overview
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Motivation
Challenge Statement

- GPGPU signifies the dawn of the data-parallel desktop computing age

Figure courtesy of Ian Buck, Stanford University
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Motivation: GPU Compute Power

Molecular Dynamics (Buck)

Level-Set Surface Deformation (Lefohn) Photon Mapping (Purcell)

Cloud Simulation (Harris)
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Tutorial Introduction
General-Purpose Computation on GPUs (GPGPU)

Modern GPUs can accelerate “appropriate“ algorithms >10x
Achieving this speedup currently requires a large amount of 
GPU-specific knowledge—We want to change this!

Tutorial goal
Give visualization researchers/engineers the knowledge and 
tools to leverage the computational power of the GPU

A6
GPGPU
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Tutorial Topics
What kinds of algorithms map well to GPUs?
Why are GPUs faster than CPUs?
GPGPU implementation details

Programming model
Basic building blocks
Nitty-gritty details
Real-world examples

The future of GPGPU

A7
GPGPU
Aaron Lefohn
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Motivation: Why GPGPU?
Beginning of data-parallel desktop computing age

GPUs are the first commodity, data-parallel architecture

Advatages of data-parallelism
GPUs are >10x faster than CPU for appropriate problems
GPU performance increasing faster than CPU performance

Advantages of commodity 
GPUs are inexpensive
GPUs are ubiquitous: Desktops, laptops, PDAs, cell phones
1980‘s data-parallel architectures cost millions of dollars
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GPGPU
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Motivation: Why GPGPU Now?
GPU feature set only recently matured

Programmability 2001
Read/write memory 2001
Floating point 2002
Conditional execution (?) 2004...

GPU evolution driven by computer game market

GPU power rapidly increasing
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Motivation: GPU Compute Power

Figure courtesy of Ian Buck
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Brief History of GPGPU
See http://www.gpgpu.org for a more complete history

1990 Lengyel Motion planning

1999 Hoff Voronoi diagrams

2000 Peercy Renderman with OpenGL

2001 Strzodka 2D PDE image processing

2002 Purcell / Carr Ray tracing
Harris Cellular automata

2003 Krueger / Boltz / Goodnight Linear algebra
Lefohn 3D level-set solver 
Rottger / Krueger Ray casting

2004 Govindaraju Database operations
Buck / McCool GPGPU languages

A11
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Brief History of GPGPU
Where are we now?

Transitioning from “What can we do” to “What should we do”
Examples

Lefohn et al., Univ. of Utah technical report 2002
Unpublished brute force solution gave no speedup

Buck et al., Siggraph 2004, BrookGPU Language
Clarifies GPGPU programming model

Fatahalian et al., Graphics Hardware 2004
Describes why matrix-matrix multiplication can never 
be fast on current GPUs
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Motivation: Why GPGPU Vis Tutorial?
Visualization community can benefit from GPGPU

2D and 3D image processing
Segmentation, registration, tone mapping, …

Simulation
New rendering algorithms
Interactive “Visulation”
Familiarity with graphics programming makes transition easier

Harnessing power of GPU is hard
Data-parallel algorithm mappings
Mapping from graphics primitives to compute primitives
Many performance pitfalls
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Tutorial Prerequisites
We assume

Basic knowledge of interactive graphics and graphics hardware 
Basic knowledge of vertex and fragment shaders

Target audience
Researchers interested in GPGPU
Engineers interested in GPU acceleration of their applications
Attendees wishing a survey of this exciting new field
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Tutorial Speakers (Alphabetical)
Ian Buck

Ph.D. student, Pat Hanrahan
Stanford University

Aaron Lefohn
Ph.D. student, John Owens
University of California, Davis
Graphics software engineer, Pixar Animation Studios

John Owens
Assistant professor, Electrical and Computer Engineering
University of California, Davis
Ph.D., Bill Dally and Pat Hanrahan, Stanford University

Robert Strzodka
Staff researcher, Caesar Institute, Bonn, Germany
Ph.D., Martin Rumpf, University of Duisburg
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Tutorial Schedule Overview
Morning

Introduction
GPU/data-parallel architecture overview
GPGPU programming model and languages
Computational building blocks

Afternoon
“Getting your hands dirty: Making it work”
Case studies
The future
Q&A
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Tutorial Schedule
Section 1: Introduction

8:30 Introduction and Tutorial Overview Lefohn
Motivation, introduction, and overview of the day

9:00 A Data-Parallel Genealogy: The GPU’s family tree Owens
Data-parallel architectures, stream processing, GPUs

Section 2: GPGPU Programming
9:30    The Programming Model Lefohn

Building computational primitives out of OpenGL calls

10:00 Break

10:30    GPGPU Programming Languages Buck
Beyond OpenGL: Data-parallel GPU languages
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Tutorial Schedule
Section 3: GPGPU Computational Primitives

11:20 Mathematical Primitives Strzodka
Linear algebra, PDEs, FEMs

12:15 Lunch

1:45 General Algorithmic Primitives Owens
Sorting, Searching
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Tutorial Schedule
Section 4: “Getting Your Hands Dirty”

2:15 Data Formatting and Addressing Lefohn
GPU memory model and data structures

2:45 Computation Tips and Tricks Buck
Performance tips, working around GPU limitations

3:15 Developer Tools Strzodka
Compiling, debugging, profiling

3:45 - 4:15 Break
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Tutorial Schedule
Section 5: Case Studies

4:15 Level-Set Surface Deformation Lefohn
Computation and visualization of dynamic, sparse PDEs

4:35 Advanced Image Processing Strzodka
Registration, segmentation, and skeletons

3:55 Ray Tracing and Molecular Dynamics Buck
Particle simulations and light transport

A20
GPGPU
Aaron Lefohn
University of California, Davis, USA

Tutorial Schedule
Section 6: Conclusions

5:15 The Future Owens
The future of commodity data-parallel computing

5:30 Open Question and Answer All
Q & A
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Coming Next…
“A Data-Parallel Genealogy: The GPU’s Family Tree”

John Owens 
Introduction to data-parallel and streaming architectures
The bigger picture of GPGPU
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AA DataData--Parallel GenealogyParallel Genealogy::

TheThe GPUGPU Family TreeFamily Tree

GPGPU
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Outline

Moore’s Law brings opportunity

Gains in performance …

… and capabilities.

What has 20+ years of development brought us?

How can we use those transistors?

Microprocessors?

Stream processors

Today’s commodity stream processor: the GPU

GPGPU

John Owens 

University of California, Davis, USA
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20 MIPS CPU

1987

The past: 1987

[courtesy Anant Agarwal]

GPGPU

John Owens 

University of California, Davis, USA
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1 Billion Transistors

2007

The future: 2007

[courtesy Anant Agarwal]
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Today’s VLSI Capability

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock
50pJ/FLOP

[courtesy Pat Hanrahan]
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Today’s VLSI Capability

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock
50pJ/FLOP

[courtesy Pat Hanrahan]

1. Exploits

Ample

Computation!
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John Owens
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Today’s VLSI Capability

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock
50pJ/FLOP

[courtesy Pat Hanrahan]

1. Exploits

Ample

Computation!

2. Requires

Efficient

Communication!

GPGPU
John Owens
University of California, Davis, USA
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SGI Historicals (Depth Buffered)

2.22.2

1.612M1.31000MInfiniteReality1996

2.02M1.8380MRealityEngine1992

3.6135K4.540MGTX1988

-0.8K-100KIris 20001984

Yr rateZTri rateYr rateZbuf rateProductYear

… yearly growth well above Moore’s Law!
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2.22.5

1.030M4.0500MNV201H01

1.531M1.6250MNV162H00

2.825M2.6200MGeForce21H00

2.815M2.6120MGeForce2H99

2.39M2.375MTNT21H99

4.06M2.650MRiva TNT2H98

1.03M2.431MRiva ZX1H98

-3M-20MRiva 1282H97

Yr rateTri rateYr rateFill rateProductSeason

… yearly growth well above Moore’s Law!

NVIDIA Historicals
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GPU History: Features

1982-87< 1982 1987-92

1992-2000 2000-

GPGPU

John Owens 
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Outline

Moore’s Law brings opportunity

Gains in performance …

… and capabilities.

What has 20+ years of development brought us?

How can we use those transistors?

Microprocessors?

Stream processors

Today’s commodity stream processor: the GPU

GPGPU

John Owens 

University of California, Davis, USA
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Characteristics of Our Applications

Lots of arithmetic

Lots of parallelism

Multiple stages

Simple control

Latency-tolerant / deep pipelines
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Microprocessors: A Solution?

Microprocessors address a 

different application space

Scalar programming model with 

no native data parallelism

Excel at control-heavy tasks

Not so good at data-heavy, 

regular applications

Few arithmetic units – little area

Optimized for low latency not

high bandwidth

Pentium III – 28.1M T

GPGPU

John Owens 

University of California, Davis, USA
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Stream Programming Abstraction

Let’s think about our problem 
in a new way

Streams
Collection of data records

All data is expressed in streams

Kernels
Inputs/outputs are streams

Perform computation on 
streams

Can be chained together

kernel

streamstream

streamstream

GPGPU

John Owens 

University of California, Davis, USA
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Why Streams?

Ample computation by exposing parallelism

Streams expose data parallelism

Multiple stream elements can be processed in parallel

Pipeline (task) parallelism

Multiple tasks can be processed in parallel

Efficient communication

Producer-consumer locality

Predictable memory access pattern

Optimize for throughput of all elements, not latency of one

Processing many elements at once allows latency hiding

High arithmetic intensity

GPGPU

John Owens 

University of California, Davis, USA
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Application

Geometry

Rasterization

Fragment

Composite

Display

Command

Graphics Apps are Stream Apps

Lots of arithmetic

Lots of parallelism

Multiple stages

Feed forward pipelines

Latency-tolerant / deep 

pipelines
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Taxonomy of Streaming Processors

In common:

Exploit parallelism for high computation rate

Each stage processes many items in parallel (d.p.)

Several stages can run at the same time (t.p.)

Efficient communication

Minimize memory traffic

Optimized memory system

What’s different?

Mapping of processors to tasks in graphics pipeline

GPGPU

John Owens 

University of California, Davis, USA
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Stream Processors

Fewer compute units than tasks

“Time multiplexed” organization

Each stage fully programmable

Stanford Imagine

32b stream processor for image and signal 

processing (2001)

Stanford Merrimac

64b stream processor for scientific 

computing (2004)

Core of Stanford Streaming 

Supercomputer

Challenge:

Efficiently mapping all tasks to one 

processor - no specialization Network
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[Stanford Imagine - 2001]

[Stanford Merrimac - 2004]
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SMEM

SWITCH
PC

DMEMIMEM

REGPC

FPU

ALU

§ More processors than tasks

§ MIT RAW, IBM Cell

§ Each tile is programmable

§ Streams connect tiles

§ “Task parallel” organization

§ Lots of ALUs and registers

§ Short, programmable wires

§ Challenge: Software support

Tile

MIT RAW: Tiled Processor Architecture

[courtesy Anant Agarwal]

GPGPU
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GPU: Special-Purpose Graphics Hardware

Task-parallel 

organization

Each module hardwired 

to specific task - huge 

performance advantage!

Provides ample 

computation resources

Efficient communication 

patterns

Dominant graphics 

architecture

[ATI Flipper – 51M T]
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Today’s Graphics Pipeline

Application

Command

Composite

Geometry

Rasterization

Fragment

Display

Graphics is well suited to:
The stream programming model

Stream hardware organizations

Especially GPUs!

What if we could apply these 
techniques to more general-
purpose problems?

On appropriate problems, 
hardware with 

ample computation and

efficient communication

should excel!

What’s missing?

