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Abstract: Procedural encoding of scattered data sets is an active area of research with 
great potential for reconstructing surface information and compactly representing large 
data. The reduced storage requirements allow greater flexibility in the methods for 
manipulating and analyzing this data interactively. In this course, we will cover both the 
mathematical foundations behind existing encoding techniques, surface reconstruction 
methods, and volumetric representations. Additionally, we will present methods for 
feature analysis in the functional domain and conclude with applications and benefits of 
functional encoding in the scientific and engineering disciplines. 
 
Who Should Attend: Anyone interested in learning how to represent either scattered, 
surface or volumetric data in a functional form, and anyone interested in learning how to 
manipulate this functional representation to generate feature information and 
visualizations. 
 
What Attendees Will Gain: The mathematical foundations for encoding scattered, 
surface and volumetric data and concrete examples of extracting features from and 
visualizing the data expressed in a functional representation. 
 
Course Outline: 

1. Introduction  (Kelly Gaither 15 minutes, 8:30 am – 8:45 am) 
The introduction will open up with the motivation behind putting this material 
together into one course, and the goals that we hope to achieve by presenting the 
material to the course attendees. This will set the stage for the full day. The 
presentation of the material is organized such that the mathematical theory is 
presented in the first half of the day, and applications of the theory and techniques are 
presented in the second half of the day. 



a. Motivation and Goals 
b. Overview of the Course  

 
2. Mathematical Foundations (Greg Nielson, Hans Hagen 2 ½ hours, 8:45 am – 

11:15 am) 
The mathematical foundations will be a survey of several techniques for modeling 
scalar and vector valued functions that are based upon arbitrarily discrete sample 
measurements in a plane, a 3D volume, on manifolds, and in a domain that consists of 
both Euclidean space and time. Scattered data of this type occurs in many science, 
engineering and medical applications. 

a. Data Examples – (Pressure over a wing , CAT, MRI, and fMRI , Rainfall over 
the Earth, Well Log Data, Big Sur Data, Flame Data, Car Flow Data, Brain 
Data, Climate Model Data, Stock Market Data, FEM Data, Reservoir Data) 

b. Classification of Data  
i. Source: measured/simulated 

ii. Dimension: range/domain 
iii. Structure, Topology and Grids (uniform, rectilinear, curvilinear, 

triangular, tetrahedral, etc.) 
c. Sampling and Brief Overview of Modeling Methods 

i. Basic Ideas – (Motivation, Problem, Basis Functions) 
ii. Methods – (Modified Quadratic Shepard, Volume Splines, Multiquadrics, 

Volume Minimum Norm Network, Localized Volume Splines) 
 

BREAK (10:00 am – 10:30 am) 
 

iii. Comparisons 
1. Analytical Comparisons 

a. MQS: Fast, reasonably good fitting properties, very large data sets 
b. Volume Splines: Easy to implement, VG fitting, Conditioning 

problems 
c. Multiquadrics: Easy, excellent fitting, Conditioning and parameter 

selection 
d. Volume MNN: Massive Data, VG fitting, Not easy to implement 
e. Local Volume Splines: Massive Data, good fitting, problem with 

subdivision selection 
2. Results of Empirical Comparison 

 
 

3. Surface Reconstruction (Greg Nielson, Hans Hagen 1 hour 45 minutes, 10:30 
am – 12:15 pm) 

Following the presentation of the necessary mathematical theory, the course will 
cover specific techniques that can be used for surface reconstruction. 

a. Triangular Patches 
b. Bezier Techniques 
c. BBG Methods 
d. The Side-Vertex Method for Interpolation in Triangles 



e. Variation of Design 
 

LUNCH BREAK (12:15 pm – 1:45 pm) 
 

4. Volume Encoding (David Ebert 1 ½ hours, 1:45 pm – 3:15 pm) 
This portion of the course will cover the process and methods for encoding 
volumetric scalar, vector and multifield data sets. RBF encoding methods are 
presented to provide specific examples of encoding volumetric data sets. 
Additionally, the benefits of being able to render this encoded data are presented to 
the attendees by covering a variety of techniques for direct rendering of the 
functionally encoded data.  

a. RBF Encoding Techniques  
i. Motivation and Survey of Approaches 

ii. Advantages and Comparisons 
iii. Details of One System for Gaussian RBF Encoding of Scalar Data 
iv. Gaussian RBF Encoding of Vector Data 

b. Rendering Issues for Interactive Exploration and Visualization 
i. Surface Generation and Visualization 

ii. Direct Rendering from Functional Encoding 
1. Hardware Capabilities and Limits 
2. Splatting Approaches 
3. Texture-based Volume Rendering 
4. Comparison and Trade-Offs 

 
5. Feature Analysis Using Functional Encoding (Kelly Gaither 1 ½ hours, 3:15 

pm – 4:45 pm) 
The motivation and a brief survey of existing feature detection techniques are 
presented to the course attendees to provide a basis from which specific feature 
definitions are presented. These feature definitions are then presented in the 
functional domain by performing a change of basis on the fundamental operators and 
directly computing the feature equations in this basis. 

a. Motivation and Survey of Existing Techniques 
b. Feature Definitions 

i. Nomenclature 
ii. Feature Definitions 

 
BREAK (3:45 pm – 4:15 pm) 

 
c. Computing Features in the Functional Domain 

i. Mathematical Operators 
ii. Computing in the Functional Domain 

 
6. Applications (Kelly Gaither 1 hour, 4:45pm – 5:45pm) 
The course will close by presenting examples of using the functionally encoded 
representation to solve systems of equations, feature definitions, and to analyze and 
visualize the results. 



a. Meshless Methods for Solving Systems of Partial Differential Equations 
b. Examples of using functional encoding to analyze computational data sets 

 
Tutorial Instructors: 
Gregory M. Nielson is a professor of computer science and affiliate professor of 
mathematics at Arizona State University where he teaches and does research in the areas 
of Computer Graphics, Computer Aided Geometric Design, and Scientific Visualization.  
He has lectured and published widely on the topics of curve and surface representation 
and design; interactive computer graphics; scattered data modeling; and the analysis and 
visualization of multivariate data.  He has edited several books and authored over 100 
scientific articles.  He has collaborated with several institutions including NASA, Xerox, 
General Motors, and LLNL. Professor Nielson received his PhD from the University of 
Utah.  He has been on the editorial boards of ACM’s Transactions on Graphics, The 
Rocky Mountain Journal of Mathematics, IEEE Computer Graphics and Applications, 
Visualization and Computer Animation Journal.  He is currently on the editorial board of 
Computer Aided Geometric Design and the Editorial Advisory Board of IEEE 
Transactions on Visualization and Computer Graphics.  He is one of the founders and 
members of the steering committee of the IEEE sponsored conference Visualization.  He 
has previously chaired and is currently a director of the IEEE Computer Society 
Technical Committee on Computer Graphics.  He is the recipient of an IEEE Meritorious 
Service Award, an IEEE Outstanding Contribution Award and the John Gregory 
Memorial Award in Geometric Modeling. 
 
Hans Hagen is currently full professor at the Technical University of Kaiserslautern and 
chairman of the Computer Science Department. He is also the scientific director of the 
institute on Intelligent Visualization and Simulation at the German Research Center for 
Artificial Intelligence (DFKI). He holds a Ph.D. in mathematics from the University of 
Dortmund, a B. S. and M. S. in mathematics and a B. S. in computer science from the 
University of Freiburg. Prior to his current position, he was an associate professor at the 
TU Braunschweig and he had several visiting positions, especially in the USA. His 
research interests include all areas of scientific visualization, computer graphics and 
geometric modeling. He was editor in chief of the IEEE Transactions on visualization and 
computer graphics from1999-2003 and is an associated editor of CAGD, Computing and 
Surveys on Mathematics in Industry. Prof. Hagen has published nearly 200 articles in 
scientific visualization, computer graphics, geometric modeling and geometry and is a 
member of ACM, GI, IEEE, and SIAM.  
 
David Ebert's research interests include scientific visualization, volume rendering, and 
procedural techniques. Ebert received his Ph.D. from The Ohio State University in 1991 
and is an Associate Professor with the School of Electrical and Computer Engineering at 
Purdue. He has taught twelve courses at the ACM SIGGRAPH Conference every year 
since 1992, has published numerous articles on visualization, volume rendering, volume 
illustration, multifield visualization, simulating natural phenomena, and is the co-author 
of Texturing and Modeling: A Procedural Approach, published by Morgan Kaufmann. 
Ebert has been very active in the visualization and computer graphics community, 
serving on numerous program committees, serving as papers co-chair for IEEE 



Visualization 98 and 99, and is currently Editor- in-Chief of IEEE Transactions on 
Visualization and Computer Graphics. 
 
Kelly Gaither (Course Organizer) is an Associate Director and Research Scientist at the 
Texas Advanced Computing Center, The University of Texas at Austin. The combination 
of her undergraduate and master’s degree in Computer Science and her doctoral degree in 
Computational Engineering make her skilled at developing and researching topics that 
are heavily rooted in the science and engineering applications. She spent ten years at the 
National Science Foundation Engineering Research Center for Complex Geometries and 
Complex Physics where she worked closely with both the Computational Fluid Dynamics 
group and the Scientific Visualization group. Her research interests include large data 
visualization, feature detection, and applications of visualization. She is currently serving 
as the general chair for the Visualization ’04 conference. She previously served as the 
program co-chair (’03), case studies co-chair (’02), works in progress co-chair (’01), late 
breaking hot topics co-chair (’00), tutorials co-chair (’98,’99), and publicity co-chair 
(’95,’96). 



Mathematical Foundations of Procedural Encoding of 
Scattered Data 

 
Gregory M. Nielson, nielson@asu.edu 

 
1. Data Examples 
 
 Rectilinear, Cartesian Grids, Well Log, Curvilinear Grids, Free hand US, Flame  
 
2. Models and Methods 
 
 2.1 Interpolation Methods 
 
 2.1.1 Sampling of Methods and Techniques 
 (i) Inverse Distance and related RBFs 
 (ii) Volume Splines and related RBFs 
 (iii) Multiquadrics 
 (iv) Volume version of Minimum Norm Network 
 (v) Localization techniques for massive data sets 
  
 References: 
 1) Nielson, Minimum Norm Network, Math. Comp. 40:161, 253-271 
 2) Nielson, Multivar. Smoothing Splines, SIAM J. Num. Anal., 11:2, 435-446 
 
 2.1.2 Comparisons 
 (i) Ease of Implementation, (ii) Applicability  
 (iii) Feature maintenance quality (iv) Efficiency  
  
 References 
 3) Franke, Scattered Data Interpolation,  Math. Comp. 38:157, 181-200 
 4) Nielson,  Scattered Data Modeling, CG&A, 13:1, 60-70 
 
 2.2 Approximation Methods 
 
 2.2.1 Least Squares 
 (i) Knot Selection, (ii) Total Fit, (iii) Venetia Criteria 
 
 2.2.2 Adaptive/Progressive Models 
 (i) Refinement strategies (ii) Cracking problems (iii) 
  
 References: 
 5) Roxborough et al. Progressive Models for US, Vis 2000, 93-100 
 6) Nielson, Triangulations & Tetra., Scientific Visualization, 429-525 
 7) Chen et al. Volume Graphics, Springer, 29-48. 
 





































































































































Tetrahedron Based, Least Squares, Progressive Volume Models with Application to 
Freehand Ultrasound Data 

In: Proceedings of Visualization 2000, IEEE CS Press, pages 93-100, 2000 
 

Tom Roxborough and Gregory M. Nielson 
 

Arizona State University, Tempe AZ 85287-5406 
tomrox|nielson@asu.edu 

 
  

Abstract In this paper we only consider freehand 3-D ultrasound. Each 
B-scan acquired during a scanning session may be thought of as a 
collection of grayscale intensity values located in space. In order 
to model these scans many researchers have imposed a regular 
rectilinear grid around them, and then filled in individual voxel 
values from the ultrasound scan information [1,17,13]. One 
problem with these methods is that one must be able to choose an 
appropriate voxel size to fit the data. If the voxels are too large 
then much of the data acquired from the scans is ignored. 
However, if too small of a size is used then there will be many 
empty voxels. Since the scanned data will not always fall exactly 
on a voxel, some method of interpolation must be used in order to 
assign intensities to each voxel. Various methods used include 
nearest neighbor interpolation [1] and distance weighted 
interpolation [13]. To avoid the problem of fitting the B-scan data 
to a regular grid, Prager et al. [15] developed a system that can 
produce arbitrary 2-D slices from the B-scans independent of any 
voxels. Because this method is based upon the intersections of an 
arbitrary plane with the B-scans it will fail when there are no such 
intersections. A plane halfway between two parallel B-scans 
would then show up as empty. 