GPGPU

John Owens 

University of California, Davis, USA
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The Programmable Pipeline

Application

Command

Composite

Geometry

Rasterization

Fragment

Display

Triangle Setup

L2 Tex

Shader Instruction Dispatch

Fragment Crossbar

Memory

Partition

Memory

Partition

Memory

Partition

Memory

Partition

Z-Cull

[GeForce 6800, courtesy NVIDIA]

GPGPU

John Owens 
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Conclusions

Adding programmability to GPUs is exciting!
GPUs have great performance

Computation & communication

Programmability allows them to address many 
interesting problems

Many challenges remain …
Algorithms, programming models, architecture, 
languages, tools …

Next speaker:
Aaron Lefohn

“The GPGPU Programming Model”
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The GPGPU Programming ModelThe GPGPU Programming Model

GPGPU
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C2

Overview
Data-parallel programming basics
The GPU as a data-parallel computer
“Hello World” GPGPU Example
Emulating missing functionality
Conclusions

GPGPU
Aaron Lefohn
University of California, Davis, USA

C3

Data-Parallel Programming Basics
Serial programming of loops

Instructions and data access are intermixed

forEach data element, i

executeLoopBody(i)

Data-parallel programming
Separate specification of data and instructions

dataStream = specifyAllData()

kernel = specifyLoopBody()

forEach( dataStream, kernel )

GPGPU
Aaron Lefohn
University of California, Davis, USA

C4

Explicit Data-Parallelism
Why write explicitly data-parallel programs?

Instructions stay fixed while data streams past
Independent computations on each data element

“forEach“ call is parallelizable
Hide cost of memory access with parallelism
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GPU as a Data-Parallel Computer
Data specification Textures
Kernel specification Fragment program
forEach execution Draw single large quad

Write Data To 
Texture

Load 
Fragment 
Program

Configure 
OpenGL for 

1:1 Rendering

Draw Large 
Quad

Bind Textures

Bind Fragment 
Program

Write 
results to 

texture

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Computational Primitives
Operations available in kernel

Read-only memory (input streams) Texture sampler
Random access read-only (gather) Texture sampler
Per-data-element interpolants Varying registers
Temporary storage (no saved state) Local registers
Read-only constants Constant registers
Write-only memory (result streams) Render-to-texture
Floating-point ALUops

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Computational Primitives
What‘s missing?

No stack
No heap
No integer or bitwise operations
No scatter (a[i] = b)
No reduction operations (max, min, sum)
Data-dependent conditionals

Why missing?
Parallelism, parallelism, parallelism
Lack of demand from games
Early in GPU evolution as general data-parallel processor

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Computational Primitives
Handling missing features

We‘ll explain how to emulate
Scatter
Global (reduction) operations
Conditionals
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“Hello World“ GPGPU Example
3 x 3 Image processing convolution
CPU version

image = loadImage( WIDTH, HEIGHT );

blurImage = allocZeros( WIDTH, HEIGHT );

for (x=0; x < WIDTH; x++)

for (y=0; y < HEIGHT; y++)

for (i=-1; i <= 1; i++) 

for (j=-1; j <= 1; j++) 

float w = computeWeight(i,j);

blurImage[x][y] += w * image[x+i, y+j];

GPGPU
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
GPU Version
1) Load image into texture

Figure courtesy of Mark Harris

2) Create blurImage texture to hold result

GPGPU
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
GPU Version
3) Load fragment program (kernel)

Example shown in Cg

float4 blurKernel( uniform samplerRECT image, 
float2      winPos : WPOS,
out float4  blurImage ) 

{
blurImage = float4(0,0,0,0);

for (i=-1; i <= 1; i++) {
for (j=-1; j <= 1; j++) {

float2 texCoord = winPos + float2(i,j);
float  w        = computeWeight(i,j);
blurImage += w * texRECT( image, texCoord );

}
}

}

GPGPU
Aaron Lefohn
University of California, Davis, USA

C12

“Hello World“ GPGPU Example
GPU Version
4) Configure OpenGL to draw 1:1

No projection or rescaling

glMatrixMode( GL_PROJECTION );

glLoadIdentity();

gluOrtho2D(0, 1, 0, 1);

glViewport(0, 0, WIDTH, HEIGHT );

glMatrixMode( GL_MODELVIEW ); 

glLoadIdentity();

5) Bind image and blurKernel (texture and fragment program)
6) Bind blurImage as render target
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“Hello World“ GPGPU Example
GPU Version
7) Execute kernel on each stream element

Draw quad of size [WIDTH x HEIGHT]

glBegin( GL_TRIANGLES );

glVertex2f(0, 0);

glVertex2f(2, 0);

glVertex2f(0, 2);

glEnd();

0 2

2

1

1

GPGPU
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
What happened?

blurKernel executed on each element of image
Rendering replaced outer two loops of CPU version

blurKernel performed gather operation at each element

Result (blurImage) was written to framebuffer / texture

GPGPU
Aaron Lefohn
University of California, Davis, USA
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“Hello World“ GPGPU Example
Get the source code for GPGPU examples

http://www.gpgpu.org/developer/

http://download.nvidia.com/developer/SDK/Individual_Samples/samples.html
gpgpu_fluid
gpgpu_disease
gpu_particles

http://www.ati.com/developer/sdk/RadeonSDK/Html/Samples/OpenGL/
HW_Image_Processing.html

GPGPU
Aaron Lefohn
University of California, Davis, USA

C16

Emulating Scatter
Scatter

i = foo();
a[i] = bar();

Solution 1
Transform scatter algorithm into gather algorithm
See Ian‘s “Tips and Tricks“ for more details

Solution 2
Do actual scatter
Vertex processor can scatter points

Render points instead of large triangle
Render-to-texture with vertex-texture-reads (PS 3.0)
Or render-to-vertex-array

Problem
Drawing a point for each data element is slow
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Emulating Reduction Operations
Reductions

Operations that require all data elements
max, min, sum, norm, etc.

Solution
Perform repeated gathers until only single data value left
log( WIDTH ) gather operations (assuming WIDTH == HEIGHT)

Problem
Extra passes can be costly

Cloud figure courtesy of Mark Harris
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Conditionals In a Data-Parallel World
Data-parallel execution and conditionals are at 
odds

Ideal data-parallel model assumes all data elements 
processed identically
Conditional execution breaks this assumption

Solutions
1) Statically resolve conditional with substreams
2) Occlusion query
3) Early z-culling
4) Better hardware?

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Conditionals in a Data-Parallel World
Solutions
1) Can decision be made before fragment processor?

Static branch resolution with substreams

Trick “discovered” by Lefohn, Harris, and Goodnight 
Simultaneously in 2003

Figure courtesy of Mark Harris

GPGPU
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Conditionals in a Data-Parallel World
Solution
2) Occlusion query

Idea
Occlusion query reports the number of fragments that 
passed the depth test
Useful when number of loop iterations is data-dependent
Kernel kills fragments that do not need further processing
CPU continues to issue render until all fragments are killed
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Conditionals in a Data-Parallel World
Solution
3) Early depth cull

Idea
Modern GPUs can kill fragments before kernel execution
Kernel sets z-value to control whether or not execution 
occurs

Problem
Conditionals must be block-coherent
More about this in Ian‘s “Tips and Tricks“ talk

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Conditionals in a Data-Parallel World
Solution
4) Better hardware?

MIMD hardware
NVIDIA GeForce 6-series (NV4x) vertex processors

SIMD-with-conditional-support
NVIDIA GeForce 6-series (NV4x) fragment processor
Uniform branches are a win if more than ~5 instructions
Varying branches must be coherent across hundreds of pixels

Only 10s x 10s pixels—Very useful in many cases

Problem
Do we want more SIMD processors or fewer MIMD processors?

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Conditionals in a Data-Parallel World
Conclusions

Conditionals are tough with today‘s GPUs
Best case is when conditional can be staticaly resolved 
and removed from computational kernel

Future GPUs will most likely fully support conditionals
Solution must not interfere with parallelism
MIMD?
SIMD with “Conditional Streams?”

Kapasi et al., Micro 33, 2000
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Conclusions
GPGPU computational basics

Textures Storage for data streams
Fragment program Computational kernel
Render pass forEach loop over data stream

Coming next...
Ian Buck
Data-parallel languages for GPGPU programming

Express data-parallel programs more elegantly than 
glBegin()...glEnd()
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Modern Graphics Pipeline

Vertex 
Buffer

Vertex 
Processor Rasterizer Fragment

Processor

Texture Buffer

Frame
Buffer(s)

PS3.0 GPUs
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GPGPU Languages
Why do want them?

Make programming GPUs easier!
Don’t need to know OpenGL, DirectX, or ATI/NV extensions
Simplify common operations
Focus on the algorithm, not on the implementation

Sh
University of Waterloo
http://libsh.sourceforge.net
http://www.cgl.uwaterloo.ca

Brook
Stanford University
http://brook.sourceforge.net
http://graphics.stanford.edu/projects/brookgpu
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Sh Features
Implemented as C++ library

Use C++ modularity, type, and 
scope constructs
Use C++ to metaprogram shaders 
and kernels
Use C++ to sequence stream 
operations

Operations can run on 
GPU in JIT compiled mode
CPU in immediate mode
CPU in JIT compiled mode

Can be used 
To define shaders
To define stream kernels

No glue code
To set up a parameter, just 
declare it and use it
To set up a texture, just declare it 
and use it

Memory management
Automatically uses pbuffers 
and/or uberbuffers
Arrays simulated with textures 
Textures can encapsulate 
interpretation code
Programs can encapsulate 
texture data

Program manipulation
Introspection
Uniform/varying conversion
Program specialization
Composition & concatenation
Interface adaptation

Free and Open Source
http://libsh.sourceforge.net

GPGPU
Ian Buck
Stanford University
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Sh Fragment Shader
fsh = SH_BEGIN_PROGRAM("gpu:fragment") {

ShInputNormal3f nv;       // normal (VCS)
ShInputVector3f lv;       // light-vector (VCS)
ShInputVector3f vv;       // view vector (VCS)
ShInputColor3f ec;        // irradiance
ShInputTexCoord2f u;      // texture coordinate

ShOutputColor3f fc;       // fragment color      

vv = normalize(vv);
lv = normalize(lv);
nv = normalize(nv);
ShVector3f hv = normalize(lv + vv); 
fc = kd(u) * ec; 
fc += ks(u) * pow(pos(hv|nv), spec_exp);

} SH_END;
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Streams and Channels
ShChannel<element_type>

Sequence of elements of given type
ShStream

Sequence of channels
Combine channels with &:
ShStream s = a & b & c;

Refers to channels, does not copy
Single channel also a stream

Apply programs to streams with <<
ShStream t = (x & y & z);

s = p << t;

(a & b & c) = p << (x & y & z);

GPGPU
Ian Buck
Stanford University
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Stream Processing: Particles
// SETUP (define particle state update kernel)
p = SH_BEGIN_PROGRAM("gpu:stream") {

ShInOutPoint3f Ph, Pt;
ShInOutVector3f V; 
ShInputVector3f A;
ShInputAttrib1f delta;
Pt = Ph;
A = cond(abs(Ph(1)) < 0.05, 

ShVector3f(0.,0.,0.), A);
V += A * delta;
V = cond((V|V) < 1., 

ShVector3f(0., 0., 0.), V);
Ph += (V + 0.5*A)*delta;
ShAttrib1f mu(0.1), eps(0.3);
for (i = 0; i < num_spheres; i++) {

ShPoint3f C = spheres[i].center;
ShAttrib1f r = spheres[i].radius;
ShVector3f PhC = Ph - C;
ShVector3f N = normalize(PhC);
ShPoint3f S = C + N*r;
ShAttrib1f collide =

((PhC|PhC) < r*r)*((V|N) < 0);
Ph = cond(collide, 

Ph - 2.0*((Ph - S)|N)*N, Ph); 
ShVector3f Vn = (V|N)*N; 
ShVector3f Vt = V - Vn;
V = cond(collide, 

(1.0 - mu)*Vt - eps*Vn, V);

}

ShAttrib1f under = Ph(1) < 0.; 
Ph = cond(under, 

Ph * ShAttrib3f(1.,0.,1.), Ph);
ShVector3f Vn = 

V * ShAttrib3f(0.,1.,0.);
ShVector3f Vt = V - Vn;
V = cond(under, 

(1.0 - mu)*Vt - eps*Vn, V);
Ph(1) = cond(min(under,(V|V)<0.1),

ShPoint1f(0.), Ph(1));
ShVector3f dt = Pt - Ph; 
Pt = cond((dt|dt) < 0.02, Pt + 

ShVector3f(0.0, 0.02, 0.0), Pt);
} SH_END;

// define state stream
ShStream state = 

(pos & pos_tail & vel);
// curry p with state and parameters
ShProgram update = 

p << state << gravity << delta;

...

// IN INNER LOOP
// execute state update (input to update is compiled in)
state = update;

GPGPU
Ian Buck
Stanford University
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Stream Processing: Particles

GPGPU
Ian Buck
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Brook
Stream programming model

GPU = streaming coprocessor
C with stream extensions
Cross platform

ATI & NVIDIA
OpenGL & DirectX
Windows & Linux
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Streams
Collection of records requiring similar 
computation

particle positions, voxels, FEM cell, …

Ray r<200>;

float3 velocityfield<100,100,100>;

Similar to arrays, but…
index operations disallowed:       position[i]
read/write stream operators
streamRead (r, r_ptr);

streamWrite (velocityfield, v_ptr);

GPGPU
Ian Buck
Stanford University

D10

Kernels
Functions applied to streams

similar to for_all construct
no dependencies between stream elements

kernel void foo (float a<>, float b<>,
out float result<>) {

result = a + b;
}

float a<100>;
float b<100>;
float c<100>;

foo(a,b,c); for (i=0; i<100; i++)
c[i] = a[i]+b[i];

GPGPU
Ian Buck
Stanford University
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Kernels
Kernel arguments

input/output streams

kernel void foo (float a<>,

float b<>,

out float result<>) {

result = a + b;

}

GPGPU
Ian Buck
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D12

Kernels
Kernel arguments

input/output streams
gather streams

kernel void foo (..., float array[] ) {

a = array[i];

}
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Kernels
Kernel arguments

input/output streams
gather streams
iterator streams

kernel void foo (..., iter float n<> ) {

a = n + b; 

}

GPGPU
Ian Buck
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Kernels
Kernel arguments

input/output streams
gather streams
iterator streams
constant parameters

kernel void foo (..., float c ) {

a = c + b; 

}

GPGPU
Ian Buck
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Kernels
Ray triangle intersection
kernel void krnIntersectTriangle(Ray ray<>, Triangle tris[],

RayState oldraystate<>, 
GridTrilist trilist[],
out Hit candidatehit<>) {

float idx, det, inv_det;
float3 edge1, edge2, pvec, tvec, qvec;
if(oldraystate.state.y > 0) {
idx = trilist[oldraystate.state.w].trinum;
edge1 = tris[idx].v1 - tris[idx].v0;
edge2 = tris[idx].v2 - tris[idx].v0;
pvec = cross(ray.d, edge2);
det = dot(edge1, pvec);
inv_det = 1.0f/det;
tvec = ray.o - tris[idx].v0;
candidatehit.data.y = dot( tvec, pvec ) * inv_det;
qvec = cross( tvec, edge1 );
candidatehit.data.z = dot( ray.d, qvec ) * inv_det;
candidatehit.data.x = dot( edge2, qvec ) * inv_det;
candidatehit.data.w = idx;

} else {
candidatehit.data = float4(0,0,0,-1);

}
}

GPGPU
Ian Buck
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Reductions
Compute single value from a stream

associative operations only

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<100>;
float r;

sum(a,r); r = a[0];
for (int i=1; i<100; i++)

r += a[i];
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Reductions
Multi-dimension reductions 

stream “shape” differences resolved by reduce 
function   

reduce void sum (float a<>,
reduce float r<>)

r += a;
}

float a<20>;
float r<5>;

sum(a,r); for (int i=0; i<5; i++)
r[i] = a[i*4];
for (int j=1; j<4; j++)

r[i] += a[i*4 + j];

GPGPU
Ian Buck
Stanford University
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Stream Repeat & Stride
Kernel arguments of different shape

resolved by repeat and stride
kernel void foo (float a<>, float b<>,

out float result<>);

float a<20>;
float b<5>;
float c<10>;

foo(a,b,c);

foo(a[0],  b[0], c[0])
foo(a[2],  b[0], c[1])
foo(a[4],  b[1], c[2])
foo(a[6],  b[1], c[3])
foo(a[8],  b[2], c[4])
foo(a[10], b[2], c[5])
foo(a[12], b[3], c[6])
foo(a[14], b[3], c[7])
foo(a[16], b[4], c[8])
foo(a[18], b[4], c[9])

GPGPU
Ian Buck
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Matrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

M
V

V
V

T=
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Matrix Vector Multiply
kernel void mul (float a<>, float b<>,

out float result<>) {
result = a*b;

}

reduce void sum (float a<>,
reduce float result<>) {

result += a;
}

float matrix<20,10>;
float vector<1, 10>;
float tempmv<20,10>;
float result<20, 1>;

mul(matrix,vector,tempmv);
sum(tempmv,result);

RT sum
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System Outline

brcc
Source to source compiler

Generate CG & HLSL code
CGC and FXC for shader assembly
Virtualization

brt
Brook run-time library

Stream texture management
Kernel shader execution

GPGPU
Ian Buck
Stanford University
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Running Brook

Compiling .br files
Brook CG Compiler
Version: 0.2  Built: Apr 24 2004, 18:11:59
brcc [-hvndktyAN] [-o prefix] [-w workspace] [-p shader ] foo.br

-h              help (print this message)
-v              verbose (print intermediate generated code)
-n              no codegen (just parse and reemit the input)
-d              debug (print cTool internal state)
-k              keep generated fragment program (in foo.cg)
-t              disable kernel call type checking
-y              emit code for ATI 4-output hardware
-A              enable address virtualization (experimental)
-N              deny support for kernels calling other kernels
-o prefix           prefix prepended to all output files
-w workspace   workspace size (16 - 2048, default 1024)
-p shader          cpu / ps20 / fp30 / cpumt (can specify multiple)
-f compiler        favor a particular compiler (cgc / fxc / default)

GPGPU
Ian Buck
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Eliminating GPU Limitations
Treating texture as memory

Limited texture size and dimension
Compiler inserts address translation code

float matrix<8096,10,30,5>;

GPGPU
Ian Buck
Stanford University
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Eliminating GPU Limitations
Extending kernel outputs

duplicate kernels, let cgc or fxc do dead code elimination
better solution:
"Efficient Partitioning of Fragment Shaders for Multiple-Output Hardware”

Tim Foley, Mike Houston, and Pat Hanrahan

"Mio: Fast Multipass Partitioning via Priority-Based Instruction Scheduling"
Andrew T. Riffel, Aaron E. Lefohn, Kiril Vidimce, Mark Leone, and John 

D. Owens
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Running Brook
BRT_RUNTIME selects platform

CPU Backend:
BRT_RUNTIME = cpu

OpenGL ARB Backend:
BRT_RUNTIME = arb

DirectX9 Backend:
BRT_RUNTIME = dx9

GPGPU
Ian Buck
Stanford University
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Runtime
Accessing stream data for graphics aps

Brook runtime api available in C++ code
autogenerated .hpp files for brook code

brook::initialize( "dx9", (void*)device );

// Create streams
fluidStream0 = stream::create<float4>( kFluidSize, kFluidSize );
normalStream = stream::create<float3>( kFluidSize, kFluidSize );

// Get a handle to the texture being used by
// the normal stream as a backing store
normalTexture = (IDirect3DTexture9*)

normalStream->getIndexedFieldRenderData(0);

// Call the simulation kernel
simulationKernel( fluidStream0, fluidStream0, controlConstant,           

fluidStream1 );

GPGPU
Ian Buck
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Applications

Ray-tracer

FFT edge detect

Segmentation

SAXPY

SGEMV

Linear algebra
GPGPU
Ian Buck
Stanford University
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Performance
Compared against:
• Intel Math Library
• Atlas Math Library
• cached blocked segmentation
• FFTW
• Wald ['04] SSE Ray-Triangle

SAXPY Segment SGEMV FFT Ray-tracer
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Understanding Performance

GPU wins when…
limited data reuse

SAXPY
FFT

Pentium 4 3.0 GHz
44 GB/sec peak cache bandwidth

NVIDIA GeForce 6800 Ultra
36 GB/sec peak memory bandwidth

SAXPY FFT
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Understanding Performance

GPU wins when…
Arithmetic intensity

Segment
3.7 ops per word
SGEMV
1/3 ops per word

Segment SGEMV
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Efficiency
Brook version within 80% of hand-coded GPU 

version

ATI
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Brook for GPUs
Release v0.3 available on Sourceforge
Project Page

http://graphics.stanford.edu/projects/brook
Source

http://www.sourceforge.net/projects/brook
Over 6K downloads!
Brook for GPUs: Stream Computing on Graphics Hardware 
SIGGRAPH 2004
Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, 

Mike Houston, Pat Hanrahan

Fly-fishing fly images from The English Fly Fishing Shop
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Overview

Mathematical GPU Functionality

Partial Differential Equations (PDEs)
Examples
Time and Space Discretization
Local and Global Operations
Matrix Vector Product
Gather – Scatter

Advanced Topics
Discretization Grids
Discretization Schemes
Quantization
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GPU as a Data-Parallel Computer

Data specification Textures
Kernel specification Fragment program
General execution Draw single large quad

Write Data To 
Texture

Load 
Fragment 
Program

Configure 
OpenGL for 

1:1 Rendering

Draw Large 
Quad

Bind Textures

Bind Fragment 
Program

Write 
results to 

texture

slide from ‘The GPGPU Programming ModelThe GPGPU Programming Model’’

presentation by Aaron Lefohn
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Fragment Processor Functionality as 
seen from a High Level Language

Float data types:
16-bit & 32-bit (NVIDIA), 24-bit (ATI)

Vectors, structs and arrays:
float4, float vec[6] , float3x4, float arr[10][20], struct {}

Arithmetic and logic operators: 
+, -, *, /;     &&, ||, !

Trignonometric, exponential functions:
sin, asin, exp, log, pow, …

User defined functions
max3(float a, float b, float c) { return max(a,max(b,c)); }

Conditional statements by predication, unrollable loops:
if, for, while, dynamic branching in PS3

Arbitrary texture positions can be accessed
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Overview

Mathematical GPU Functionality

Partial Differential Equations (PDEs)
Examples
Time and Space Discretization
Local and Global Operations
Matrix Vector Product
Gather – Scatter

Advanced Topics
Discretization Grids
Discretization Schemes
Quantization
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PDE Examples

cloud dynamics

boiling

fluid
dynamics

images courtesy

of Mark Harris
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PDE Examples

visualization

image
processing

images courtesy of

Marc Droske, Tobias Preusser
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satisfies which ,),(:),(function  aseek  We dmtxu ℜ⊆Ωℜ→ℜΩ +

We distiguish between linear u and non-linear v dependencies in F[u,v]

A Common PDE Model

0],[ =+∂ uuFut Ω×ℜ+inPDE

0)0( uu = Ωininitial value

Dbu = Ω∂×ℜ+onboundary Nbu =∂ν or

∑
=

∂

∂−=∆−=
d

k
x

v

k
vvuF

1
2

2

:],[linear diffusion equation: 

( )vugvuF ∇∇−= ||)(||div],[ σnon-linear diffusion equation:

Theory and numerical analysis of PDEs are extensive subjects. There are many other PDE types, 
discretization methods and in general approaches than presented in the following slides.
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Denoising by a linear and a non-linear
diffusion process

linear
diffusion

non-linear
diffusion
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Diffusion Example - PDE

ℜ→ℜΩ→Ω + ),(:unknown   ],1,0[:image Initial 0 uu

( ) 0)(div =∇∇−∂ uuGut σ Ω×ℜ+in

0)0( uu = Ωin
0=∂ uν Ω∂×ℜ+on

g(x)

x

• linear

• isotropic non-linear

• anisotropic

1:)( =vG

scalar  ||)(||:)( vgvG =

( ) )()(:)( ||)(||20
0||)(||1 vBvBvG vg

vgT=
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Time Discretization

Explicit
New solution can be computed directly from the previous one.
Strong restrictions on the time step width.