 
In this paper we present a new method for the modeling of 
freehand collected three-dimensional ultrasound data. The model 
is piece-wise linear and based upon progressive tetrahedral 
domains created by a subdivision scheme which splits a 
tetrahedron on its longest edge and guarantees a valid 
tetrahedrization.  Least squares error is used to characterize the 
model and an effective iterative technique is used to compute the 
values of the model at the vertices of the tetrahedral grid.   Since 
the subdivision strategy is adaptive, the complexity of the model 
conforms to the complexity of the data leading to an extremely 
efficient and highly compressed volume model. The model is 
evaluated in real time using piece-wise linear interpolation, and 
gives a medical professional the chance to see images which 
would not be possible using conventional ultrasound techniques. 
 

1. Introduction and Background 
 

Two dimensional ultrasound imaging has been used for over 
30 years in medicine. It has the advantages of being inexpensive, 
non-intrusive, real-time and safe. In conventional 2-D ultrasound 
echography a clinician uses a hand held probe to acquire a series 
of grayscale images, known as B-scans. These B-scans are viewed 
on a CRT as they are being acquired, and may be saved to media 
for further investigation. In order to get a three-dimensional feel 
for the patient’s interior, the clinician must move the scanner 
around the area of interest while viewing the monitor. By training 
and experience the operator is able to mentally construct a 3-D 
model of the region being scanned, and can concentrate his 
scanning accordingly. Since the 1970’s, there have been attempts 
to construct ultrasound systems that can give actual three-
dimensional volumes [4, 9]. There are two major approaches for 
this. One is to construct an actual mechanical device that will 
acquire all the B-scans into a known volume. The other approach 
is to allow the clinician to freely probe the patient with a 
traditional ultrasound machine, while recording each B-scan’s 
position and orientation in space. In this approach, known as 
freehand 3-D ultrasound, the position and orientation information 
may be attained by any number of means. There have been 
systems developed which use mechanical arms, acoustic trackers, 
image to image registration, and electromagnetic trackers. See [4, 
9] for surveys of the history of three-dimensional ultrasound. 
Whichever system is used for freehand 3-D ultrasound, the result 
of a scanning session is a series of two-dimensional B-scans, 
along with their corresponding position and orientation (POSE) 
information. Figure 1 shows a freehand system that can be 
inexpensively assembled from readily available hardware and 
software. 

In this paper we present a new method for the modeling of 
freehand 3-D ultrasound scanning data. We approach the problem 
as a trivariate scattered data approximation problem.  See [10] and 
[12]. The domain is an arbitrary rectilinear box, which is broken 
down into a tetrahedral grid. A function approximating the B-scan 
data is constructed over this mesh. An approximated intensity 
value can be calculated at any location in the volume by means of 
linear interpolation within the desired point’s enclosing 
tetrahedron. An iterative process is used to calculate the values at 
the vertices making up the tetrahedral grid. This method has the 
advantage that no a priori knowledge is needed about voxel 
resolution. Standard volume visualization methods can be used to 
view the model [9,8], such as ray casting, isosurface extraction, 
and arbitrary slice plane extraction. The method is adaptive, based 
upon error tolerance criteria set by the user. This allows 
hierarchical and multiresolution models to be constructed. Also, 
the adaptivity property can help to guide the clinician to scan 
more in regions where more data may be needed. 

 
 
 

2. Progressive Tetrahedral Domains 
 

At all times the domain must be a valid tetrahedrization. A 
tetrahedrization is valid if the union of all tetrahedra is the domain 
of interest and any two tetrahedra only intersect at a vertex, edge, 
face or not at all [11]. For this method the initial domain is 
represented as a unit cube consisting of the six tetrahedra resulting 
from adding an edge from the origin (0, 0, 0) to its opposite corner 
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(1, 1, 1), and adding additional diagonal edges across each of the 
cube’s six faces (See Figure 2). 

 
 

 
 

Figure 1. Collecting free-hand ultrasound data. In our lab, we 
use an Ascension Flock of Birds electromagnetic tracker to get 
position and orientation for each of the B-scans.  We use the 
Stradx software provided by Cambridge University [14] 
running on an SGI O2 to simultaneously sample the tracker 
and to collect an image from the video signal of conventional 
ultrasound scanning device. 
 
 
 

 
 

Figure 2. The unit cube initially subdivided into six congruent 
tetrahedra. 
 

There have been various methods developed for subdividing 
simplicial grids [16, 7, 2, 3]. Grosso, et al [5] used a common 

splitting technique known as red-green [2, 3]. In this paper we 
have used a technique based on bisecting a tetrahedron along its 
longest edge [16, 7]. The longest edge split method was developed 
by Rivara [16]. Maubach [7] has adapted the longest edge split 
method for the special case of the initial tetrahedral grid described 
above. This is the subdivision method which we use (See Figure 
3). 

 

 
 

Figure 3. A tetrahedron is to be split along its longest edge at 
the point AD, halfway between vertices A and D. 

 
The following terminology will be used. Two tetrahdera are 

neighbors if they share a common face. A split neighbor of a 
tetrahedron t is a neighbor that shares t’s longest edge. Note that 
there can be at most two split neighbors for any tetrahedron in a 
proper tetrahedrization. Two tetrahedra are compatibly divisible if 
they are mutually split neighbors, and if their common edge is the 
longest edge for both tetrahedra. Every tetrahedron belongs to a 
generation, where the generation is an integer referring to the 
tetrahedron’s level of subdivision. Each of the six original 
tetrahedra making up the initial mesh belongs to generation 0. 
When a tetrahedron of generation n is split, it will produce two 
tetrahedra each belonging to generation n+1. The tetrahedron to 
be split is known as the parent, and the two resulting tetrahedra 
are called its daughters. The two daughters resulting from one 
parent are twins. Two tetrahedra are congruent if one of them can 
be made to exactly cover the other after any combination of the 
following affine transformations are performed: uniform-scaling, 
translation, rotation. A congruency class is a set of tetrahedra that 
are all mutually congruent. 

Using the initial subdivision into six congruent tetrahedra 
described above, and with the longest edge splitting method, the 
following properties must hold [7]: 

 All tetrahedra of a single generation belong to the same 
congruency class. 

 No matter how many subdivisions are performed, all 
tetrahedra will belong to one of only three congruency 
classes. 

 These three congruency classes are cyclic. Initially the 
tetrahedra of generation 0 belong to congruency class 0, 
those of generation 1 belong to congruency class 1 and those 
of generation 2 belong to congruency class 2. Then those of 
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generation (0+x) belong to congruency class 0, those of 
generation (1+x) belong to congruency class 1, and those of 
generation (2+x) belong to congruency class 2. See Figure 5. 

 
This process will terminate, giving a finite number of additional 
bisections. In addition, the split neighbors of t must be of the same 
generation of t, or one lower [7].  

So when a tetrahedron is split, it is bisected into two equal-
volume tetrahedra, each of which is congruent to its twin. In order 
to avoid cracks within the mesh a refinement step must be taken 
after each tetrahedral bisection. The cracking results when there is 
a violation of the triangulation criteria stated above for a proper 
tetrahedrization. A tetrahedron might intersect more than one 
other tetrahedron across a single face or single edge (See Figure 4 
). This will give discontinuities when the function is evaluated 
across these tetrahedra. To prevent this from occurring Maubach 
devised a recursive refinement process. 

 
 

 
 

 
 
 

 

 
 

 

 
Figure 5. A single tetrahedron is bisected three times. Four 
generations of tetrahedra are shown, with the eight tetrahedra 
in the final generation being congruent to the original 
tetrahedron. 

 
Figure 4. The cracking problem. The tetrahedron TA,B,C,D 
consisting of vertices A,B,C,D has been bisected into the two 
tetrahedra TA,B,D,AC and TC,D,B,AC when the edge A,C is split at 
AC. The tetrahedron TA,E,C,D has not been split. This results in 
TA,E,C,D intersecting with two distinct tetrahedra across the 
face made up of vertices A,C,D, violating a valid-
tetrahedrization criterion. 

 
 
 

3. Calculation of Vertex Values 
 
The intensity values of the vertices making up the 

tetrahedrization may be calculated at any time by using a global 
least square error approximation.  

 
 
Here is pseudo-code for a routine called Refine adapted from 

[7], which works on a single tetrahedron t, and uses the procedure 
Bisect(t), which is the simple bisection of t along its longest edge 
as shown above. 

Let 
 M = number of B-scan data points, 
 N = number of vertices in mesh, 
 Ii = unknown intensity at vertex vi,  dj = (xj, yj, zj) = B-scan pixel location, 

Refine(t)  S(vi) = collection of tetrahedra having vi as one of their 
vertices,     BEGIN 

        WHILE A split neighbor ni of t is not compatibly divisible φi = is the piece-wise linear, basis function  
            DO such that φι(vj) = δij = (1, if i=j; 0 if i≠j)                   Refine(nI) F(dj) = B-scan intensity value at dj.             END          Bisect(t) Then the function to be minimized over all vertex intensities Ii, is         FOR Each split neighbor ni of t              DO                    Bisect(ni) ∑j[∑i (Ιi φi(dj)-F(dj))]2             END      END  
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The normal equations that characterize the optimal solution are 
 

AI = b 
 

 
where A is an N x N Gram matrix, with elements 
 

Ai,j = ∑kφi(dk) φj(dk) 
 

 
 

And b is an N x 1 vector with elements 
 

bi = ∑kφi(dk) F(dk) 
 

 
and I = (I1, I2, … , IN)  is the N x 1 vector of unknown vertex 
intensities. 

 
The location of any three dimensional point with respect to a 

given tetrahedron may be represented in barycentric coordinates 
[11]. In barycentric form the 3-D Cartesian point dj is represented 
as a linear combination of the four vertices making up any 
tetrahedron. 
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where  are the four vertices of tetrahedronT , 

and the  are barycentric coordinates of point 

dj corresponding to with respect toT . If any of the barycentric 
coordinates are negative then the point does not lie within the 
tetrahedron. 
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We may use a slightly modified version of barycentric 
coordinates as a substitute for the tent function φ  that was 
defined in Cartesian coordinates above. Let 
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Often, in typical applications, there may be 
approximately a million vertices making up a tetrahedrization. 
That means the dimensions of the matrix might be on the order of 
10^6 by 10^6. Therefore it is impractical to try to solve this 

system of equations using direct matrix inverse methods. Instead 
we use a modified version of the Gauss-Seidel iterative method to 
solve for the vertex values [6].  

 
Although the matrix A might be very large it will be very sparse. 
The matrix itself never has to be stored. Instead all values may be 
calculated on an as needed basis, and all information needed to 
calculate the elements of A and B are stored within the mesh’s 
data structure. By keeping a list with each vertex containing 
pointers to the tetrahedron which contain the vertex, and storing a 
list of pointers to the data point structures within each tetrahedron, 
all needed elements may be quickly calculated.  

 
 

4. The Algorithm 
 

The unit cube is initially subdivided into six congruent and 
equal sized tetrahedra by adding an edge from the corner at the 
origin of the cube, (0, 0, 0) to its far opposite corner at (1, 1, 1), 
plus diagonal edges across each of the cube’s faces [Figure 2]. All 
B-scan values are then added to this cube. In order to place the 
three-dimensional position values from the ultrasound B-scans 
into a unit cube simple affine transformations are needed. This 
just involves uniform scaling and transformation of the sensor’s 
position readings, so that all desired B-scan positions will fall 
within the unit cube. As each B-scan value is encountered it will 
be added to one of the six tetrahedra making up the cube. At this 
point its Cartesian coordinates with respect to the cube will be 
converted to barycentric coordinates with respect to its enclosing 
tetrahedron. After adding all the B-scan image values each 
tetrahedron will contain a list of structures, where the structure 
contains the four barycentric coordinate values of the data points 
and the corresponding intensity value. The modeling process is 
now ready to begin. 