],[1 nnnnn uuFuu τ−=+

Semi-implicit
A linear equation solver suffices to obtain the new solution.
Time step restrictions depend on the problem, often none.

nnnnn uuuFu =+ ++ ],[ 11 τ

In any case we obtain a discrete sequence of results { } .Ν∈n
nu

Implicit
A non-linear solver must be used to obtain the solution.
The time step width is not restricted. 

nnnnn uuuFu =+ +++ ],[ 111 τ

0],[ =+∂ uuFut 0],[ ??
1

=+−→
+

uuFuu
n

nn

τ
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Space Discretization

Linear operations translate into matrix-vector products
nn UAu ⋅→∆

Continuous

],[,, nnnn vuFuu ∇Ω

Discrete

],[,, nn
h

n
h

n VUFUU ∇hΩ

� Transition �

Non-linear operations become multi-dimensional functions
on the vector components ( )αα )(][ n

h
n UFuF →

The discrete function     can be represented by a vector
which contains the values at the grid nodes .

nU
h

nU Ω∈αα )(
hΩ
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Diffusion Example - Discretization

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝
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)1,0(
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( )αααα
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X
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⎟
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⎞
⎜
⎜
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⎛
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⎞
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⎝

⎛
++ )1,0()0,1(

1:div

)0,1(+αV
αV)0,1(−αV

( )αVh
x∂ ( ) )0,1(+∂ αVh

x

( )VUG
Y
X

h
n

h ∇∇=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(: σ

( )( )
αY

X
hdiv

( )αX ( ) )0,1(+αX

( ) 0)(div =∇∇−∂ uuGut σcontinuous model

( ) nnnnn uuuGu =∇∇− ++ 11 )(div στtime disc. (semi-implicit)

( ) nn
h

n
hh

nn UUUGU =∇∇− ++ 11 )(div στspace disc. (Finite Differences)
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nnn
h

nn UUULU =⋅∇− ++ 11 ][τ

Diffusion Example – Linear Algebra

( ) nn
h

n
hh

nn UUUGU =∇∇− ++ 11 )(div στ

][:][,][ 1 n
h

nn
h

nnn
h ULUAUUUA ∇−=∇=⋅∇ + τ1

Typical situation in semi-
implicit schemes

Matrix A depends non-
linearly on explicit data

Linear equation system
must be solved

Solvers on GPUs have similar 
requirements as on parallel computers

Parallel processing of matrix entries

No direct write-read-modify cycles

Examples: Jacobi solver, conjugate 
gradient, block-SOR
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Local Gather Operation

Step n Step n+1

( )
C

nV
≤−αββ

1+nVα

( )( )
C

n
h VF

≤−αββ

nVα

∑
≤− C

nVA
αββ

ββα
:

,
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Global Gather Operation

kVα( ) k
kV

γββ ∈

∑
∈ k

kVA
γβ

ββα ,

( )( )k
k

h VF
γββ ∈
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Matrix Vector Product on GPUs

Pure matrix vector product is bandwidth bound on GPU
Number of processing elements against bandwidth increases 
Try to occupy the many processing elements with computations

Three possibilities for a matrix vector product A·V if A
depends on some data and must be computed itself

On-the-fly: compute entries of A for each A·V appliction
Lowest memory requirement
Good for simple entries or seldom use of A 

Partial assembly: apply A on-the-fly with some precomputed results
Allows to balance computation and bandwidth requirements 
Good choice of precomputed results requires also little memory

Full assembly: precompute all entries of A, use these in A·V 
Good if other computations hide bandwidth problem in A·V 
Otherwise try to use partial assembly

GPGPU
Robert Strzodka
caesar research center
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Diffusion Example – Matrix Vector 
Product

( ) ( )VUGVVULVUA h
n

hh
nn

h
nn

h ∇∇−=⋅∇−=⋅∇ )(div][:][ σττ1
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−
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=∇
−
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)1,0(

)0,1(1:
αα

αα
α VV

VV
h

Vh

)0,1(+αV
αV)0,1(−αV

( )αVh
x∂ ( ) )0,1(+∂ αVh

x

( )αααα

α

YYXX
hY

X
h −+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ )1,0()0,1(

1:div
( )( )

αY
X

hdiv

( )αX ( ) )0,1(+αX

( )VUG
Y
X

h
n

h ∇∇=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(: σ

Partial Assembly: Precompute
Perform                    on-the-fly

)( n
hUG σ∇
VUA n

h ⋅∇ ][
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Matrix Assembly

Avoid assembling dense matrices
A dense matrix for a 1000x1000 grid has 1T=1000G entries
In practice most matrices are sparse

Local gather operations produce band matrices
Each band (corresponding to a stencil position) requires one 
vector for storage, e.g. 9 vectors for a general 3x3 stencil
Stencil values are often symmetric, separable or have other 
intrinsic structure, which reduces the storage requirements

Exploit patterns in global gather operations
For simple entries store only their geometry
Consider the gather - scatter interchangability

GPGPU
Robert Strzodka
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Gather - Scatter

Interaction types between node values (vector components)

Both types are interchangeable in matrix vector products
Easy conversion if gather and scatter positions are static

Dynamic gather is ok for GPU, dynamic scatter rather slow

ββαα
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)(:
)(
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VAVA

=
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images courtesy
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Object recoginition by the Generalized 
Hough Transform

original
image edge

image

first
detected
cube

second
detected
cube
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ikl ,ikl ,

Generalized Hough Transform

Store pose k
as a list of
offset vectors ikl ,

||/ kkk l(x,y)C (x,y)C =∑
=

++=
||

1

,,edge ),
kl

i

ik
y

ik
x

k lyl(xI (x,y)C

Draw 
image
with
offsets

normalize
the result

Generate
poses
of different
perspective
and scale
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Overview

Mathematical GPU Functionality

Partial Differential Equations (PDEs)
Examples
Time and Space Discretization
Local and Global Operations
Matrix Vector Product
Gather – Scatter

Advanced Topics
Discretization Grids
Discretization Schemes
Quantization

GPGPU
Robert Strzodka
caesar research center
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Discretization Grids on GPUs

Deformed tensor grid
Parallel dynamic updates

One texture for values
second for deformation

An equidistant grid
Easy to implement

One texture holds all values

Unstructured grid
Good performance for static, 

poor for dynamic grid topology

Several indirections are needed
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Discretization Schemes

Finite Differences
Interpolative approach: simple and fast

Usually interaction with direct neighbors

Finite Volumes
Volumetric approach: mass conservation

Good at discontinuities, less for smooth data

Interaction over element boundaries

Finite Elements
Approximative approach: error minimization

Good handling of deformed, unstructured grids

Interaction of basis functions (all neighbors)

GPGPU
Robert Strzodka
caesar research center
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Quantization

Roundoff examples for the float s23e8 format

additive roundoff a= 1 + 0.00000004 =fl 1
multiplicative roundoff b= 1.0002 * 0.9998 =fl 1
cancellation c=a,b (c-1) * 108 =fl 0

Cancellation promotes the small error 0.00000004
to the absolute error 4 and an infinite relative error.

Order of operations can be crucial:
1 + 0.00000004 – 1=fl 0
1 – 1 + 0.00000004=fl 0.00000004

Cancellation cannot be avoided automatically, so watch out!

GPGPU
Robert Strzodka
caesar research center
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Uncontrolled and Controlled Roundoff
Effects on Diffusion in 8 bit
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Topics
Two fundamental algorithms!
Sorting 

Sorting networks
Search

Binary search
Nearest neighbor search

Raytracing on GPUs: [Purcell 2002]
Photon mapping on GPUs: [Purcell 2003]

GPGPU
John Owens 
University of California, Davis, USA
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Assumptions
Data organized into 1D arrays
Rendering pass == screen aligned quad

Not using vertex shaders
PS 2.0 GPU

No data dependent branching at fragment level

GPGPU
John Owens 
University of California, Davis, USA
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Sorting
Given an unordered list of elements, produce 
list ordered by key value

Fundamental kernel:  compare and swap
GPUs constrained programming environment  
limits viable algorithms

Oblivious sort (does not rely on data values)
Bitonic merge sort [Batcher 68]
Periodic balanced sorting networks [Dowd 89]
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Bitonic Merge Sort Overview
Repeatedly build bitonic lists and then sort them

Bitonic list is two monotonic lists concatenated 
together, one increasing and one decreasing.

List A: (3, 4, 7, 8) monotonically increasing
List B: (6, 5, 2, 1) monotonically decreasing
List AB: (3, 4, 7, 8, 6, 5, 2, 1) bitonic

Bitonic lists can be easily sorted into monotonic lists
Strategy: Divide and conquer

GPGPU
John Owens 
University of California, Davis, USA
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Bitonic Merge Sort

1

2

3

4

5

6

7

8

8x monotonic lists:  (3) (7) (4) (8) (6) (2) (1) (5)
4x bitonic lists: (3,7) (4,8) (6,2) (1,5)

GPGPU
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Bitonic Merge Sort (1/3)

1

2

3

4

5

6

7

8

Sort the bitonic lists (Step 1 of 1)
GPGPU
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Bitonic Merge Sort (1/3 done)

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

4x monotonic lists:  (3,7) (8,4) (2,6) (5,1)
2x bitonic lists: (3,7,8,4) (2,6,5,1)
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Bitonic Merge Sort (2/3)

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Sort the bitonic lists (Step 1 of 2)
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Bitonic Merge Sort (2/3)
3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Sort the bitonic lists (Step 2 of 2)
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Bitonic Merge Sort (2/3)
3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

Sort the bitonic lists (Step 2 of 2)
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Bitonic Merge Sort (2/3 done)
3

7

4

8

2

5

1

6

3

8

4

7

2

6

1

5

1

2

3

4

5

6

7

8

3

8

7

4

5

6

1

2

2x monotonic lists:  
(3,4,7,8) (6,5,2,1)
1x bitonic list:
(3,4,7,8, 6,5,2,1)
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Bitonic Merge Sort (3/3)
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2

Sort the bitonic list (Step 1 of 3)
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Bitonic Merge Sort (3/3)
3

2

4

1
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Sort the bitonic list (Step 2 of 3)
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Bitonic Merge Sort (3/3)
3

2

4

1
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4
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1

5

1

2

3

4

5

6

7

8
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2

Sort the bitonic list (Step 2 of 3)
GPGPU
John Owens 
University of California, Davis, USA

F16

Bitonic Merge Sort (3/3)
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Sort the bitonic list (Step 3 of 3)
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Bitonic Merge Sort (3/3)
2

3

1
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Sort the bitonic list (Step 3 of 3)
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Bitonic Merge Sort (Complete)
1
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Done!
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Bitonic Merge Sort Summary
Separate rendering pass for each set of swaps

O(log2n) passes
Each pass performs n compare/swaps

Exploits parallelism
Each swap is oblivious

Total compare/swaps: O(n log2n) 
Limitations of GPU cost us factor of log n over best 
CPU-based sorting algorithms

GPGPU
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Searching



F-6

GPGPU
John Owens 
University of California, Davis, USA

F21

Types of Search
Search for specific element

Binary search
Search for nearest element(s)

k-nearest neighbor search

Both searches require ordered data

GPGPU
John Owens 
University of California, Davis, USA
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Binary Search
Find a specific element in an ordered list
Implement just like CPU algorithm

Assuming hardware supports long enough shaders
Finds the first element of a given value v

If v does not exist, find next smallest element > v

Search algorithm is sequential, but many 
searches can be executed in parallel

Number of pixels drawn determines number of 
searches executed in parallel

1 pixel == 1 search

GPGPU
John Owens 
University of California, Davis, USA
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Binary Search
Search for v0

v0v0 v0v0 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

Search starts at center of  
sorted array

v2 >= v0 so search left half 
of sub-array

v2v2

GPGPU
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Binary Search
Search for v0

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22Step 1
v0 >= v0 so search left half 
of sub-array
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Binary Search
Search for v0

v0v0 v2v2 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22

11

Step 1

Step 2
v0 >= v0 so search left half 
of sub-array

v0v0

GPGPU
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Binary Search
Search for v0

v0v0 v2v2 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22

11

00

Step 1

Step 2

Step 3

At this point, we either 
have found v0 or are 1 
element too far left  

One last step to resolve

v0v0

GPGPU
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Binary Search
Search for v0

v0v0 v2v2 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22

11

00

00

Step 1

Step 2

Step 3

Step 4

Done!

v0v0

GPGPU
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Binary Search
Search for v0 and v2

v0v0 v0v0 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize 44

Search starts at center of  
sorted array

Both searches proceed to 
the left half of the array

v2v2
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Binary Search
Search for v0 and v2

v0v0 v0v0 v2v2 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22Step 1

44

22

The search for v0 
continues as before

The search for v2 
overshot, so go back to the 
right

GPGPU
John Owens 
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Binary Search
Search for v0 and v2

v0v0 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22

11

Step 1

Step 2

44

22

33

v0v0 v2v2

We’ve found the proper v2, 
but are still looking for v0

Both searches continue
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Binary Search
Search for v0 and v2

v0v0 v2v2 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22

11

00

Step 1

Step 2

Step 3

44

22

33

22

v0v0

Now, we’ve found the 
proper v0, but overshot v2

The cleanup step takes 
care of this
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Binary Search
Search for v0 and v2

v0v0 v2v2 v2v2 v5v5v0v0 v5v5Sorted List
00 11 33 44 55 6622 77

44Initialize

22

11

00

00

Step 1

Step 2

Step 3

Step 4

44

22

33

22

33

v0v0 v2v2

Done!  Both v0 and v2 are 
located properly
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Binary Search Summary
Single rendering pass

Each pixel drawn performs independent search
O(log n) steps
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Nearest Neighbor Search

GPGPU
John Owens 
University of California, Davis, USA
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Nearest Neighbor Search
Given a sample point p, find the k points nearest 
p within a data set

On the CPU, this is easily done with a heap or 
priority queue

Can add or reject neighbors as search progresses
Don’t know how to build one efficiently on GPU

kNN-grid
Can only add neighbors…

GPGPU
John Owens 
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kNN-grid Algorithm

sample point

neighbors found
candidate neighbor

Want 4 neighbors
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kNN-grid Algorithm
Candidate neighbors 
must be within max 
search radius
Visit voxels in order of 
distance to sample point

sample point

neighbors found
candidate neighbor

Want 4 neighbors
GPGPU
John Owens 
University of California, Davis, USA
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kNN-grid Algorithm
If current number of 
neighbors found is less 
than the number 
requested, grow search 
radius

1
sample point

neighbors found
candidate neighbor

Want 4 neighbors

GPGPU
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kNN-grid Algorithm

2
sample point

neighbors found
candidate neighbor

Want 4 neighbors

If current number of 
neighbors found is less 
than the number 
requested, grow search 
radius

GPGPU
John Owens 
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kNN-grid Algorithm
Don’t add neighbors 
outside maximum search 
radius
Don’t grow search radius 
when neighbor is outside 
maximum radius

2
sample point

neighbors found
candidate neighbor

Want 4 neighbors
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kNN-grid Algorithm
Add neighbors within 
search radius

3
sample point

neighbors found
candidate neighbor

Want 4 neighbors
GPGPU
John Owens 
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kNN-grid Algorithm
Add neighbors within 
search radius

4
sample point

neighbors found
candidate neighbor

Want 4 neighbors

GPGPU
John Owens 
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kNN-grid Algorithm
Don’t expand search 
radius if enough 
neighbors already found

4
sample point

neighbors found
candidate neighbor

Want 4 neighbors
GPGPU
John Owens 
University of California, Davis, USA
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kNN-grid Algorithm
Add neighbors within 
search radius

5
sample point

neighbors found
candidate neighbor

Want 4 neighbors
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kNN-grid Algorithm
Visit all other voxels
accessible within 
determined search radius
Add neighbors within 
search radius

6
sample point

neighbors found
candidate neighbor

Want 4 neighbors
GPGPU
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kNN-grid Summary
Finds all neighbors within 
a sphere centered about 
sample point
May locate more than 
requested k-nearest 
neighbors

6
sample point

neighbors found
candidate neighbor

Want 4 neighbors

GPGPU
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Overview
GPU Memory Model
GPU-Based Data Structures
Pbuffer Survival Guide
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CPU Memory Model
Random Memory Access at Any Program Point

Read/write to registers
Read/write to local (stack) memory
Read/write to global (heap) memory
Read/write to disk
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GPU Memory Model
Much more restricted memory access

GPU Kernels
Read/write to registers
No local stack memory
No disk access
Read-only global memory access
v = a[i];

Write to global memory at end of pass
Pre-computed memory addresses (no scatter)
i = foo(a);
a[i] = bar(b);

Write location set by fragment position
a[fragPos] = bar(b);
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GPU Memory Model
Where is GPU Data Stored?

Vertex buffer
Texture
Frame buffer

Vertex Buffer Vertex 
Processor Rasterizer Fragment

Processor

Texture Buffer

Frame
Buffer(s)

PS3.0 GPUs
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Render-to-Texture
Idea

Write rendering result to texture memory
Enables GPU-based computational iterations

Vertex Data Vertex 
Processor Rasterizer Fragment

Processor

Texture Data

PS3.0 GPUs
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Render-to-Texture
OpenGL Support

Save up to 16, 32-bit floating values per pixel
Multiple Render Targets (MRTs) on ATI and NVIDIA

1. Copy-to-texture
glCopyTexSubImage

2. Render-to-texture
WGL_ARB_render_texture

Pbuffers: Current state of the art
GL_EXT_render_target

Proposed extension
Superbuffers

Proposed extension

GPGPU
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Render-to-Vertex-Array
Idea

Write rendering results to vertex array
Allows GPU to loop back to beginning of pipeline

Vertex Data Vertex 
Processor Rasterizer Fragment

Processor

Texture Data

PS3.0 GPUs
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Render-To-Vertex-Array
OpenGL Support

Copy-to-vertex-array
GL_EXT_pixel_buffer_object
NVIDIA and ATI

Render-to-vertex-array
Superbuffers

Semantics Still Under Development…
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Fbuffer: Capturing Fragments
Idea

Save all fragment values instead of one per pixel
“Rasterization-Order FIFO Buffer”

Vertex Data Vertex 
Processor Rasterizer Fragment

Processor

Texture Data

Frame
Buffer(s)

PS3.0 GPUs
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Fbuffer: Capturing Fragments

Details
Designed for multi-pass rendering with transparent geometry
Mark and Proudfoot, Graphics Hardware 2001

http://graphics.stanford.edu/projects/shading/pubs/hwws2001-fbuffer/
New possibilities for GPGPU

Varying number of results per pixel
RTT and RTVA with an fbuffer

OpenGL Support
ATI Radeon 9800 and newer ATI GPUs
Not yet exposed to user (ask for it!)
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Overview
GPU Memory Model
GPU-Based Data Structures
Pbuffer Survival Guide
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GPU-Based Data Structures
Building Blocks

GPU memory addresses 
Address Generation
Address Use
Pointers

Multi-dimensional arrays
Sparse representations

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Memory Addresses
Where Are GPU Addresses Generated?

CPU Vertex stream or textures
Vertex processor Input stream, ALU ops or textures
Rasterizer Interpolation
Fragment processor Input stream, ALU ops or textures

Vertex
Processor

Rasterizer Fragment
Processor

CPU

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Memory Addresses
Where Are Addresses Used?

Vertex textures (PS3.0 GPUs)
Fragment textures

Vertex 
Processor Rasterizer Fragment

Processor

Texture Data

CPU 

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Memory Addresses
Floating-Point Addressing

Normalized addresses [0,1]
GL_TEXTURE_1D, _2D, _3D, _CUBE

Non-Normalized addresses [0,N]
GL_TEXTURE_RECTANGLE

Warning: Floating-point can leave unaddressable texels
NVIDIA FP32:   16,777,217 Counting numbers
ATI 24-bit float:      131,073 Counting numbers
NVIDIA FP16:            2,049 Counting numbers

Courtesy of Ian Buck
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GPU Memory Addresses
Pointers

Store addresses in texture
Dependent texture read

float2 addr = tex2D( addrTex, texCoord );

float2 data = tex2D( dataTex, addr );

3
3
1
1

Data
Data
Data
Data

Address Texture Data Texture
0
1
2
3

0
1
2
3

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU-Based Data Structures
Building Blocks

GPU memory addresses 
Address Generation
Address Use
Pointers

Multi-dimensional arrays and structs
Sparse representations

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Arrays
Large 1D Arrays

Current GPUs limit 1D array sizes to 2048 or 4096
Pack into 2D memory
1D-to-2D address translation

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Arrays
3D Arrays

Problem
GPUs do not have 3D frame buffers
No RTT to slice of 3D texture with pbuffers

Solutions
1. Stack of 2D slices
2. Multiple slices per 2D buffer
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GPU Arrays
Problems With 3D Arrays for GPGPU

Cannot read stack of 2D slices as 3D texture
Must know which slices are needed in advance
Visualization of 3D data difficult

Solutions
Flat 3D textures
Need render-to-slice-of-3D-texture 

GL_EXT_render_target and Superbuffers
Volume rendering of slice-based 3D data

Course 28, “Real-Time Volume Graphics”, Siggraph 2004

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Arrays
Higher Dimensional Arrays

Pack into 2D buffers
N-D to 2D address translation
Same problems as 3D arrays if data does not fit in a single 
2D texture

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Structures
Store each member in a different “array” (texture)

Update structs with Multiple-Render Targets (MRTs)

struct Foo { float4 Foo_a[N];

float4 a; float4 Foo_b[N];

float4 b;

};

Foo foo[N];

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU-Based Data Structures
Building Blocks

GPU memory addresses 
Address Generation
Address Use
Pointers

Multi-dimensional arrays
Sparse representations
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Sparse Data Structures
Why Sparse Data Structures?

Reduce memory pressure
Reduce computational workload

Examples
Sparse matrices

Krueger et al., Siggraph 2003
Bolz et al., Siggraph 2003

Deformable implicit surfaces (sparse volumes/PDEs)
Lefohn et al., IEEE Visualization 2003

Premoze et al.
Eurographics 2003

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Sparse Data Structures
Basic Idea

Pack “active” data elements into GPU memory
For more information

Linear algebra section in this course : Static structures
Level-set case study in this course : Dynamic structures

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Data Structures
Conclusions

Fundamental GPU memory primitive is a fixed-size 2D array

GPGPU needs more general memory model

Building and modifying complex GPU-based data structures 
is an open research topic…

GPGPU
Aaron Lefohn
University of California, Davis, USA

G28

Overview
GPU Memory Model
GPU-Based Data Structures
Pbuffer Survival Guide
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Pbuffer Survival Guide
Pbuffers Give us Render-To-Texture

Designed to create an environment map or two
Never intended to be used for GPGPU (100s of pbuffers)

Problem
Each pbuffer has its own OpenGL render context
Each pbuffer may have depth and/or stencil buffer
Changing OpenGL contexts is slow

Solution
Many optimizations to avoid this bottleneck…

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Pbuffer Survival Guide
1. Use Multi-Surface Pbuffers

Each RGBA surface is its own render-texture
Front, Back, AuxN (N = 0,1,2,…)

Greatly reduces context switches
Technically illegal, but “blessed” by ATI and NVIDIA

1 Pbuffer
5 RGBA Surfaces

5 Pbuffers
1 RGBA Surface Each

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Pbuffer Survival Guide
1. Using Multi-Surface Pbuffers

a) Allocate multi-surface pbuffer (Front/Back/AUX buffers)
b) Set render target to back buffer

glDrawBuffer(GL_BACK)

c) Bind front buffer as texture
wglBindTexImageARB(pbuffer, WGL_FRONT_ARB)

d) Render
e) Switch buffers

wglReleaseTexImageARB(pbuffer, WGL_FRONT_ARB)

glDrawBuffer(GL_FRONT)

wglBindTexImageARB(pbuffer, WGL_BACK_ARB)

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Pbuffer Survival Guide
2. Pack 2D domains into large buffer

“Flat 3D textures”
Be careful of read-modify-write hazard

Flattened Volume3D Volume
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Conclusions

GPU Memory Model Evolving
Writable GPU memory forms loop-back in an otherwise feed-
forward streaming pipeline
Memory model will continue to evolve as GPUs become more 
general stream processors

GPGPU Data Structures
Basic memory primitive is limited-size, 2D texture
Use address translation to fit all array dimensions into 2D

Render-To-Texture
Use pbuffers with care and eagerly adopt their successor

GPGPU
Aaron Lefohn
University of California, Davis, USA
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DirectX or OpenGL?
Strategies & Tricks:

GPGPU
Ian Buck
Stanford University
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DirectX
+ Render to Texture

SetRenderTarget()
+ Write once run 

anywhere
+ Debugging tools
– Short programs

Only 512 instr limit
– Readback is slow!