Any position within the mesh may be evaluated by simple 
interpolation, using barycentric coordinates with respect to the 
tetrahedron enclosing the position point. The approximated value 
for a point p within tetrahedron T having barycentric coordinates 
b1, b2, b3, b4 is 
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The mesh subdivision process is adaptive. This means 
we only want to split those tetrahedra that need to be split in order 
to satisfy some tolerance criteria. To decide upon the tetrahedra to 
be subdivided we do an initial solve of the least squares system, 
using the Gauss-Seidel method described above. The tetrahedra 
are then sorted according to their mean square error values, where 
the mean square error is calculated as 
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In order to avoid excessively solving the least squares system 
we have found that marking the worst five percent of the 
tetrahedra to be split works well. These tetrahedra are each 
bisected, the data points from the parent tetrahedron are added to 
the proper daughter tetrahedron, then the least squares solution is 
again calculated. If the global error is within a prescribed 
tolerance then the process is complete, and the model is done. 
Otherwise the process is repeated. 

• else 
• solve least squares system for vertex 

intensity values 
• calculate grms 

   
  

When a parent tetrahedron is split into its twin daughter 
tetrahedra its data points must be correctly assigned to these 
children, and the new barycentric coordinates calculated. Due to 
the fact that a tetrahedron is always bisected across its longest 
edge into two equal-volume, congruent tetrahedra this is a simple 
process. Figure 6 illustrates how this process works. We only need 
to compare the two barycentric coordinates corresponding to the 
vertices on the longest edge, b0bk. If b0> bk the data point will 
belong to the daughter tetrahedron coming from the b0 side of the 
parent tetrahedron. Otherwise it will belong to the other child 
tetrahedron. To update the barycentric coordinates within the new 
tetrahedra, we only need to perform one subtraction and one 
multiplication. See Figure 6 for an illustration of this. 

After each set of tetrahedral subdivisions is performed a 
global root mean square error is calculated. If this error is less 
than a prescribed tolerance than the model is done. 
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Where  is the number of tetrahedra in the mesh, and  is 
the number of B-scan data points in the mesh. 

TN D

  
 If the given global rms error tolerance is set too low, the 

subdivisions might never produce a model within the tolerance 
bound. To prevent this an upper bound on the number of 
tetrahedra produced should be given. Also, a limit on the 
smallness of tetrahedra is given, not allowing tetrahedra of more 
than a prescribed maximum generation to be subdivided. This 
minimum size of tetrahedra should be set according to the actual 
resolution achievable by the scanning device. Since the 
tetrahedron refinement process will only subdivide tetrahedra of 
the same or lower generation we do not have to worry about 
inadvertently splitting tetrahedra which do not satisfy the 
maximum generation bound during the refinement process. 

 
 
Figure 6. The calculation of new barycentric coordinates for a 
point P in tetrahedra TA,B,C,D after bisection. If bA > bD P will 
belong to tetrahedron TA,B,C,AD and will have the new 
barycentric coordinates (bA – bD), bB, bC, 2bD. Otherwise it 
will belong to TD,C,B,AD and have the barycentric coordinates 
(bD – bA), bC, bB, 2bA. 

 The following is a pseudo-code description of the 
algorithm: 
 
Initialize: 

• set tol = user-defined global rms error tolerance 
• set tetLim = user-defined maximum number of tetrahedra 

allowed in mesh  
 • set genLim = user-defined maximum generation allowed 

for a tetrahedron If a vertex has no support, meaning that no data points are 
contained within any of the tetrahedra sharing that vertex, then 
during the Gauss-Seidel solution phase there will occur a divide 
by zero situation. To avoid this we exclude all such vertices from 
the iterative solution process. This condition may occur when the 
B-scan data points are not distributed densely enough. We do not 
choose tetrahedra with fewer than two data points to be split. 
However, during the refinement process this condition may not be 
enforced, resulting in occasional unsupported vertices. Also, the 
volume being scanned does not need to cover the entire unit cube 
after transformation. During the subdivision process these vertices 
will not contribute to the solution, and will have no value. In order 
to have a complete model something must be done. These 
unsupported vertices could be given intensity values based on a 
weighted average of the nearest supported vertices. Alternatively, 
their values could be set by performing another global 
interpolation method using the supported vertices. We decided to 
take another approach here. Since ultrasound is used for medical 
diagnostic purposes it might be dangerous to set these intensity 
values when there is little actual data around them. So these 
vertices are marked as “bad”. By coloring them red within the unit 
cube a clinician doing the ultrasound scanning will know to 
collect more data in those areas, and a new fit can be calculated. 

• uniformly subdivide unit cube into 6 equal-volume, 
congruent tetrahedra 

• add all B-scan data points and intensities to their 
respective tetrahedra within the mesh. Store position as 
barycentric coordinates 

• solve least squares system for vertex intensity values 
• calculate grms = calculated global rms error for model 

Start: 
• done = false 
• while (done == false) 

• if (grms < tol) OR (number of tetrahedra > tetLim) 
• done = true 

• else 
• sort tetrahedra by mean square error in 

descending order 
• split the first five percent of sorted tetrahedra 

which satisfy:  
• tetrahedron’s generation < genLim 
• tetrahedron contains at least 2 data points 

• if (no tetrahedra can be split in above step) 
• done = true 
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When visualizing the data as arbitrary planes those parts that have 
no support can be blacked out. These measures will help prevent 
unwanted artifacts from showing up during the viewing phase. 

 
 
 

  
  

 5. Results  
  

  
We now present some results of our methods applied to 

actual data. We choose to base our examples presented here on a 
data set provided by Robert Rohling because this data set is 
typical of freehand ultrasound data. A similar data set is available 
at [14]. The data set used here consists of 462 B-scan images 
being generated, each of size 84 by 102. (The original data was 
335 by 408. We shrunk the image sizes by using a mean filter in 
because of memory constraints.) Using the position and 
orientation information from the six degrees of freedom tracker, 
each grayscale intensity value from the scan images was added to 
the domain unit cube. Models were then computed using various 
global rms error tolerances. Figure 7 demonstrates the adaptive 
nature of the subdivision process, where the grid is finer where the 
data is present. In figure 8 five of the original B-scans are shown 
next to the images extracted from the various models at the exact 
same positions in space. Notice that the modeling process has 
smoothed out the noisiness of the original B-scans, acting as a 
low-pass filter. 

 
 

 
 

 

Next we show images which result from taking an arbitrary 
two-dimensional slice through the model. These images do not 
need to correspond to any of the original B-scans, but are the 
result of evaluating the model by interpolating within the 
tetrahedra. These are images that a medical professional could not 
have seen without using 3-D modeling methods. In figure 9 one 
can plainly see a cut away view of the carotid artery, which would 
not have been possible with normal 2-D ultrasound echography. 
From these images it is apparent that 3-D ultrasound could 
become a very powerful tool in medical diagnostics. 

 
Figure 7. The top figure shows a sampling of the actual B-
scans within the domain cube. The bottom figure shows the 
tetrahedral grid after subdividing. There are 26,552 
tetrahedra, with 4,861 vertices. 
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Figure 9. The top image shows the orientation of a slice in 
relation to the original B-scan images (for clarity only one in 
four B-scan outlines is shown). On the bottom the slice image 
is shown.  This illustrates the ability to interrogate the data 
(model) as desired.  The original B-scans are collected 
approximately perpendicular to the carotid artery while the 
slice here shows an approximate lateral view. 
 

6. Conclusion  
 Figure 8. On the left are five actual B-scan images. Next to 

each is the corresponding image from the model. The rms 
error is 10.83. The grid contains 252,222 tetrahedra, with 
40,578 vertices. 

Three dimensional ultrasound echography is poised to 
become a common diagnostic tool within the medical community. 
Freehand methods used to collect the data from existing 
ultrasound machinery could provide an inexpensive, non-
obtrusive means of collecting this data. We have presented a 
unique way to model this data, using tetrahedral grids. This 
method has the advantage over other methods of being adaptive to 
the given data. Therefore no prior knowledge of voxel size is 
needed, and there is no wasted memory needed to save or 
transport the 3-D model. 

 
 
 

 
 
 

We have presented this modeling method as a way to model 
freehand three dimensional ultrasound data. However there is no 
reason that the same method could not be used on other three 

 99



 100

dimensional scattered data problems. Some possible applications 
are seismic, oceanographic or weather data.  We have not given 
any performance data on the present ultrasound application as our 
implementation is being continuously improved with the target of 
real-time rates on currently available PC’s.  .     
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1 Introduction 
 

This paper is about triangulations and tetrahedrizations.  The original and main 
motivation was to provide some information about tetrahedra and tetrahedrizations only, 
but it was quickly realized that many of these topics are easier to describe and understand 
with some background on their two dimensional analogs.  Therefore, it was decided to 
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also include material on triangulations.  While much of the material exists elsewhere in 
the literature, much is new and appears here for the first time. The intended purpose for 
this paper is to serve as a survey/tutorial in the area of data modeling and visualization.  
As data modeling and visualization becomes more sophisticated in its application 
domains and begins to deal with data sets which are more complex than Cartesian grids, 
there will be the need for tools to deal with these data sets.  We feel that the tools and 
techniques covered here are very basic and will prove to be useful in a variety of contexts 
in data visualization. 

 
And now some comments about the organization of this paper.  While 

tetrahedrizations are the goal, researchers have dealt with triangulations much longer 
than tetrahedrizations and so triangulations and related matters are much better 
understood.  The next section is a survey of triangulations and related matters of interest 
in modeling and visualization.  The following section is on tetrahedrizations and we 
attempt to follow the same flow of information as in the section on triangulations as best 
possible.  We use the phrase "as best possible" because some aspects of triangulations do 
not generalize to tetrahedrization and some facts known about triangulations and 
triangular domains are yet to be known about tetrahedrizations and tetrahedral domains.  
On the other hand there are topics of interest to tetrahedrization which have no 2D 
counterpart of interest.  For example, visibility sorting for tetrahedrizations.  The outline 
of this paper is very simple.  In Section 2 we go through a list of topics on triangulations 
and triangular domains and then in Section 3 we repeat these topics with reference to 
tetrahedrizations and tetrahedral domains. 
 
2 Triangulations 
 
2.1 Basics 
 
2.1.1 Definitions, Data Structures, and Formulas for Triangulations 

 
In order to avoid any possible confusion and problems latter, it is usually best to be a 

little precise and formal about the definition of a triangulation.   We start with a 
collection of points in the plane, P = { pi = (xi, yi), i = 1, . . . , N} and a domain of 
interest, D, which contains all of the points of P.  We assume that the boundary of D is a 
simple (does not intersect itself), closed polygon. Often D is the convex hull of P, but in 
general, it need not be convex.  In fact the boundary does not have to be a single polygon 
so that the domain is not even simply connected.  (Connected means that there is path 
joining any two points and simply connected means that the compliment is connected.)  
Roughly speaking, a triangulation is a decomposition of D into a collection of triangles 
which are formed from vertices of P.  Since we are eventually interested in defining 
functions over D in a piecewise manner over each triangle, we must require that the 
triangles do not overlap so as not to have any ambiguities.  Thus we require the collection 
of triangles of  the triangulation to be mutually exclusive and collectively exhaustive.  In 
order to continue this formalism to a precise definition, we need some additional 
notation.  A single triangle with vertices pi, pj and pk is denoted by Tijk and the list of 
triples which represents the triangulation is denoted by It.  A triangle Tijk is a closed 2D 
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point set that includes its three edges which comprise it boundary.  The interior of Tijk, 
denoted by Int(Tijk) is open and does not include the boundary. The edge joining pi and 
pj is denoted by eij and Ne = {ij : ijk in It for some k} is used to refer to the collection of 
all edges.  Formally, the definition of a triangulation requires: 

 
i) No triangle Tijk , ijk ∈ It is degenerate.  That is, if ijk ∈ It then pi, pj and pk are not 

collinear. 
ii) The interior of any two triangles do not intersect. That is if  ijk ∈ It and  αβγ ∈ It 

then Int(Tijk) ∩ Int(Tαβγ) = φ .   
iii) The boundary of two triangles can only intersect at a common edge. 
iv) The union of the all triangles is the domain D = ∪ijk ∈ It Tijk . 
 