~50 MB/sec

OpenGL
+ 0 to N texture addressing

GL_TEXTURE_RECTANGLE_EXT

+ Vendor Features
+ Readback is fast
– Render-to-Texture not finalized

SuperBuffers
GL_EXT_render_target

– Specialized float formats for 
ATI and NV

GPGPU
Ian Buck
Stanford University
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Understanding 
Performance 

Strategies & Tricks:
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Locality, Locality, LocalityLocality, Locality, Locality
CPU

Pentium 4 3.0 GHz
44 GB/sec peak Cache 
6 GB/sec peak Seq

Output Reuse 
CPU can cache outputs
GPU must write outputs to 
memory

FP32

GPGPU
Ian Buck
Stanford University
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Compute Performace

G
FL

O
PS

multiplies per second

NVIDIA NV30, 35, 40

ATI R300, 360, 420

Pentium 4

July 01 Jan 02 July 02 Jan 03 July 03 Jan 04

GPGPU
Ian Buck
Stanford University
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Bandwidth Gap

R300 R360 R420

GFLOPS

GFloats/sec

ATI Hardware

7x Gap

GPGPU
Ian Buck
Stanford University
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Compute vs. Bandwidth
Arithmetic Intensity = 

Compute-to-Bandwidth ratio

Graphics Pipeline
Vextex

BW: 1 vertex = 32 bytes; 
OP: 100-500 f32-ops / vertex

Fragment 
BW: 1 fragment = 10 bytes
OP: 300-1000 i8-ops/fragment
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Considering Readback
GPUs need to download and readback results

Time to complete = download + compute + readback
Not a problem on CPU

Readback
Getting a lot better!

> 600 MB/sec NVIDIA OpenGL
GL_UNSIGNED_BYTE: BGRA
Floating Point: RGBA

GPGPU
Ian Buck
Stanford University
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Understanding 
Floating Point

Strategies & Tricks:
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Floating Point PrecisionFloating Point Precision

NVIDIA FP32
s23e8 

ATI 24-bit float
s16e7 

NVIDIA FP16
s10e5

mantissaexponents

sign * 1.mantissa * 2(exponent+bias)

GPGPU
Ian Buck
Stanford University

H12

Floating Point PrecisionFloating Point Precision
Common Bug

Pack large 1D array in 2D texture
Compute 1D address in shader
Convert 1D address into 2D

FP precision will leave unaddressable texels!

NVIDIA FP32:   16,777,217
ATI 24-bit float:      131,073
NVIDIA FP16:            2,049

Largest Counting Number



H-4

GPGPU
Ian Buck
Stanford University

H13

Implementing Scatter

Strategies & Tricks:

a[i] = p

GPGPU
Ian Buck
Stanford University
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Scatter Techniques
Problem:   a[i] = p

Indirect write
Can’t set the x,y of fragment in pixel shader
Often want to do:  a[i] += p

GPGPU
Ian Buck
Stanford University
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Scatter Techniques
Solution 1:  Convert to Gather

m1m1 m2m2

f2f2
f3f3

f1f1

for each spring
f = computed force
mass_force[left]  += f;
mass_force[right] -= f;

GPGPU
Ian Buck
Stanford University
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Scatter Techniques
Solution 1:  Convert to Gather

m1m1 m2m2

f2f2
f3f3

f1f1

for each spring
f = computed force

for each mass
mass_force = f[left] -

f[right];
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Scatter Techniques
Solution 2:  Address Sorting

Sort & Search
Shader outputs destination address and data
Bitonic sort based on address
Run binary search shader over destination buffer

Each fragment searches for source data

GPGPU
Ian Buck
Stanford University
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Scatter Techniques
Solution 3:  Vertex processor

Render points
Use vertex shader to set destination
or just read back the data and re-issue

Vertex Textures
Render data and address to texture
Issue points, set point x,y in vertex shader using 
address texture
Requires texld instruction in vertex program

GPGPU
Ian Buck
Stanford University
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Conditionals

Strategies & Tricks:
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Conditionals
Problem:

Limited fragment shader conditional support

if (a) b = f();
else   b = g();
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Conditionals
Solution 1:  Predication

Execute both
f and g

Use LRP instruction
LRP b, a, f, g    b = a ? f : g
Executes all conditional code

if (a) b = f();
else   b = g();

GPGPU
Ian Buck
Stanford University
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Conditionals
Solution 1:  Predication
Use DP4 instruction

DP4 b.x, a, f 
Executes all conditional code

if (a.x) b = x;
else if (a.y) b = y;
else if (a.z) b = z;
else if (a.w) b = w;

a = (0, 1, 0, 0)
f = (x, y, z, w)

GPGPU
Ian Buck
Stanford University
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Conditionals
Solution 2:  Using early Z-kill

Set Z buffer to a
Clear Z to 1.0f
Render quad at z=0.3
Evaluate conditional and kill to set Z

if (a) b = f();
else   b = g();

GPGPU
Ian Buck
Stanford University
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Conditionals
Solution 2:  Using early Z-kill

Set Z buffer to a
Z-test can prevent shader execution

glEnable(GL_DEPTH_TEST)
Good only if locality in conditional

if (a) b = f();
else   b = g();
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Conditionals

if (rand) 
b = f();

Branch TakenBranch Taken

Ti
m

e
Ti

m
e

ATI X800ATI X800
GPGPU
Ian Buck
Stanford University
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Conditionals

Branch TakenBranch Taken

if (block) 
b = f();

Ti
m

e
Ti

m
e

ATI X800ATI X800

512

512

GPGPU
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Conditionals
Solution 2:  Using early Z-kill

Very Sensitive!

ATI: ATI: 
•• Z out in shaderZ out in shader
•• alpha test enabledalpha test enabled
•• texkilltexkill is shaderis shader

NV3X & NV4X:NV3X & NV4X:

•• Changing depth test Changing depth test 
direction invalidates for direction invalidates for 
remainder of frame remainder of frame 

NV3X: NV3X: 

•• Alpha test, alphaAlpha test, alpha--toto--
coverage, user clip planes, coverage, user clip planes, 

•• Pixel kill in shader (KIL), Pixel kill in shader (KIL), 
shader alters Z shader alters Z 

NV4X:NV4X:

•• Writing stencil while rejecting Writing stencil while rejecting 
based on stencil based on stencil 

•• Changing stencil Changing stencil 
funcfunc/ref/mask invalidates for /ref/mask invalidates for 
remainder of frameremainder of frame

GPGPU
Ian Buck
Stanford University
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Conditionals
Solution 3:  Conditional Instructions

Available with NV_fragment_program2

MOVC CC, R0;
IF GT.x;
MOV R0, R1; # executes if R0.x > 0
ELSE;
MOV R0, R2; # executes if R0.x <= 0
ENDIF; 
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Conditionals

Branch TakenBranch Taken

if (block) 
b = f();

Ti
m

e
Ti

m
e

GeForceGeForce 68006800

512

512
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Optimizing Execution
Strategies & Tricks:
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Optimizing Execution
Two methods for GPGPU shader execution

glBegin(GL_QUADS);
glVertex2f(left,   bottom);
glVertex2f(right, bottom);
glVertex2f(right, top);
glVertex2f(left,   top);
glEnd();

glViewport(0,0,width,height)
glBegin(GL_TRIANGLE);
glVertex2f(  0,         0);
glVertex2f(width*2, 0);
glVertex2f(  0,         height*2);
glEnd();

GPGPU
Ian Buck
Stanford University

H32

Optimizing Execution

R
el

at
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e 
Pe
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or

m
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ce
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Multiple Outputs
Strategies & Tricks:
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Multiple Outputs
Software solution

Let driver, cgc, or fxc do dead code elimination

Works well if shader is separable

kernel void foo (float3 a<>, 
float3 b<>, …,
out float3 x<>,
out float3 y<>)

kernel void foo1(float3 a<>, 
float3 b<>, …,
out float3 x<>)

kernel void foo2(float3 a<>, 
float3 b<>, …,
out float3 y<>)

GPGPU
Ian Buck
Stanford University
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GPUBench
http://graphics.stanford.edu/projects/gpubench
http://sourceforge.net/projects/gpubench
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Choices in GPU Programming

Graphics
hardware

e.g.
Radeon (ATI),
GeForce (NV)

Operating
system

e.g.
Windows, Unix,
Linux, MacOS

Application
e.g. in

C/C++, Java,
Fortran, Perl  

Shader
programs

e.g. in
HLSL, GLSL,

Cg

Graphics API
e.g.

OpenGL,
DirectX

Window 
manager

e.g.
GLUT, Qt,

Win32, Motif

GPGPU
Robert Strzodka
caesar research center
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DirectX Choices

Operating System
Windows

Window manager
Win32, Qt

Programming languages
C/C++/C#, Basic, Delphi, Perl, .NET Framework

Shader languages
HLSL, Cg, DirectX pixel- and vertex-shader

Stream languages
CgFX, Brook

GPGPU
Robert Strzodka
caesar research center
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DirectX Tools

FX Composer, NVPerfHUD (NVIDIA)
HLSL shader IDE and performance analysis, real-time statistics
www.developer.nvidia.com/page/tools.html

RenderMonkey (ATI)
HLSL, GLSL shader IDE and performance analysis
www.ati.com/developer/tools.html

EffectEdit (Microsoft)
Interactive HLSL renderer
msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/
directx/graphics/TutorialsAndSamples/Samples/EffectEdit.asp

ShaderWorks (Mad Software)
HLSL shader IDE
www.shaderworks.com



I-2

GPGPU
Robert Strzodka
caesar research center

I5

FX Composer - Screenshot

FX Composer

courtesy of NVIDIA

GPGPU
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NVPerfHUD - Screenshot

NVPerfHUD

courtesy of NVIDIA

GPGPU
Robert Strzodka
caesar research center
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RenderMonkey - Screenshot 

RenderMonkey

courtesy of ATI

GPGPU
Robert Strzodka
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OpenGL Choices

Operating System
Linux/Unix, Windows, MacOS, OS/2, BeOS 

Window manager
GLUT, Qt, Motif

Programming languages
C/C++, Java, Fortran, Ada, Python, Perl, Pike

Shader languages
GLSL, Cg, OpenGL fragment- and vertex-shader

Stream languages
Brook, Sh
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OpenGL Tools
NVShaderPerf (NVIDIA)

HLSL, OpenGL fragment shader performance analysis
www.developer.nvidia.com/page/tools.html

RenderMonkey (ATI)
HLSL, GLSL shader IDE and performance analysis
www.ati.com/developer/tools.html

Babelshader (D. Horn)
Translator: DirectX pixelshader to OpenGL fragment shader
www.graphics.stanford.edu/~danielrh/babelshader.html

OpenGL Panther Tools (Apple)
OpenGL vertex and fragment shader IDE, profiling tools
developer.apple.com/opengl/panther.html

OpenGL Shader Designer (Typhoon Labs)
GLSL shader IDE
www.typhoonlabs.com

GPGPU
Robert Strzodka
caesar research center
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Shader Debugger

Visual debugging with the shader IDEs (Windows)
FX Composer (DX), RenderMonkey (DX&GL), EffectEdit (DX), 
ShaderWorks (DX), OpenGL Panther (GL)

Shader Debugger Tool (Microsoft)
HLSL debugger extension for Visual Studio IDE
msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/tools/shaderdebugger.asp

Imdebug – The Image Debugger (B. Baxter)
Analysis of images output by shaders, easy integration
www.cs.unc.edu/~baxter/projects/imdebug/ 

Shadesmith (T. Purcell, P. Sen)
Interactive OpenGL fragment shader debugger
graphics.stanford.edu/projects/shadesmith/

GPGPU
Robert Strzodka
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Shader Debugger

imdebug

Shadesmith

images courtesy of

Tim Purcell
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Many More Tools

Plug-ins for various content creator programs
Texture conversion and compression
Normal maps
Mesh optimization

Available online for free
www.msdn.microsoft.com/library/default.asp?url=/libr
ary/en-us/directx9_c/directx/graphics/Tools/Tools.asp
www.developer.nvidia.com/page/tools.html
www.ati.com/developer/tools.html
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How To Get Started?