 
Examples of valid triangulations are shown in Figure 2.1.1 and Figure 2.1.2.  Note 

that the example of Figure 2.1.1 is not convex and that of 2.1.2 is not simply connected.  
Even though the diagrams of Figure 2.1.3 and Figure 2.1.4 look alright, the actual 
triangulation given by the corresponding It's do not represent valid triangulations.  In the 
case of Figure 2.1.3 the triangle T465 is degenerate.  Even if this triangle is eliminated, 
what remains is not a valid triangulation because condition iii) would then be violated 
since edge e46 contains p5.  This example would become a valid triangulation if the point 
p5 were to be moved slightly to the right so as not to be on the edge e46.   The 
information of  Figure 2.1.4 is not a valid triangulation because condition ii) is violated.   
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Figure 2.1.1. A triangulation of a non convex domain 
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Figure 2.1.2. A triangulation of a domain which is not simply connected. 
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Figure 2.1.3. Not a valid Triangulation. 
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Figure 2.1.4. Not a valid triangulation. 

 
We now want to make some assertions about the possibility of triangulating a domain 

containing a collection of data points that is bounded by a simple, closed polygon.  First 
we note that in the case the domain contains no interior data points it is always possible 
to form a triangulation.  Just for the sake of interest, we mention two ways that this can 
be accomplished.  The first way is based upon the fact that every simple closed polygon 
with more that three vertices can be split into two polygons.  This leads to an algorithm 
which recursively splits each subpolygon until only triangles are left. The following 
argument which guarantees that each simple closed polygon has a diagonal has been 
discussed in [16].  A diagonal is an edge between two vertices that lies inside the polygon 
and does not intersect the polygon except at the endpoints. 
 
Splitting a polygon: Let b be the vertex with minimum x-coordinate and ab and bc be its 
two incident edges.  If ac is not cut by the polygon, then ac is a diagonal.  Otherwise 
there must be at least one polygon vertex inside Tabc.  Let d be the vertex inside abc 
furthest from the line through a and c.  Now edge bd cannot be cut by the polygon, since 
any edge intersecting bd must have one endpoint further from line ac. 
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b

a

c

d

 

 
 

Figure 2.1.5. Any polygon with more than three vertices can be split. 
 

The second approach leads to an iterative algorithm.  We first give a definition.  A 
vertex, pi, of a simple, closed polygon is called protruding provided the following 
conditions hold: 
 

i) The interior angle Θi, between the edges, pi-1pi and pipi+1  is less than or equal 
to π.  (Cyclic notation is used here so that pN+1 = p1)  

 
ii) The triangle Ti-1,i,i+1 contains no other vertices of the polygon than pi-1, pi or 
pi+1. 

 
iii) The interior of Ti-1,i,i+1 is contained in the interior of D. 

 
It is an easy matter to prove that every simple, closed polygon has at least one protruding 
vertex. (The proof is left to the reader.  Some people call them ears and so there must be 
two of them!).  We can triangulate the polygon bounded domain by successively 
removing protruding vertices.  This approach to triangulating the region bounded by a 
simple closed polygon is called the "boundary stripping algorithm."  It is easy to 
implement, but in a theoretical sense, it is not competitive with other algorithms (see, for 
example, the papers of Narkhede & Manocha [175] and Fournier & Montuno [94] among 
others.). 
 

Once the boundary of D has been triangulated, it is relatively simple matter to  build a 
triangulation including the interior points. This can be done by simply inserting them 
sequentially in a manner which we now describe: 
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Insertion of an interior point:  If the point to be inserted, p, lies in the interior of the 
triangle Tabc, we replace Tabc with the three triangles: Tabp, Tbcp, Tcap.  If p lies on an 
edge shared by Tabc and Tbad, then replace the two triangles Tabc and Tbad with the four 
triangles Tbcp, Tdbp, Tpca, Tpad. 
 

a

p

b

c

b a

c

d

p

 

 
 

 
 

Figure 2.1.6. Insertion of an interior point. 
 
 

 
It is also possible to generalize the insertion idea to include an edge.  Once we are armed 
with this capability, we know that we can triangulate any polygon bounded domain: 
simple connected or multiply connected (i.e. with holes).  
 
Insertion of an interior edge:  Assume that the one endpoint, p, lies in the triangle Tabc 
and that the other endpoint, q, lies in the triangle Txyz.  Collect all of the triangles from 
Tabc to Txyz which are intersected by edge pq and form a region R with polygon 
boundary D.  We can split D with polygon apqw, where a is the vertex of Tabc not on the 
edge common with the other triangles whose union is R and w is the analogous vertex of 
Txyz.  Now we know that each of these two domains can be triangulated.  The union of 
these two triangulation, which each contain the edge pq, can replace the previous 
triangulation of D. 
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Figure 2.1.7. Insertion of an interior edge. 
 

In addition to It, which represents the triangulation, it is often worthwhile to generate 
and maintain some auxiliary information about the neighbors of each triangle.  This 
information is useful for traversal algorithms and evaluation algorithms which have a 
searching component that determines the particular triangle containing a point where a 
function defined piecewise over the triangulation is to be evaluated.   One very common 
and particularly useful data structure is that which is illustrated in Figure 2.1.8.  The first 
three columns contain the data of It with the additional constraint that the reading from 
left to right (cyclically), the vertices of each triangle are traversed in a clockwise order.  
The next three columns contain the indices of the triangles which are neighbors to this 
triangle.  The character φ indicates that the triangle has an edge that is part of the 
boundary of D.  The entries of these three columns are also in a special order.  The forth 
column contains the index of the triangle which shares the common edge with vertex 
indices specified in the second and third column.  Similar relationships hold for the 5th 
and 6th columns.  The information represented by this data structure is called a 
"triangular grid".  The neighborhood information contained in the last three columns does 
not contain any "new" information over that of It, but it is often (and this depends of 
course on the application) the case that it is useful data which is worth generating a 
priori. 
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Figure 2.1.8. An example that defines a triangular grid structure. 
 

Another data structure for representing a triangulation which is useful for some 
applications is illustrated by the example shown in Figure 2.1.9 which represents the 
same triangulation as that of Figure 2.1.8.  Here, for each vertex a list of all vertices 
which are joined by an edge of the triangulation is given.  This list is given in counter 
clockwise order around each vertex.  This is called the data point contiguity list.  We 
mention this particular data structure because of its convenience for dealing with the 
optimal Delaunay triangulation discussed in the next section.  Also, it is very useful for 
computing the parameters of the Minimum Norm Network method [179] which is one of 
the most effective C1 interpolation methods for scattered data. 
 
 
 Vertex  Joining Vertices 
 1  2, 3, 4, 5 
 2  8, 7, 3, 1 
 3  1, 2, 7, 6, 4 
 4  3, 6, 5, 1 
 5  1, 4, 6, 7 
 6  3, 7, 5, 4 
 7  6, 3, 2, 8, 5 
 8  2, 7 
 

Figure 2.1.9. The data that defines the data point contiguity list. 
 

Even though there are a number of possible triangulations for any given domain D, 
the number of triangles is fixed once the boundary has been specified.  More precisely, if 
Nb represents the number of vertices on the boundary and Ni the number of interior 
vertices so that N = Nb + Ni, then the following formulas hold: 
 

Nt = 2Ni + Nb - 2 
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and 
 

Ne = 3Ni + 2Nb - 3, 
 
where Nt is the total number of triangles and Ne is the total number of edges.  The 
importance of these formulas (not so much what the values in the formulas are, but more 
the fact that some fixed formula holds) will show up in the next section.  If we let Mi 
represent the number of points joining to pi then it is easy to see that  
 
 

∑
i=1

N
 Mi  = 2Ne 

 
and so we have that the "average valence" of a point is given by 
 
 

M 
_

  = 

∑
i=1

N
 Mi

 (Ni + Nb)  =  6 - 2 
(Nb +3)

N   

 
which is approximately 6.  For a sphere (or any domain homeomorphic to a sphere) we 
have no boundary points and so N = Ni and the analogous formulas are 
 

Nt = 2(N - 1),        Ne   = 3(N - 1) ,      M 
_

 = 6 Error!) . 
 
2.1.2 Some Special Triangulations 
 

One of the simplest triangulations results from splitting the rectangles of a Cartesian 
grid.  A Cartesian grid involves two monotonically increasing sequences, xi, i = 1, . . . , n 
and yj, j = 1, . . . , m.  The grid points have coordinates (xi, yj) and these points mark out 
a cellular decomposition of the domain consisting of rectangles.  See Figure  2.1.10.  
Forming an edge with one of the diagonals of these rectangular cells leads to a 
triangulation of the domain.  In Figure 2.1.11 is shown a triangulation where a consistent 
choice for the diagonal is made. In Figure 2.1.12 is shown a triangulation with mixed 
choices for the diagonals.  In some applications where dependent ordinate values are 
known, it is possible to base the choice of the diagonal upon some criteria such as 
minimum jump in normal vector (see Section 2.4 ) or whether or not the diagonal vertices 
are separated on connected based upon the hyperbolic contours at the mean value (see the 
asymptotic decider criteria discussed in [186]). In general for this type of triangulation 
which results from a Cartesian grid, it is not necessary to maintain the triangular grid 
structure (see Figure 2.1.8) as this information can be directly inferred from the natural 
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labeling of pij = (xi, yj).  Only the information which indicates which diagonal is selected 
needs to be made available. 
 

x ix 1 x 2 x i-1 x i+1 x n

y 1

y j+1

y j-1

y j

y m

y 2
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Figure 2.1.10. Cartesian Grid. 
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Figure 2.1.11. Triangulation from Cartesian grid with uniform diagonal choice. 
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Figure 2.1.12. Triangulation from Cartesian grid with mixed diagonals. 
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We now want to discuss some special triangulations which result from curvilinear 
grids.  A curvilinear grid is specified with two "geometry arrays" (xij, yij), i = 1, . . . , M; j 
= 1, . . . , N.  A cell Cij consists of the quadrilateral with the boundary delineated by (xij, 
yij) to (xi+1j, yi+1j) to (xij, yij) back to (xij, yij).  It is assumed that these four points form a 
simple (non intersecting) polygon so that the quadrilateral is actually well-defined.  This 
condition obviously puts some geometric constraints on the values of the geometry arrays 
that specify a curvilinear grid.   
  

 

 

(X   , Y   )51 51

(X   , Y   )75 75

 
Figure 2.1.13. An example of a curvilinear grid. 

 
An example of a curvilinear grid is shown in Figure 2.1.13.  In this case the cell C73 

degenerates to a triangle because (X83, Y83) and (X84, Y84) are the same point and the 
cell C83 degenerates to an edge because, in addition, (X93, Y93) and (X94, Y94) are the 
same point.  The cells C33, C43, C53, C63 and C73 have been removed from the domain 
creating the hole in the interior. 
 

The domain (the union of all of its cells) can be triangulated by simply triangulating 
each of the cells by choosing a diagonal to an edge of the triangulation.  An example 
related to the grid of Figure 2.1.13 is shown in Figure 2.1.14.  Here we have modified the 
grid by moving the point (x72, y72) a little.  This serves to point out that if the cell is not 
convex, then there may be only one choice for the diagonal.   
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(X   , Y   )51 51

(X   , Y   )75 75

 
Figure 2.1.14.  Triangulation resulting from curvilinear grid. 

 
We now discuss some special triangulations obtained by subdividing an existing 

triangulation.  We briefly mention a couple of possibilities.  The first is based upon 
inserting an additional point into the interior of an existing triangle and thereby forming 
three new triangles.  This is illustrated in Figure 2.1.15.  This particular type of 
subdivision is sometimes referred to as the Clough-Tocher split because of its association 
with a very well known finite element shape function defined over a triangular domain. 

 
Another way to subdivide an existing triangulation is to insert a new point on an 

existing edge and split the two triangles (unless the edge is on the boundary) which share 
this edge.  If all edges are split simultaneously we obtain yet another triangulation where 
each previous triangle is replaced by four new ones.  Two different ways for forming 
triangles from these points is shown in Figure 2.1.16 and Figure 2.1.17 respectively.  
These types of subdivision are particularly interesting due to the nested properties of 
function spaces which are defined in a piecewise manner over the embedded 
subdivisions.  This can lead to wavelets and their related multiresolution analysis.  For 
the efficient application of these triangulations, it is important to have a method of 
labeling the triangles which allows an efficient algorithm for finding the labels of all 
neighbors of a triangle.  The labeling scheme illustrated in Figure 2.1.17 has these 
properties.  We call it the divide and flip scheme and have found it to be very useful for 
implementations.  It is related to the spherical quadtrees discussed by Fekete [85].  
 

 

 
 

Figure 2.1.15. Subdivision by inserting a new point that is interior to an existing triangle. 
 

 
13



 
Figure 2.1.16. Nested subdivision triangulation. 
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Figure 2.1.17. The divide and flip labeling scheme for a nested subdivision triangulations. 
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Figure 2.1.18. A triangulation obtained by splitting each edge of an existing triangulation 

and forming triangles as indicated in Figure 2.1.17. 
 
2.2 Optimal Triangulations 

 
2.2.1 Types and Characterizations 

 

skinny triangle with  
a very small angle

skinny triangle with 
a very large angle

 

 
Figure 2.2.1. Examples of poorly shaped triangles 

 
There are many possible triangulations of a given, polygon bounded domain D. For 

some applications (but not all) it is desirable to avoid poorly shaped triangles.  These are 
triangles with very large angles or ones with very small angles.  This give rise to two 
types of optimal triangulations which have been discussed quite widely: the MaxMin and 
MinMax.  Both of these optimal triangulations have a similar method of characterization.  
Associated with each triangulation there is a vector with Nt entries representing either the 
largest or smallest angle of each triangle.  The entries of each vector are ordered and then 
a lexicographic ordering of the vectors is used to impose an ordering on the set of all 
triangulations.  In the case of the MinMax criterion, Ai is the largest angle of a triangle 
and the entries of each vector, At, are ordered so that  
 

At = (A1, A2, . . . , Ant), Ai ≥ Aj, i < j. 
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The smallest of these vectors based on their lexicographic ordering associates with the 
optimal triangulation.  In the case of the MaxMin criteria, ai, is the smallest angle and the 
entries of each vector are ordered the other way so that 
 

at = (a1, a2, . . . , ant), ai ≤ aj, i < j. 
 
The largest of these vectors represents the optimal triangulation in the MaxMin sense.   In 
Figure 2.2.2, six data points are shown which have a total of ten possible triangulations 
which are shown in Figure 2.2.3.  The associated vectors for MinMax criterion are 

 
 Aτ0  = (2.84, 2.36, 1.99, 1.77, 1.57) 
 Aτ1  = (2.98, 2.84, 1.99, 1.91, 1.57) 
 Aτ2  = (2.98, 2.42, 1.91, 1.88, 1.57) 
 Aτ3  = (2.84, 2.36, 2.32, 1.99, 1.40) 
 Aτ4  = (2.42, 2.36, 1.88, 1.77, 1.57) 
 Aτ5  = (2.98, 2.42, 1.95, 1.91, 1.27) 
 Aτ6  = (2.42, 2.36, 2.32, 1.88, 1.40) 
 Aτ7  = (2.42, 2.36, 2.32, 1.50, 1.50) 
 Aτ8  = (2.42, 2.36, 1.95, 1.74, 1.50) 
 Aτ9  = (2.42, 2.36, 1.95, 1.77, 1.27) 
 
which we rearrange into decreasing order to obtain 
 
 Aτ1  = (2.98, 2.84, 1.99, 1.91, 1.57) 
 Aτ5  = (2.98, 2.42, 1.95, 1.91, 1.27) 
 Aτ2  = (2.98, 2.42, 1.91, 1.88, 1.57) 
 Aτ3  = (2.84, 2.36, 2.32, 1.99, 1.40) 
 Aτ0  = (2.84, 2.36, 1.99, 1.77, 1.57) 
 Aτ6  = (2.42, 2.36, 2.32, 1.88, 1.40) 
 Aτ7  = (2.42, 2.36, 2.32, 1.50, 1.50) 
 Aτ9  = (2.42, 2.36, 1.95, 1.77, 1.27) 
 Aτ8  = (2.42, 2.36, 1.95, 1.74, 1.50) 
 Aτ4  = (2.42, 2.36, 1.88, 1.77, 1.57) 
 
which implies the following ordering 
 

τ4 < τ8 < τ9 < τ7 < τ6 < τ0 < τ3 < τ2 < τ5 < τ1 
 
and so τ4 is the optimal triangulation in MinMax sense.  On the other hand, the 
associated vectors for MaxMin criteria sorted in increasing order are 
 
 aτ1  = (0.02, 0.04, 0.35, 0.46, 0.50) 
 aτ2  = (0.02, 0.11, 0.42, 0.46, 0.50) 
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 aτ5  = (0.02, 0.11, 0.50, 0.58, 0.88) 
 aτ3  = (0.04, 0.14, 0.35, 0.37, 0.66) 
 aτ0  = (0.04, 0.14, 0.35, 0.46, 0.62) 
 aτ6  = (0.11, 0.14, 0.37, 0.42, 0.66) 
 aτ7  = (0.11, 0.14, 0.37, 0.46, 0.70) 
 aτ4  = (0.11, 0.14, 0.42, 0.46, 0.62) 
 aτ8  = (0.11, 0.14, 0.57, 0.58, 0.70) 
 aτ9  = (0.11, 0.14, 0.58, 0.62, 0.88) 
 
which results in the following ordering 
 

τ1 < τ2 < τ5 < τ3 < τ0 < τ6 < τ7 < τ4 < τ8 < τ9 
 
and so τ9 is the optimal triangulation in the case of the MaxMin criterion. 
 

 

V6=(.50,.80)

V4=(.70,.15)
V3=(.40,.20)

V5=(.85,.40)

V1=(.50,.90)

V2=(.20,.50)

 
 

Figure 2.2.2. Six data points. 
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τ0τ1τ2

τ3τ4

τ8 τ7 τ6

τ5

τ9
 

 
Figure 2.2.3. Ten triangulations of six data points. 

 
In the case where D is the convex hull of the points of P, there is an important 

relationship between the MaxMin triangulation and the Dirichlet tessellation.  The 
Dirichlet tessellation is a partition of the plane into regions Ri, i = 1, . . . , N called 
Thiessen regions.  The Thiessen region Rk consists of all points in the plane whose 
closest point among pi, i = 1, . . . , n is pk.  A Dirichlet tessellation is usually illustrated 
by drawing the boundaries of the Thiessen regions.  The collection of these edges is 
sometimes referred to as the Voronoi diagram ( see [252])  An example is shown in the 
left image of Figure 2.2.6.  In the right image of Figure 2.2.6 is shown the MaxMin 
triangulation which is also called the Delaunay triangulation.  It is dual to the Dirichlet 
tessellation in that the edges of this optimal triangulation join vertices which share a 
common Thiessen region boundary.  We have included the great circles in the left image 
of this figure so as to point out another important property of the Dirichlet tessellation 
and its companion Delaunay triangulation.  By definition, the edges of the Thiessen 
regions meet at triads (possibly more than three edges meet in some special, 
neutral/cyclic cases) which are equally distant to three points.  These three points will 
form a triangle of the optimal triangulation and the great circle will not contain any other 
data points.   

 
We can be a little more formal about this properties if we introduce some notation.  

Recall that It = { (i(m), j(m), k(m)), m = 1, .. . . , Nt} so that the three data points pi(m), 
pj(m), pk(m) will be the vertices of a triangle of the triangulation.  We assume that the 
neighbor information of the triangular grid is given by three arrays ij(m), jk(m), and 
ki(m), m = 1, . . . , Nt.  Let Vm be the point which is equidistant from pi(m), pj(m) and 
pk(m) and Cm = { p : ||p - Vm|| ≤ ||Vm - pa(m)||, a = i, j or k} be the circumcircle (disk) for 
this triangle which has Vm as it center.  The Delaunay triangulation is characterized by 
the fact that Cm does not contain any other data points pi, i = 1, . . . , N other than pi(m), 
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pj(m) and pk(m).  The points Vm are the vertices of the Voronoi diagram.  In order to draw 
the Voronoi diagram we simply start with some Vm and draw the edges to the three 
points that are joined to it; namely Vij(m), Vjk(m) and Vki(m).  If anyone of ij(m), jk(m) or 
ki(m) is zero (say ij(m), indicating the edge joining pi(m) and pj(m) is on the boundary of 
the convex hull) then we draw the ray emanating from Vm in the direction perpendicular 
to the appropriate edge (which is pi(m)pj(m) if ij(m)=0, pj(m)pk(m) if jk(m) = 0 and 
pk(m)pi(m) if ki(m) = 0).  If we go through the list of triangles and draw three edges for 
each Vm we will actually be drawing each edge (not each ray) twice.  We can avoid this 
duplication by (for example) testing whether or not m > ij(m), m > jk(m), m > ki(m) 
before we draw the corresponding edge. 

 

Vm Vij(m)

 

=p i(m) pk(ij(m))

= pj(ij(m))pj(m)

pk(m)

 
 

Figure 2.2.4. Drawing the Dirichlet tessellation from the triangular grid structure. 
 

Because of this relationship between the Dirichlet tessellation and the optimal 
MaxMin triangulation, we can extend the idea of MaxMin or Delaunay triangulation to 
any domain where we can compute the distance between two points.  The sphere 
provides an interesting and useful example.  Here the distance between two points p and 
q is easily computed as cos-1(p•q) so the Dirichlet tessellation is also easy to compute.  
An example is shown in the right images of Figure 2.2.5.  The left image depicts the 
triangulation which is dual to this tessellation. 
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Figure 2.2.5. Spherical triangulation and tessellation 

 
 

  

 

  
 

Figure 2.2.6. The Dirichlet tessellation and its dual triangulation. 
 

There have been many other criteria for characterizing optimal triangulations that 
have been studied and discussed in the literature.  Some turn out to be equivalent to those 
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we have mentioned here and some only appear to be similar and so one needs to be rather 
careful.  Even though the terminology can be similar, the criterion of minimizing the 
maximum angle is not the same as the MinMax criterion we have described here.  It is 
easily the case the two quite different triangulations with different vectors At (as defined 
above) could have the same maximum angle and could both be a triangulation which 
minimizes the maximum angle.  The example of Figure 2.2.2 has this property.  Each of 
the triangulations  τ6 , τ7 , τ9 , τ8  and τ4  have a maximum angle of 2.42 which turns out 
to be a minimum and so any one of these triangulations would satisfy the criterion of 
minimizing the maximum angle, while only  τ4  satisfies MinMax criterion described 
here.  Overall, the topic of optimal triangulations can be rather technical and one has to 
be careful when comparing results found in the literature. 
 
2.2.2 Algorithms for Delaunay Triangulations 
 

In this section we discuss some ideas and techniques leading to algorithms for 
computing the Delaunay triangulation of a set of points in the plane.  In general, this is a 
very rich and full area of research and here we can only provide a glimpse.  The literature 
is very abundant with both practical and theoretical papers on this subject.  There is not a 
single "best" algorithm.  The choice depends upon the particular application and the tools 
and resources available.  It is a good strategy to be armed with a collection of ideas, tools 
and techniques so that an effective algorithm can be custom designed for the application 
at hand.  Our approach for the material for this section is based upon a discussion of the 
ideas behind a few number of selected algorithms.  Our selection is based upon potential 
usefulness of the ideas and also what would be representative.  In addition, we 
particularly interested in those ideas which extend most easily to three dimensions.  But, 
just for the sake of interest, we have included the description of one 2D algorithm which 
does not extend at all to 3D! 
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Figure 2.2.7. Notation and terminology for Delaunay triangulation and Dirichlet 
tessellation. 