Visit the GPGPU base: papers, code, news, links
www.gpgpu.org

Get the ‘Hello GPGPU’ example and experiment
www.gpgpu.org/developer/

Get a SDK with plenty of examples
www.developer.nvidia.com/object/sdk_home.html
www.ati.com/developer/radeonSDK.html

For discussion go to
www. gpgpu.org/forums
www.shadertech.com
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Problem Statement
Goal

Interactive system for deformable surface manipulation
Level-sets

Challenges
Deformation is slow
Deformation is hard to control

Solution
Accelerate level-set computation with GPU
Visualize computation in real-time

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Collaborators

University of Utah
Joe Kniss
Joshua Cates
Charles Hansen
Ross Whitaker

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study
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Deformable Surfaces

Applications of Level-Sets
Fluid simulation
Surface reconstruction for 3D scanning
Surface processing
Image / Volume segmentation

IntroductionIntroduction

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Level-Set Method
Implicit surface

Distance transform 
denotes inside/outside

Surface motion

F = Signed speed in direction of normal

IntroductionIntroduction

GPGPU
Aaron Lefohn
University of California, Davis, USA
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CPU Level-Set Acceleration

Initialize
Domain Compute Update

Domain

Narrow-Band/Sparse-Grid
Compute PDE only near the surface

Adalsteinson et al. 1995
Whitaker et al. 1998
Peng et al. 1999

Time-dependent, sparse-grid solver

IntroductionIntroduction

GPGPU
Aaron Lefohn
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GPU Level-Set Acceleration
Strzodka et al. 2001

2D level-set solver on NVIDIA GeForce 2
No narrow-band optimization

Lefohn et al. 2002
Brute force 3D implementation on ATI Radeon 8500
No faster than CPU, but ~10x more computations
No narrow-band optimization

IntroductionIntroduction
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Overview 

Why?
Motivation and previous work

How?
Streaming narrow-band algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study

GPGPU
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Sparse Volume Computation
CPU algorithm: Traverse list of active voxels
GPU algorithm: Compute all active voxels in parallel

Data structures change after each PDE time step

GPU Narrow-Band Solver

Initialize
Domain Compute Update

Domain

AlgorithmAlgorithm

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Narrow-Band Solver
• Goals

1. Leverage GPU parallelism
2. Perform sparse computation 
3. Minimize GPU memory usage
4. Fast update of sparse data structures
5. Interactive visualization

Algorithm Goals
AlgorithmAlgorithm

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Algorithm Solutions
Pack Active Voxels Into 2D Texture

Increase parallelism, reduce computation and memory use

Efficient GPU-to-CPU Message Passing
Fast update of packed data structure

On-The-Fly Decompression Volume Rendering
Interactive visualization without increasing memory use

AlgorithmAlgorithm
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Multi-Dimensional Virtual Memory
3D virtual memory
2D physical memory
16 x 16 pixel pages

Algorithm

A Dynamic, Sparse GPU Data Structure

GPGPU
Aaron Lefohn
University of California, Davis, USA
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A Dynamic, Sparse GPU Data Structure
GPU: Computes PDE

Level-set computation (2D physical memory)
Issues memory requests

CPU: Manages memory
Memory manager
Page table (3D virtual memory)

Algorithm

CPU GPU

Physical Addresses for 
Active Memory Pages

Memory Requests

PDE 
Computation
15-250 passes

Algorithm

GPGPU
Aaron Lefohn
University of California, Davis, USA
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A Dynamic, Sparse GPU Data 
Structure

Problem
Neighbor lookups across page boundaries
Branching slow on GPU

Solution
Substreams

Create homogeneous data streams
Resolve conditionals with geometry
Lefohn 2003, Goodnight 2003, Harris 2003
Optimizes cache and pre-fetch performance

Kapasi et al., Micro 33, 2000

AlgorithmAlgorithm

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU-to-CPU Message Passing

Problem: Active Voxel Set is Time-Dependent
GPU memory request mechanism
Low bandwidth GPU-to-CPU communication

Solution
Compress GPU memory request
Use GPU computation to save GPU-to-CPU bandwidth

Algorithm

Mipmapping

s +x -x +y -y +z -z φ
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization (with Joe Kniss)
Segmentation application

Does it work?
Live demonstration
User study

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Direct Volume Rendering of Level Set
Reconstruct 2D Slice of Virtual Memory Space

On-the-fly decompression on GPU
Use 2D geometry and texture coordinates

Visualization

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Direct Volume Rendering of Level Set

Deferred Filtering: Volume Rendering Compressed Data
2D slice-based rendering: No data duplication
Tri-linear interpolation
Full transfer function and lighting capabilities

Visualization

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study
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Level-Set Segmentation Application

Idea: Segment Surface from 3D Image
Begin with “seed” surface 
Deform surface into target segmentation

Application

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Demo
Segmentation of MRI volumes

1283 scalar volume

Hardware Details
ATI Radeon 9800 Pro
2.4  GHz Intel Pentium 4
1 GB of RAM

Results

GPGPU
Aaron Lefohn
University of California, Davis, USA
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GPU Narrow-Band Performance

Performance
10x – 15x faster than optimized CPU version (Insight Toolkit)
Linear dependence on size of narrow band

Bottlenecks
Fragment processor (~80%)
Conservative time step

Need for global accumulation register (min, max, sum, etc.)

Results

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Overview 

Why?
Motivation and previous work

How?
Streaming level-set algorithm
Real-time visualization
Segmentation application

Does it work?
Demonstration
User study (with Josh Cates)
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Evaluation User Study
Goal

Can a user quickly find parameter settings to create an 
accurate, precise 3D segmentation?

Relative to hand contouring

Evaluation

GPGPU
Aaron Lefohn
University of California, Davis, USA
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User Study Results
Efficiency

6 ± 3 minutes per segmentation (vs multiple hours)
Solver idle 90% - 95% of time

Precision
Intersubject similarity significantly better
94.04% ± 0.04% vs. 82.65% ± 0.07%

Accuracy
Within error bounds of expert hand segmentations 
Compares well with other semi-automatic techniques

Kaus et al., Radiology, 2001

Evaluation

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Summary
Interactive Level-Set System

10x – 15x speedup over optimized CPU implementation
Intuitive parameter tuning
User study evaluation

Algorithm Developments
Multi-dimensional virtual memory
Substreams
GPU-to-CPU Message passing
Volume rendering packed data

Conclusions

GPGPU
Aaron Lefohn
University of California, Davis, USA
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Future Directions

Other Level-Set Applications
Surface processing, surface reconstruction, physical simulation

Integrate GPGPU Code Into Open Source Software
The Insight Toolkit (www.itk.org)?

“Interactive Visulation”
GPGPU allows for simultaneous visualization and simulation
What problems can be solved with “interactive visulation?”
What is the user interface for a visulation?

Conclusions
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Questions?
For More Information

Google “Lefohn level set”
http://graphics.cs.ucdavis.edu/~lefohn/

Journal Papers Based on this Work
Lefohn, Kniss, Hansen, Whitaker, “A Streaming Narrow Band 
Algorithm: Interactive Computation and Visualization of 
Level Sets,” IEEE Transactions on Visualization and Computer 
Graphics, 10 (40), Jul / Aug, pp. 422-433, 2004

Cates, Lefohn, Whitaker, “GIST: An Interactive, GPU-Based 
Level-Set Segmentation Tool for 3D Medical Images,”
Medical Image Analysis, to appear 2004
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Advanced Image Processing
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Overview

Classic Image Processing
Denoising
Segmentation
Registration

Computer Vision
Object recognition
Object classification
Motion estimation

GPGPU
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Denoising by a linear and a non-linear
diffusion process

linear
diffusion

non-linear
diffusion

GPGPU
Robert Strzodka
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Diffusion PDE

]1,0[:image Initial 0 →Ωu

( ) 0)(div =∇∇−∂ uuGut σ Ω×ℜ+in

0)0( uu = Ωin
0=∂ uν Ω∂×ℜ+on

g(x)

x

• linear

• isotropic non-linear

• anisotropic

1:)( =vG

scalar  ||)(||:)( vgvG =

( ) )()(:)( ||)(||20
0||)(||1 vBvBvG vg

vgT=
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Denoising by anisotropic diffusion

GPGPU
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Segmentation by the level-set method

GPGPU
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Level-set equation

]1,0[:,functionset -level and image Initial 0 →Ωϕp

0],[ =∇⋅+∂ ϕϕϕ σ pft Ω×ℜ+in

0)0( ϕϕ = Ωin

0=∂ ϕν Ω∂×ℜ+on

image based
forces dependent
on p,“p

internal forces dependent
on the form of level-sets,
e.g. curvature k[j]

external forces, e.g.
an advection field
from a simulation

Vg ffpf ++ ∇
∇

∇
∇

|||||||| ][][ ϕ
ϕ

κϕ
ϕσ ϕ

The level-set is driven by different forces =:],[ ϕσ pf
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Segmentation by the level-set method
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Registration by a reguralized
gradient flow

distorted image original image initial error

result errordeformation registration result

GPGPU
Robert Strzodka
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Cascaded gradient flow on a multi-
scale hierarchy

]1,0[:,imagesInput →ΩRT

0][grad)( 2L
1 =+∂ − uEAut σ Ω×ℜ+in

0)0( =u Ωin
0=∂ uν Ω∂×ℜ+on

∫
Ω

−+= 2
2
1 )(][ RuTuE 1oEnergy measure

∫
Ω

−+=

==
2

2
1 )(][

)(,)(

iii

ii

RuTuE

RSRTST ii

εεε

εε εε

1o

Multi-scale on
multi-grid
regularization

Gradient regularization ∆−= 2
2)( σσ 1A
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Registration by a reguralized
gradient flow

GPGPU
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Overview

Classic Image Processing
Denoising
Segmentation
Registration

Computer Vision
Object recognition
Object classification
Motion estimation
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Object recoginition by the Generalized 
Hough Transform

original
image edge

image

first
detected
cube

second
detected
cube

GPGPU
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K14

ikl ,ikl ,

Generalized Hough Transform

Store pose k
as a list of
offset vectors ikl ,

||/ kkk l(x,y)C (x,y)C =∑
=

++=
||

1

,,edge ),
kl

i

ik
y

ik
x

k lyl(xI (x,y)C

Draw 
image
with
offsets

normalize
the result

Generate
poses
of different
perspective
and scale

GPGPU
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Object recoginition by the Generalized 
Hough Transform

GPGPU
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Object classification by skeletons

original
boundary

trimmed
skeleton

fine
skeleton

distance
transform
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distance transform

Adaptive Generalized Distance 
Transform

boundary
coarse image coarsed coarse solution

full solution

coarsemin dd <

GPGPU
Robert Strzodka
caesar research center
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Distance Transforms and Voronoi
Diagrams

Generalized weighted  Voronoi diagram

GPGPU
Robert Strzodka
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Motion estimation by an eigenvector 
analysis of the spatio-temporal tensor

GPGPU
Robert Strzodka
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Motion estimates as weighted least 
square minimizers

),(:),,(:],1,0[:)(sequence imageInput txu =ℜΩ=Ξ→Ξ + ξξ
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dt
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∂
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∂

∂
∂

∂
∂

∂
∂

Brightness change constraint equation, one equation two unknowns

Local continuity assumption of the flow     gives the minimization problemp

The diagonalization of the symmetric spatio-temporal 3x3 tensor

matrix eigenvalue diagonal  basis,r eigenvecto , ΛΛ= VVVJ T

gives a motion estimation as the solution to the minimization problem

eigenvaluesmallest  r toeigenvecto ,)1,,( ),,( vp
t
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Motion estimation by an eigenvector 
analysis of the spatio-temporal tensor
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Ray Tracing on GPUs
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Ray Tracing

SpecularSpecular

DiffuseDiffuse

DiffuseDiffuse

PP

TT

TT

SS SS

SSOccluderOccluder

Point LightPoint Light

R

MaterialMaterial
MaterialMaterial

MaterialMaterial

CameraCamera

Ray Tracing slides courtesy of Tim Purcell

GPGPU
Ian Buck
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Implementation Options
GPU as a ray-triangle intersection engine [Carr et al. 
2002]

Rays and geometry streamed to GPU
Intersection calculation results read back
Acceleration structure traversal done on host CPU