 
The Swapping Algorithm of Lawson [139]: The basic operation of this algorithm 

consists of swapping the diagonal of a convex quadrilateral.  Lawson [138] showed that 
any triangulation of the convex hull can be obtained from any other triangulation by a 
sequence of these operations.  (Later this property was established for nonconvex 
domains by Dyn and Goren [66].)  Furthermore, Lawson proved that if the choice of the 
diagonal is made on the basis of the MaxMin criterion for the quadrilateral only, 
eventually the global optimal triangulation will be obtained.  In other words, for this 
criterion, a local optimum is a global optimum.  A typical implementation of this type of 
algorithm would insert new points (say in sorted x-order) in the interior of an existing 
triangulation or connect to all points on the boundary which are visible from the new 
point.  This new triangulation is then optimized by testing and possibly swapping the 
diagonals of convex quadrilaterals.  It is interesting to note that this type of algorithm 
will not necessarily produces the MinMax because for this criterion, a local extreme is 
not necessarily a global optimum.  The example of Figure 2.2.2 of the previous section 
illustrates this.  Based upon the MinMax criterion, τ4 is optimal and τ8 is a local 
minimum.  Locally optimal swaps of diagonals from τ8 would never lead to τ4.  The 
algorithm could easily get trapped in a local extreme at τ8.  The ideas of simulated 
annealing can be used to develop algorithms which can escape from these local extrema.  
See Schumaker [225] for example.  
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The Algorithm of Green & Sibson [107]: This algorithm depends heavily upon a 
particular data structure used to store the Delaunay triangulation (or Dirichlet 
tessellation).  For each object (a Dirichlet tile or window boundary constraint) is recorded 
in a "contiguity list" consisting of all objects with which it is contiguous.  This data 
structure is very similar to the contiguity list structure we described in Figure 2.1.9 but it 
also includes some window boundary constraints.  New points are inserted sequentially.  
We quote directly from [107] as to how this done. 
 

The contiguity list for the new point is then built up in reverse (that is, 
clockwise) order and subsequently standardised.  We begin by finding 
where the perpendicular bisector of the line joining the new point to its 
nearest neighbour meets the edge of the nearest neighbour's tile, clockwise 
round the new point.  Identifying the edge where this happens gives the 
next object contiguous with the new point and this is in fact the first to go 
onto its contiguity list. The new perpendicular bisector is then constructed 
and its incidence on the edge of this new tile is examined to obtain the 
subsequent contiguous object: successive objects are added to the 
contiguity list in this way until the list is completed by the addition of the 
nearest neighbour.  Whilst this being done old contiguity lists are being 
modified: the new point is inserted in each and any contiguities strictly 
between the entry and exit points of the perpendicular bisector are deleted, 
the anticlockwise-cyclic arrangement of the lists making both this and the 
determination (sic) of the exit very easy.  

 
This insertion algorithm requires the computation of the nearest existing data point to 

the data point that is to be inserted.  The authors discuss an algorithm which takes 
advantage of the tessellation computed so far.  In the authors words: "Simply start at an 
arbitrary point and "walk" from neighbour to neighbour, always approaching the new 
point, until the point nearest to it is found." 
 

K

N

L

 

 
 

Figure 2.2.8. An aid to the Green and Sibson algorithm. 
 

The algorithm of Bowyer [21]: Bowyer described an algorithm for inserting a new 
point (lying in the convex hull) into an existing Delaunay triangulation.  An example 
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given by Bower and which we include in Figure 2.2.9 serves to define this data structure.  
(A careful examination of this data shows that it is the same as the triangular grid 
structure of Figure 2.1.8).  In the terminology of Bowyer, the forming points for a vertex 
are simply the vertices of the triangle which has this particular vertex as the center of its 
circumcircle.  Since each triangle gives rise to a vertex, giving a list of indices of the 
forming points for each vertex (as Bowyer does) is equivalent to giving a list of indices 
of the data points which comprise each triangle of triangulation.  Except for change in 
ordering, the neighboring vertices is exactly the same as the indices of the triangle 
neighbors as given in the triangular grid data structure. 
 
Vertex Forming points Neighboring vertices 
 1 2 3 1 2 3 
V1 P6 P4 P5 V4 φ V6 
V2 P1 P4 P3 V3 φ V7 
V3 P2 P3 P4 V2 V4 V5 
V4 P2 P5 P4 V1 V3 φ 
V5 P7 P3 P2 V3 φ φ 
V6 P6 P8 P4 V7 V1 φ 
V7 P1 P8 P4 V6 V2 φ 
 

P
3

P7

P2

P5

P
6

P
8

P1

P4

Q

W1

V4

V2

V7

V6

V1

W4

W2

W3

W5
V5

V3

 
Figure 2.2.9. Illustrating the algorithm of Bower[21]. 

 
In order to insert a new point (Q in Figure 2.2.9) within the current convex hull of the 

data points, Bowyer [21] gives the following algorithm: 
 

1. Identify a vertex currently in the structure that will be deleted by the new point 
(say V4).  Such a vertex is any that is nearer to the new point than to its forming 
points 
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2. Perform a tree search through the vertex structure starting at the deleted vertex 
looking for others that will be deleted.  In this case the list will be: {V4, V3, V5} 

 
3. The points contiguous to Q are all the points forming the deleted vertices: {P2, 
P5, P4, P3, P7} 

 
4. An old contiguity between a pair of those point will be removed ( P2 - P4 say) 
if all its vertices {V4, V3} are in the list of deleted vertices. 

 
5. In this case the new point has five new vertices associated with it: {W1, W2, 
W3, W4, W5}.  Compute their forming points and neighbouring vertices.  The 
forming points for each will be the point Q and two of the points contiguous to Q.  
Each line in the tessellation has two points around it (the line V3 - V2, for 
example, is formed by P3 and P4).   The forming points of the new vertices and 
their neighbouring vertices may be found by considering vertices pointed to by 
members of the deleted vertex list that are not themselves deleted, and finding the 
righs of points around them.  Thus W5 points outwards to V2 from Q and is 
formed by {P3, P4, Q}. 

 
6. The final step is to copy some of the new vertices, over writing the entries of 
those deleted to save space. 

 
The Algorithm of Watson [254]: This algorithm relies on the property of a 

Delaunay triangulation that a triple of data point indices (i, j, k) will be in It provided the 
circumcircle of pi, pj, and pk contains no other data points.  As with the other algorithms, 
this algorithm is based upon inserting a new point into an already existing Delaunay 
triangulation.  The general philosophy of Watson's approach is described by the 
following two steps: 
 

1. Find all triangles whose circumcircle contains the point to be inserted. 
 

2. For each of these triangles, form three new triangles from the point to be 
inserted and the three edges of this triangle and test to see if any of these three 
new triangles contain any other data points.  If not, then add this new triangle to 
the triangulation. 

 
More details for this general approach are given in the flow diagram of Figure 2.2.10 

which is based upon the flow diagram of [254]. 
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Figure 2.2.10. Flow Diagram for Watson's Algorithm. 
 

Watson [254] describes a number of features and details to make the basic algorithm 
efficient and eventually discusses a particular implementation which he says has an 
expected running time which is observed to not increase more that N3/2. 
 

The embedding/lifting approach: Algorithms of this type are based upon a very 
interesting relationship that exists between the three dimensional convex hull of the lifted 
points (xi, yi, xi2 + yi2) and the Delaunay triangulation.  Faces on the convex hull are 
designated as being either in the upper or lower part.  The lower part consists of faces 
which are supported by a plane that separates the point set from (0, 0, -oo).  The 
Delaunay triangulation is obtained directly form the projection onto the x-y plane of the 
lower part of the convex hull.  See [27] and [68].  An algorithm for computing the convex 
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hull which is based on an initial sort followed by a recursive divide-and-conquer 
approach has been described by Preparata and Hong [202].  This algorithm is also 
covered in [68] and [203]  Theoretically the algorithm is optimal time O(n log(n)), but 
Day [49] reports that empirical data implies a worst-case complexity of O(N2)  The paper 
of Day [49] covers many of the details and special case issues of practical interest for 
implementation which are often brushed over in more theoretical papers. 
 

Divide and Conquer Algorithms: The general structure of this type of algorithm is 
to divide the data set into subsets A and B, solve the problem for A and solve the problem 
for B and merge the results into a solution for A ∪ B.  See Figure 2.2.11.  Divide and 
conquer algorithms can lead to theoretically optimal algorithms, but often fail to be 
competitive in practical usage.  The merging portion is often the most troublesome in 
trying to maintain bounds on the running times and complexity of the algorithm.  
 

 

 
 

Figure 2.2.11. Divide and Conquer Algorithms 
 
2.3 Visibility Sorting og Triangulations 
 

This is an example of an area that is interesting in 3D but not in 2D.  It is possible to 
make a definition of a visibility sort for a triangulation which is completely analogous to 
that of a tetrahedrization, but there does not appear to be any application or use for such a 
property.  We defer further discussion on visibility sorting to Section 3.3. 
 
2.4 Data Dependent Triangulations 
 

The topic of data dependent triangulations arises within the context of determining a 
modeling function F(x, y) for the data (Fi; xi, yi), i = 1, . . . , N.  A relatively simple 
approach to defining a modeling function is to first form a triangulation of the convex 
hull of the independent data (xi, yi), i = 1, . . . , N and then define F to be piecewise linear 
over this triangulation.  This will yield a C0 (continuous) function which interpolates the 
data; that is, F(xi, yi) = Fi, i = 1, . . . , N.  We denote this function by FT(x,y).   Any 
triangulation of the independent data (xi, yi), i = 1, . . . , N will suffice for this approach.  
While we are well aware of the many desirable properties of the Delaunay triangulation, 
it might very well be the case that some other triangulation whose choice would depend 
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upon the values Fi, i = 1, ., . . , N would lead to some desirable properties for the 
modeling function F.  This is the basic idea of data dependent triangulation.  Of course, 
there are potentially many ways to accomplish this, but we choose for this discussion 
here to briefly describe the criteria called "nearly C1" as proposed in [67].  An ordering is 
imposed on the collection of all possible triangulations of the convex hull in the 
following manner.  First a local cost function for each edge ei = 1, . . . , Nie = Ne - Nb is 
defined and denoted by S(FT, ei).  (We will shortly describe the four examples of local 
cost functions covered in [67]).  If T and T' are two triangulations, then 

 
T ≤ T' 

 
provided the vector 
 

(s(FT, e1), s(FT, e2), . , . , . ,  s(FT, eNie)) 
 

is lexicographically less than or equal to 
 

(s(FT', e1), s(FT', e2), . , . , . ,  s(FT', eNie)). 
 

It is assumed that the components of these vectors are arranged in nonincreasing order.  
The goal is then to find the optimal data dependent triangulation which is defined by 
having the smallest associated vector under this lexicographical ordering.  Since there are 
only a finite (albeit possibly very large) number of possible triangulations, we know that 
a global minimum exists even though it may not be unique and it may not be so easy to 
compute.  The algorithm used in [67] is similar to the swapping algorithm of Lawson 
(which we have described above in Section 2.2) in that an initial triangulation is obtained 
and then an internal edge of a convex quadrilateral is considered.  If T' < T, where T' is 
the same triangulation as T except the diagonal of the convex quadrilateral has been 
switched, then this switch is made and other edges are considered for potential swapping.  
Since each swap moves strictly lower in the lexicographic ordering, we are guaranteed 
that this algorithm will eventually converge after a finite number of steps.  This means 
that swapping any edge would not move to a smaller triangulation.  This limit 
triangulation may not be the global minimum, it is only guaranteed to be a local 
minimum and steps to find the global minimum must do more than swap diagonals which 
improve (with respect to the ordering) the triangulation.   
 

P 2
P 1

( , )xk yk

xi yi( , )
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Figure 2.4.1. Notation for local cost function definitions. 
 

We now describe the four local edge cost functions used in [67].  Let P1 = a1x + b1y 
+ c1 and P2 = a2x + b2y + c2 be the two planes defined over the two triangles of a convex 
quadrilateral. 
 
i) The angle between normals:  The local cost function is taken as the acute angle 
between N1 and N2 which are the respective normals for P1 and P2. 
 

s(FT, e) = cos-1(A) 
 
where  
 

A = 
a1a2+b1b2+1

 (a
2
1+b2

1+1)(a2
2+b2

2+1)
  . 

 
ii) The jump in normal derivative:  This cost function is the difference between the 
derivative of P1 and P2.  This derivative is taken in the direction perpendicular to the 
edge dividing the two triangles. 
 

s(FT, e) = [nx(a1-a2) - ny(b1-b2)] 
 
where (nx, ny) is a unit vector perpendicular to the edge e. 
 
iii) The deviations from linear polynomials: The cost functions measures the error 
between P1 and P2, evaluated at the other point of the quadrilateral. 
 

s(FT, e) = (P1(xi, yi) - Fi)2 + (P2(xk, yk) - Fk)2  
 
iv) The distance from planes:  This cost functions measures the distance between the 
planes P1 and P2 and the corresponding vertex of the quadrilateral. 
 

s(FT, e) = 
(P1(xi,yi)-Fi)2

a2
1+b2

1+1
 + 

(P2(xk,yk)-Fk)2

a2
2+b2

2+1
  

 
Some typical results are given in [67] which confirm the expectation that using the 

optimal data dependent triangulation improves the overall fitting properties of FT over 
that of the Delaunay triangulation, which, by the way, is used as the initial triangulation 
for the swapping algorithm.  It is observed that long thin triangles tend to appear where 
the data seems to indicate a function that is increasing (or decreasing) relatively rapidly 
in a certain direction.  The use of the data dependent triangulation generally gives an 
overall reduction in errors when certain test functions are used to generate the data. 
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As we have mentioned, the local swapping algorithm used in [67] can only find a 
local minimum.  In order to move more closely to the globally optimal data dependent 
triangulation, Schumaker [225] and Quak and Schumaker [204], [205], [206] have 
involved the tools of simulated annealing.  More details on this are contained in Section 
3.6 on data dependent tetrahedrizations.  We include here the results of one example 
described by Schumaker.  The data consists of  
 

(Fij; xi, yj);   xi , yj = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0; 
 
where 
 

F(x,y) = (y - x2)+ . 
 