GPU as a ray tracing engine [Purcell et al. 2002]
Scene geometry and acceleration structure stored on GPU
GPU performs ray generation, acceleration structure traversal, 
intersection, and shading
Host provides camera info

GPGPU
Ian Buck
Stanford University
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Streaming Ray Tracer
Generate Eye Generate Eye 

RaysRays

Traverse Traverse 
Acceleration Acceleration 

StructureStructure

Intersect Intersect 
TrianglesTriangles

Shade Hits and Shade Hits and 
Generate Generate 

Shading RaysShading Rays

CameraCamera

GridGrid

TrianglesTriangles

MaterialsMaterials
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Techniques Used
Data structure navigation

Texture memory stores data structures
Dependent texture fetches walk through data

Flow control
Kernel binding based on occlusion query results
Efficient selective execution of kernels using early-z 
occlusion culling
Difficulty in flow control disappearing with newest 
graphics cards

PS 3.0

GPGPU
Ian Buck
Stanford University
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Texture Memory Organization

xyzxyz xyzxyz xyzxyz xyzxyz xyzxyz xyzxyz …… xyzxyz

00 33 1111 3838 …… 564564

00 33 11 33 77 2121 216216 ……

xyzxyz xyzxyz xyzxyz xyzxyz xyzxyz xyzxyz …… xyzxyz

xyzxyz xyzxyz xyzxyz xyzxyz xyzxyz xyzxyz …… xyzxyz

Uniform GridUniform Grid
3D Luminance 3D Luminance 

TextureTexture

Triangle ListTriangle List
1D Luminance1D Luminance

Texture Texture 

TrianglesTriangles
3x 1D RGB 3x 1D RGB 
TexturesTextures

vox0vox0 vox1vox1 vox2vox2 vox3vox3 vox4vox4 vox5vox5 voxMvoxM

vox0vox0 vox2vox2

tri0tri0 tri1tri1 tri2tri2 tri3tri3 tri4tri4 tri5tri5 triNtriN
v0v0

v1v1

v2v2
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Efficient Selective Execution
Rendering giant screen 
filling quad not ideal

Not all pixels need to 
process every rendering 
pass

Use early fragment kill
Computation mask
Controllable early-Z 
occlusion culling

Trade computation for 
bandwidth

GPGPU
Ian Buck
Stanford University
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Cornell Box – Ray Traced Shadows

Rendered using a Radeon 9700 Pro
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Teapotahedron

Rendered using a Radeon 9700 Pro
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Quake 3 – Ray Traced Shadows

Rendered using a Radeon 9700 Pro
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Performance Results
Radeon 9700 Pro

100M ray-triangle intersections/s
300K to 4.0M rays/s
Between 3 – 12 fps @ 256x256 pixels

CPU implementation
20M intersections/s P3 800 MHz [Wald et al. 2001]
800K to 7.1M ray/s 2.5 GHz P4 [Wald et al. 2003]

With simple shading:  1.8M to 2.3M rays/s Ian Buck
Graphics Lab
Stanford University

Molecular Dynamics on Graphics 
Hardware
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Folding@home: Vijay Pande

What does Folding@Home do? 
Folding@Home is a distributed 
computing project which studies 
protein folding, misfolding, 
aggregation, and related diseases. 
We use novel computational 
methods and large scale distributed 
computing, to simulate timescales 
thousands to millions of times longer 
than previously achieved. This has 
allowed us to simulate folding for the 
first time, and to now direct our 
approach to examine folding related 
disease.

Results from Folding@Home 
simulations of villin

GPGPU
Ian Buck
Stanford University
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GROMACS: Erik Lindahl
GROMACS provides extremely high performance
compared to all other programs.
Lot of algorithmic optimizations:

Own software routines to calculate the inverse 
square root.
Inner loops optimized to remove all conditionals.
Loops use SSE and 3DNow! multimedia 
instructions for x86 processors
For Power PC G4 and later processors: Altivec 
instructions provided

normally 3-10 times faster than any other 
program.

GPGPU
Ian Buck
Stanford University
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Nonbonded forces
Accounts for 80% of the 
runtime in C/Fortran code
Most common form:

Electrostatics
Lennard-Jones

GPGPU
Ian Buck
Stanford University
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Using cutoffs & neighbor lists
Neighbor list constructed every 10 steps.
In practice: 10,000-100,000 atoms, with 
100-200 neighbors in each list

7
11 9

1514

4

16

5

13

19
17

10

20

12

18
21

21

6

3

Neighbor list for atom 13 =
{ 8, 9, 11, 12, 15, 16, 17}

8
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What we do in the inner loop?
For each i atom {

fetch atom i data
i_force = 0;
For each j atom in our neigborlist {

fetch atom j data
Calculate vectorial distance; dr = ri-rj
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

}
Store i_force;

}

GPGPU
Ian Buck
Stanford University
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Reading from memory

Writing to memory

What we do in the inner loop?
For each i atom {

fetch atom i data
i_force = 0;
For each j atom in our neigborlist {

fetch atom j data
Calculate vectorial distance; dr = ri-rj
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

}
Store i_force;

}

GPGPU
Ian Buck
Stanford University
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Reading from memory

Writing to memory

What we do in the inner loop?
For each i atom {

fetch atom i data
i_force = 0;
For each j atom in our neigborlist {

fetch atom j data
Calculate vectorial distance; dr = ri-rj
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

}
Store i_force;

}

Texture Fetch

Texture Fetch

GPGPU
Ian Buck
Stanford University
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Reading from memory

Writing to memory

What we do in the inner loop?
For each i atom {

fetch atom i data
i_force = 0;
For each j atom in our neigborlist {

fetch atom j data
Calculate vectorial distance; dr = ri-rj
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

}
Store i_force;

}

For each fragment {

Output Color

Texture Fetch

Texture Fetch
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Reading from memory

Writing to memory

What we do in the inner loop?
For each i atom {

fetch atom i data
i_force = 0;
For each j atom in our neigborlist {

fetch atom j data
Calculate vectorial distance; dr = ri-rj
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

}
Store i_force;

}

For each fragment {

Output Color

Texture Fetch

Texture Fetch

SCATTER

GPGPU
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Reading from memory

Writing to memory

What we do in the inner loop?
For each i atom {

fetch atom i data
i_force = 0;
For each j atom in our neigborlist {

fetch atom j data
Calculate vectorial distance; dr = ri-rj
Calculate r2=dx*dx+dy*dy+dz*dz, and 1/r=1/sqrt(r2)
Calculate potential and vectorial force
Subtract the force from the j atom force
i_force += force;

}
Store i_force;

}

For each fragment {

Output Color

Texture Fetch

Texture Fetch

SCATTER

Perform each force computation twice

GPGPU
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Inner loop

jnr = jjnr[k];
j3 = 3*jnr;
jx = pos[j3];
jy = pos[j3+1];
jz = pos[j3+2];
dx = ix - jx;
dy = iy - jy;
dz = iz - jz;
rsq = dx*dx+dy*dy+dz*dz;
rinv = 1.0/sqrt(rsq);
rinvsq  = rinv*rinv;
rinvsix = rinvsq*rinvsq*rinvsq;
tjA = ntiA+2*type[jnr];
vnb6 = rinvsix*nbfp[tjA];
vnb12 = rinvsix*rinvsix*nbfp[tjA+1];
vnbtot  = vnbtot + vnb12-vnb6;
qq  = iqA*charge[jnr];
vcoul = qq*rinv;
fs = (twelve*vnb12-

six*vnb6+vcoul)*rinvsq;
vctot = vctot + vcoul;
tx = dx*fs;
ty = dy*fs;
tz = dz*fs;
fix = fix + tx;
fiy = fiy + ty;
fiz = fiz + tz;

jnr = f1tex1D (jjnr, k);

j = f3tex1D(pos, jnr);

d = i - j;

rsq = dot(d, d);
rinv = rsqrt(rsq);
rinvsq = rinv*rinv;
rinvsix = rinvsq*rinvsq*rinvsq;
tjA = ntiA+2*f1tex1D(type, jnr);
vnb6  = rinvsix*f1tex1D(nbfp, tjA);
vnb12 = rinvsix*rinvsix*f1tex1D(nbfp, tjA+1);
vnbtot = vnbot+vnb12-vnb6;
qq  = iqA * f1tex1D(charge, jnr);
vcoul = qq*rinv;
fs = (twelve*vnb12-

six*vnb6+vcoul)*rinvsq;
vctot = vctot + vcoul;
t   = d * fs;

fi  = t;

C Version Cg Version

GPGPU
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Challenges
Scalar inner loop code

Solution: Perform 4 force calc per loop iteration
Duplicate force calculations

Bad: 2x computation than CPU
Good: Much less bandwidth!!!

Don't have to output partial forces
Overall bandwidth much more expensive than 
compute on GPUs

Inner loop unrolling
20 interactions before instruction limit
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The The Future:Future: WhatWhat’’s s NextNext forfor
GPUsGPUs??

GPGPU
John Owens 
University of California, Davis, USA

M2

Off-line to on-line to real-time …

[Courtesy of Crow/Hanrahan/Akeley]
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[Courtesy of Naga Govindaraju]

GPU

CPU

Motivation: Computational Power

GPU
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Semiconductor Scaling Rates
From: Digital Systems Engineering, Dally and Poulton

31.28Aggregate off-chip bandwidth

71.11750Pins per package

1.31.71Die-length wire delay / gate delay

1.00Device-length wire delay

1.31.71Capability (grids / gate delay)

(5)0.87150 psGate Delay

1.751.491 BMoore’s Law (grids on a die)**

Years to Double 
(Half)

Yearly 
Factor

Current 
ValueParameter

** Ignores multi-layer metal, 8-layers in 2001
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DRAM “Memory Wall”
Speed Gap between DRAM and CPU 
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Year

60%/year

7%/year

Increasing
The Gap

μPU

DRAM

[Courtesy of Mark Horowitz, from Junji Ogawa 1998 presentation]
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Hardware Considerations
“Memory wall”

Continued migration of functionality onto GPU
Physics & simulation
Higher-level graphics functionality

Size of design teams
Intel design teams increase in size 40% / generation
Validation for increasingly complex designs

Power …

GPGPU
John Owens 
University of California, Davis, USA
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[Courtesy Bob Colwell]

Power Considerations
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Architecture/Microarchitecture
Current programming model:

MIMD for vertex processing
SIMD for fragment processing

Can we share units between the stages?
To what will the instruction sets converge?
Are these the only stages that will be 
programmable?
How will the CPU interact with the GPU?
How can we extend to multiple GPUs and 
multiple CPUs?
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Generalized Graphics Pipeline?
Application

Command

Per-Surface

Tessellation

Per-Vertex

Primitive Assembly

Per-Primitive

Rasterization

Per-Fragment

Image Composition?

Per-Pixel

Display

Per-
Texel

Texture 
Memory

Pixel 
Ops

Object Space

Image Space

Texture Spaces

FB

[From Akeley and Hanrahan, Real-Time Graphics Architectures]
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Future GPUs?
Programmable stages 
operate on primitives 
(“process”)

Fragment, vertex programs
Hardwired or 
programmable stages 
“convert” one kind of 
primitive to another

Rasterization, composite
Could define own pipelines!

Reyes, raytracing …

Process

StreamStream
of Yof Y

Stream of XStream of X

Convert

GPGPU
John Owens 
University of California, Davis, USA

M11

Algorithms
Much to be done!

New/optimized stream algorithms
New features of graphics hardware

Move from kernels to applications
Scientific computation
Simulation (game physics?) + visualization
What will be first “killer app” on GPUs?

Ask for new features …
… but don’t lose what gives the GPU high 
performance

GPGPU
John Owens 
University of California, Davis, USA
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Tools and Programming Models
CPU programmers have it easy!

Straightforward programming model
Many languages
Great compilers
Optimization tools
Debuggers
Profiling and performance tools

GPU: Long way to go
Vendors working hard to provide these (but targeted primarily at
games)
Active academic research

Brook is a great start, but domain specific languages and 
other design philosophies are needed
People who need these tools should help design them!
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What should we map to GPUs?
Problems with high compute requirements
Problems with regular structure
Problems with predictable communication 
needs
Problems that require interaction with the 
graphics system

Enormous opportunity at frontiers of 
applications, software, and hardware!
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Backup slides
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