Three triangulations are shown in Figure 2.4.2.  The first is the Delaunay triangulation of 
the independent data.  The next is the triangulation which results from the local swapping 
algorithm of [67] using the local cost function of "angle between normals".  The last is 
the triangulation after simulated annealing has been applied.  The associated vectors for 
each of these triangulations is given in Figure 2.4.4. 
 

 

  
Figure 2.4.2. Examples of data dependent triangulations. 
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Figure 2.4.3. The graphs of Schumaker's example. See [225]. 
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Angles between normals for Delaunay triangulation: 

55.077 48.155 44.684 39.801 39.588 38.378 37.734 35.445 33.992
33.786 33.561 33.162 30.470 28.898 28.287 27.284 27.284 26.003
23.633 21.958 20.814 17.886 16.066 15.942 15.642 11.310 10.302

9.661 7.294 7.294 7.294 6.843 0.649 0.649 0.459 0.458
0.458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000   

 
Angles between normals for locally optimal triangulation 

35.993 30.590 26.070 23.610 21.813 21.558 16.563 16.521 15.793
12.810 11.929 11.310 10.646 10.261 9.622 8.844 8.707 8.321

8.076 8.047 5.794 5.563 3.777 0.649 0.649 0.459 0.459
0.458 0.458 0.458 0.448 0.020 0.020 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000   

 
Angles between normals for annealed triangulation 

26.070 22.929 22.113 20.049 17.257 16.563 16.521 13.031 12.505
11.929 10.389 10.270 10.261 8.954 8.321 7.844 5.962 5.794

5.256 1.652 1.480 1.025 0.649 0.648 0.459 0.458 0.458
0.448 0.447 0.020 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000   

 
Figure 2.4.4. Angles for the data dependent triangulation.  

 
2.5 Affine Invariant Triangulations 
 

The desirable properties of the Delaunay triangulation have been previously 
discussed.  Unfortunately, this optimal triangulation is not invariant under affine 
transformations and this means that methods for analyzing and visualizing data that use 
this particular triangulation can be affected by the choice of units used to measure the 
data.  This could be considered an undesirable property.  In this section we describe a 
relatively new method for characterizing and computing an optimal triangulation which 
is invariant under affine transformations.  Before we proceed with the discussion of these 
techniques, we wish to motivate further the desirability of affine invariance. 

 
As we have mentioned earlier, one of the main purposes for triangulations and 

tetrahedrizations is their use in defining functions in a piecewise manner over the domain 
of a data set.  It would be undesirable if the happenstance of the choice of units used to 
measure the data were to affect the definition of a data modeling function.  But this does 
happen with the Delaunay triangulation.  The example of Figure 2.5.1 points this out.  
This data represents the independent data and the dependent data is not given as it not 
important in this context.  The data is the same in both the left and right graphs of Figure 
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2.5.1; the only difference is that in the left graph we have used years and £ (pounds, 
British monetary unit, equal (approximately and assumed here to be exactly equal ) to 
two US dollars) and in the right graph we have used months and dollars.  If we use the 
units of years and £ then we can see that the three vertices (1yr, 1£), (0.5yr, 3£), (2yr, 2£) 
will mark out a triangle to be included in the list of triangles for the Delaunay 
triangulation.  But on the other hand if we use months and $ we can see that the 
circumcircle defined by these same three vertices (12mon, 2$), (6mon, 6$), (24mon, 4$) 
contains the data point (6mon, 4$).  Therefore, these three vertices will not comprise a 
triangle of the Delaunay triangulation if these units are used.  This simple example points 
out the possible affects of the choice of the units of measurement.  The choice of the units 
of measurement is the same as a change in scale, x ← ax and y ← by.  Uniform scale 
changes of the type x ← αx, y ← αy will not affect the Delaunay triangulation. 

 

1 2 3 54
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6
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Figure 2.5.1. Two different units used to measure the same data lead to two different 

Delaunay triangulations. 
 
We now discuss how to avoid this problem.  It would be possible to simply normalize 

all data ranges to one unit by scaling by the range.  But this approach would mean that 
rotations of the data could have an effect on the Delaunay triangulation meaning the final 
data model would be affected by rotations of the data.  In other words, the placement and 
alignment of the axes for the measurement of the data would have an affect on the data 
modeling function and subsequently on our analysis of the data and this we would like to 
have the opportunity to avoid.  It would, in general, be useful to have a characterization 
(and subsequent algorithms)  for an optimal triangulation which is not affected by affine 
transformation.  An affine transformation is a map of the form 

 
(x,y) = A(x,y) + c 

 
where A is a 2 x 2 matrix and c is two-dimensional point.  Affine transformations include 
not only scale changes and rotations, but also, translations, reflections and shearing 
transformations.  The approach to such an optimal triangulation covered here is through 
the duality that exists between the conventional Delaunay triangulation and the Dirichlet 
tessellation.  As we previously described the characterization of the Delaunay 
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triangulation (as a MaxMin triangulation), it was heavily dependent upon angles and 
angles are affected by scaling transformations and so it should be no surprise that the 
Delaunay triangulation is also affected by scaling transformations.  But the definition of 
the Dirichlet tessellation uses only distance and we know that the Delaunday 
triangulation is dual to (a direct result of) the Dirichlet tessellation.  The approach here is 
to use a method of measuring distance which is invariant under affine transformations.  
The Dirichlet tessellation based upon this new method of measuring distance will have a 
dual which will serve as our optimal triangulation.  Rather than use the standard 
Euclidean norm ||(x,y)||2 = x2 + y2  we propose the use of the following norm  
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where  
 

 Σ
2
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∑
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N
(xi - µx)2

N   ,  µx = 

∑
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∑
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∑
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We have used the subscript of V on the norm to explicitly indicate that this method of 
measuring distance is dependent upon the data set.  Change the data set and you change 
how you measure distance but the distance between any two data points will remain 
constant..  This norm and its use within the context of scattered data modeling was first 
described in [181].  This norm has the property that it is invariant under affine 
transformations.  More precisely,  
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 ||P-Q||V = ||T(P) - T(Q)||T(V)   (2.5.2) 
 
for any two points P = (x, y) and Q = (u, v) and any affine transformation 
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Here, T(V) (used as a subscript in (2.5.2)) is the transformed data 
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Figure 2.5.2 illustrates the properties of this new method of measuring distance.  Each 

of the data sets shown in this figure are affine images of each other.  Starting in the upper 
left and moving in a clockwise direction, the transformations are: counter clockwise 
rotation of 44 degrees; a scaling in x by a factor of 2; a scaling in y by a factor of 0.4.  
The four ellipses in each figure represent points which are 1/4, 1/2, 3/4 and 1 unit(s) from 
their center point as measured with the affine invariant norm.  In Figure 2.5.3 we show 
the Dirichlet tessellation of these four affinely related data sets and in Figure 2.5.4 we 
show the corresponding dual triangulation and as one can see the triangulation is 
unchanged by these transformations. 
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Figure 2.5.2. Affine transformations of a data set and points equally distant (affine 
invariant norm) from a point. 
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Figure 2.5.3. The Dirichlet tessellation (affine invariant norm) of affine transformations 

of a given data set. 
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Figure 2.5.4. The triangulation dual to the Dirichlet tessellation (affine invariant norm) of 

a given data set and some affine transformations. 
 

As a comparison, we have also included the Delaunay triangulation based upon the 
standard Euclidean norm in Figure 2.5.5.  And as we indicated earlier, we can see that 
triangulation results are affected by the transformations.  Not all triangles are changed, 
but some are. 
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Figure 2.5.5. The Delaunay triangulation of a data set and some affine transformations. 

 
And now some practical information on how to incorporate this feature in to an 

algorithm for computing triangulations.  If you already have an procedure for computing 
an optimal triangulation, then it is possible to modify it slightly to achieve the results we 
have described in this section.  Say for example that the procedure is based upon 
Lawson's algorithm and there is a subprocedure which decides whether or not to switch 
the diagonal of a quadrilateral formed from two triangles.  It might be that this procedure 
is based solely on Euclidean distance.  That is, the center and radius of the circumcircle 
of three points is determined and the distance to the center from the fourth point is 
computed so as to make this decision.  In order to modify this subprocedure, we only 
need to replace the use of the Euclidean norm with the affine invariant norm described 
here.  The equations for computing circumscribing circles (ellipses) for a quadratic norm 
in general are given in [182].  If, on the other hand, the procedure you are already using 
is known to be rotation invariant, then there is even an easier way to affect the results of 
the affine invariant triangulation.  This is based upon the factorization of the matrix 
which defines the affine invariant norm.  We denote this matrix by A(V) so that we have 
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The matrix A(V) can be factored (Cholesky) into 
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Here the notation L(V)* denotes the transpose of L(V). 
 
Using this factorization, we have that 
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which means measuring distances with the affine invariant norm is the same as 
measuring distance in the standard Euclidean but with the points transformed by 
multiplying by L(V).  This means that we can achieve the result of the optimal affine 
invariant triangulation by computing the standard Delaunay triangulation on the 
transformed data 
 

(Xi, Yi) = (xi, yi)L(V) 
 
In summary, we need only compute 
 

 l11 = 11a ,  l21 = 
 a21

 a11
  ,  l22 = 

11

2
212211

a
aaa −  

 

where a11 = 
Σ
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and apply any rotation invariant triangulation algorithm to the transformed data 
 
 Xi = l11xi + l21yi 
 
 Yi = l22yi,           i = 1, . . . , N. 
 
2.6 Interpolation in triangles 

 
We now take up the topic of interpolating into (or over) a single triangular domain.  

The interpolants we describe here form the basic building blocks for constructing the 
global interpolants which have piecewise definitions over the individual triangles of a 
triangulation.  The domain here is a single triangle, T = Tijk with vertices Vi, Vj and Vk, 
and the data consists of values given on the boundary of the triangular domain.  We need 
to differentiate between two types of boundary data.  If the data consists of function and 
certain derivative values specified only at the vertices (or possibly other points such as 
midpoints), then we call this discrete data.  If, on the other hand, the data is provided on 
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the entire boundary of the triangle, we refer to this type of data as transfinite data.  The 
importance of an interpolant which will match transfinite data is that it serves as a 
prototype for developing a large variety of discrete interpolants.  This is accomplished 
through the process of discretization where the data required for a transfinite interpolant 
is provided by means of using some interpolation scheme only on the boundary, discrete 
data.  For example, given only data values at the vertices, we can use linear interpolation 
along an edge to produce the transfinite data required by the transfinite interpolant.   

 
There is a second concept which is rather important for interpolants defined over 

triangles and this has to do with the degree of continuity of the global interpolant.  Often, 
we require that the global interpolant at least be continuous.  We call such an interpolant 
a C0 interpolant.  If the global interpolant has continuous first order derivatives, we say it 
is a C1 interpolant.  A C0 interpolant for a single triangle is one which interpolates to 
boundary data consisting of only position values, either at the vertices (and midpoints) 
only or on the entire boundary.  A C1 interpolant for a single triangle is one which will 
interpolate to first order derivative data specified on the boundary.  But this must be done 
in a manner so as to guarantee C1 continuity across the boundary edges.  So, if the cross 
boundary derivative varies quadratically along an edge, then the data on this edge must 
be sufficient to uniquely determine this derivative so that on an adjoining triangle we will 
have exactly the same cross boundary derivative.  For this reason, it is common for C1 
interpolants to have linearly varying cross boundary derivatives which are determined by 
their values at the two endpoint vertices. 

 
Combining the two concepts of discrete and transfinite data and C0 and C1 data leads 

to four types of triangular interpolants as indicated in Figure 2.6.1  This general area of 
interpolation in triangles is fairly rich and well developed and we urge the really 
interested reader to follow the citations into the literature after taking a look of the 
sampling we have chosen to include here.  Figure 2.6.1 serves as an outline for the 
remainder of this section.  We first cover C0, discrete interpolants, then a sampling of 
three C0, transfinite interpolants.  This is followed by the description of a C1, discrete 
interpolants.  We have chosen to include a discretized version of the minimum norm 
triangular interpolant (see [178]).  Another rather popular C1, discrete interpolant is the 
Clough/Tocher interpolant often mentioned in conjunction with the finite element 
method.  Much has been written about this interpolant in the past and so we do not 
include it here. This section is concluded with a description of a C1, transfinite 
interpolant called the side-vertex interpolant [177].  It is one of the easiest to describe and 
the most versatile to use.  It also generalizes rather nicely to a tetrahedral domain. 

 

Section 2.6.1

Section 2.6.3

Section 2.6.2

Section 2.6.4

TransfiniteDiscrete

C0

C1

  
Figure 2.6.1. Outline of Section 2.6 
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2.6.1 C0, Discrete Interpolation in Triangles 
 

The lowest degree polynomial, C0 discrete interpolant is linear and it is unique.  
Given the data F(Vi), F(Vj) and F(Vk), the coefficients of the linear function 
 

F(x,y) = a + bx + cy 
 
which interpolates this data can be found by solving the linear system of equations 
 

a + bxi + cyi = F(Vi)  
 

a + bxj + cyj = F(Vj)  
 

a + bxk + cyk = F(Vk). 
 
Another path to this basic linear interpolant is via barycentric coordinates.  Given a point 
V = (x, y), barycentric coordinates, bi, bj and bk of this point relative to the triangle Tijk 
are defined by the relationships 
 









y
x

 = biVi + bjVj + bkVk 

 
1 = bi + bj + bk  . 

 
The linear interpolant now takes the form 
 

F(x,y) = F(V) = biF(Vi) + bjF(Vj) + bkF(Vk)  . 
 

There are several alternative ways of defining or determining the barycentric 
coordinates of a point.  For example, 
 

 bi = 
Ai
A  bj = 

Aj
A  bk = 

Ak
A   

 
where Ai, Aj and Ak represent the areas of the subtriangle shown in Figure 2.6.2 and A is 
the area of Tijk.  Also, 
 

bi = 




x-xk xj-xk

y-yk yj-yk





xi-xk xj-xk

yi-yk yj-yk

    bj = 




x-xi xi-xk

y-yi yi-yk





xj-xk xi-xk

yj-yk yi-yk

    bk = 




x-xj xi-xj

y-yj yi-yj





xk-xj xi-xj

yk-yj yi-yj
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Aj

Ak
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Figure 2.6.2. Areas leading to barycentric coordinates. 

 
Given the values at the three vertices and the three midpoints of a triangle, there is a 

unique quadratic which interpolates this data, 
 
 Q(x,y) =  F(Vi)bi(bi - bj - bk) + F(Mjk)4bjbk 
 + F(Vj)bj(bj - bi - bk) + F(Mik)4bibk 
 + F(Vk)bk(bk - bi - bj) + F(Mij)4bibj 
 
where Mjk = (Vj + Vk)/2, Mik = (Vi + Vk)/2 and Mij = (Vi + Vj)/2. 
 

A common way to specify a cubic along an edge is to use the Hermite form which 
involves the first order directional derivatives along the edges 
 
 F'ki(Vi) = (xk - xi)Fx(Vi) + (yk - yi)Fy(Vi) 
 
which are further illustrated in Figure 2.6.3. 
 
 
 

Vk

Vj

Vi jiF'  (V )jk k

jiF'  (V )ik k

jiF'  (V )kj jjiF'  (V )ij j

jiF'  (V )ki i

jiF'  (V )ji i
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Figure 2.6.3. The notation for the six directional derivatives. 
 

The six directional derivative at the three vertices along with F(Vi), F(Vj) and F(Vk) 
do not uniquely determine a cubic since the bivariate cubics are of dimension 10.  The 
interpolant 
 
 C(x, y) =  F(Vi)b

2
i (3-2bi)  + F'ki(Vi)b

2
i  bk + F'ji(Vi)b

2
i  bj 

 

 + F(Vj)b
2
j (3-2bj)  + F'ij(Vj)b

2
j  bi + F'kj(Vj)b

2
j  bk 

 

 + F(Vk)b2
k(3-2bk)  + F'ik(Vk)b2

k bi + F'jk(Vk)b2
k bj 

 
 + wbibjbk 
 
will match this function and derivative data for any value of w.  This remaining degree of 
freedom represented by w can be absorbed by a variety of conditions.  For example, it 
can additionally be required that the interpolant match some predescribed value at the 
centroid.  Another common choice is  
 
 w = 2[F(Vi) + F(Vj) + F(Vk)] 
 
 + 12 [F'ki(Vi) + F'ji(Vi) + F'ij(Vj) + F'kj(Vj) + F'ik(Vk) + F'jk(Vk)] 
 
which guarantees quadratic precision and is a result of discretization of a number of 
transfinite interpolants (see [189]).  Quadratic precision means that whenever the data 
comes from a bivariate quadratic function the interpolant will become this very same 
quadratic polynomial. 
 
 
 
2.6.2 C0, Transfinite Interpolation in Triangles 

 
In this section, we only give a sampling of three interpolants which will interpolate to 

arbitrary function values on the boundary of a triangular domain, Tijk.  More information 
on this general topic can be found in [189]. 
 

 
44



V
i

Vj

Vk

(x, y) = V

S i

b j Vj
b j

Vk
b k

bk+
+=

 
Figure 2.6.4. The side-vertex interpolant notation. 

 
The Side-Vertex Interpolant: The side-vertex interpolant is built from three basic 

interpolants which are defined by linear interpolation along line segments joining a 
vertex and the opposing side.  See Figure 2.6.4  In terms of barycentric coordinates, we 
have 
 

Ai[F] = biF(Vi) + (1-bi)F(Si), 
 

Aj[F] = bjF(Vj) + (1-bj)F(Sj), 
 

Ak[F] = bkF(Vk) + (1-bk)F(Sk) 
 

where Si = 
bjVj+bkVk

bj+bk
 , Sj = 

biVi+bkVk
bi+bk

 , Sk = 
biVi+bjVj

bi+bj
 .  Each of these interpolants will 

interpolate to arbitrary function values on one edge of the triangular domain.  In order to 
obtain an interpolant which matches arbitrary values on the entire boundary of Tijk, we 
form the Boolean sum of these three interpolants 
 
 A[F]  = Ai⊕Aj⊕Ak[F] = Ai[F]+ Aj[F] + Ak[F]  
 
 - Ai[Aj[F]] - Aj[Ak[F]] - Ak[Aj[F]] + Ai[Aj[Ak[F]]] 
 
 = (1-bi)F(Si) + (1-bj)F(Sj) + (1-bk)F(Sk) 
 
 - biF(Vi) - bjF(Vj) - bkF(Vk) 
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Figure 2.6.5. The evaluation points (ttencil) for side-side interpolant. 

 
The Side-Side Interpolant: The side-side interpolant is based upon the basic 

operation of linear interpolation along edges which are parallel to the edges of Tijk.  
There are three of this interpolants, 
 

 Pi[F] = 
bkF(biVi+(1-bi)Vk) + bjF(biVi+(1-bi)Vj)

 bk + bj
  

 

 Pj[F] = 
biF(bjVj+(1-bj)Vi) + bkF(bjVj+(1-bj)Vk)

 bi + bk
  

 

 Pk[F] = 
biF(bkVk+(1-bk)Vi) + bjF(bkVk+(1-bk)Vj)

 bi + bj
  

 
Unlike the basic interpolants of the side-vertex interpolant, these interpolants do not 
commute and so their triple Boolean sum is not well defined.  However, it is possible to 
form the average of all double Boolean sums (each of which interpolate to the entire 
boundary) to arrive at the following affine invariant interpolant 
 

 Q*[F] =  
bkF(biVi+(1-bi)Vk) + bjF(biVi+(1-bi)Vj)

 bk + bj
  

 

 + 
biF(bjVj+(1-bj)Vi) + bkF(bjVj+(1-bj)Vk)

 bi + bk
  

 

 + 
biF(bkVk+(1-bk)Vi) + bjF(bkVk+(1-bk)Vj)

 bi + bj
  

 
 - biF(Vi) - bjF(Vj) - bkF(Vk). 
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Vk

Vj
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bk
2
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2  

Figure 2.6.6. The stencil of the C* interpolant. 
 

The C* Interpolant: The third transfinite, C0, interpolant which we describe utilizes 
the stencil illustrated in Figure 2.6.6. 
 

C*[F](bi,bj,bk} = 
bibj

(bi+
bk
2 )(bj +

bk
2 )

  F((bi + 
bk
2  )Vi + (bj + 

bk
2  )Vj) 

 + 
bibk

(bi+
bj
2 )(bk +

bj
2 )

  F((bi + 
bj
2  )Vi + (bk + 

bj
2  )Vk) 

 

 + 
bjbk

(bj+
bi
2 )(bk +

bi
2 )

  F((bj + 
bi
2  )Vj + (bk + 

bi
2  )Vk) 

 

 - 
3bibjbk

(bj+2bk)(bk+2bj)  F(Vi) 

 - 
3bibjbk

(bi+2bk)(bk+2bi)  F(Vj) 

 - 
3bibjbk

(bi+2bj)(bj+2bi)  F(Vk) 

 
which can be written in the form 
 
C*[F](bi,bj,bk} = biF(Vi) + bjF(Vj) + bkF(Vk) 

 + Wk { F(Qk) - (bi + 
bk
2  )F(Vi) - (bj + 

bk
2  )F(Vj) } 

 + Wj { F(Qj) - (bi + 
bj
2  )F(Vi) - (bk + 

bj
2  )F(Vk) } 

 + Wi { F(Qi) - (bj + 
bi
2  )F(Vj) - (bk + 

bi
2  )F(Vk) } 
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where 
 

Wi = 
4bjbk

(2bj+bi)(2bk+bi) , Wj = 
4bibk

(2bi+bj)(2bk+bj) , Wk = 
4bibj

(2bi+bk)(2bj+bk) ,  

 

 Qi = (bj + 
bi
2  )Vj + (bk + 

bi
2  )Vk,   

 

 Qj = (bi + 
bj
2  )Vi + (bk + 

bj
2  )Vk,   

 

 Qk = (bi + 
bk
2  )Vi + (bj + 

bk
2  )Vj  .  

 
In this form of C* we can see that it consist of linear interpolation plus a correction term.  
It can easily be verified that C* is precise for all quadratic functions.  That is, if f is a 
quadratic, bivariate polynomial, then C*[f] = f. 
 
The NTW Interpolant:  This may be the simplest of all triangular Coons patches.  The 
weights are simple linear functions as are the stencil points. 
 
 
 
 

Vk

Vi

Vj

b V b Vi i i k+ (1- )

b V b Vk k k i+ (1- )

 
 
 
 
 
 
NTW[F](bi,bj,bk)= bi[F(bjVj+(1-bj)Vi)+F(bkVk+(1-bk)Vi)-F(Vi)] 
 
 + bj[F(biVi+(1-bi)Vj)+F(bkVk+(1-bk)Vj)-F(Vj)] 
 
 + bk[F(bjVj+(1-bj)Vk)+F(biVi+(1-bi)Vk)-F(Vk)] 
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2.6.3 C1, Discrete Interpolation in Triangles 
 

 A commonly used 9-parameter, C1 interpolant, is 

 

 C∆[F](x,y) = ∑
(i,j,k) � I

 
{F(Vi)[b

2
i (3-2bi)+6wbi(bkαij + bjαik)]  

  + F'ki(Vi)[b
2
i  bk+wbi(3bkαij + bj -  bk)] 

  + F'ji(Vi)[b
2
i  bj+wbi(3bjαik + bk -  bj)]} , 

 
where 
 
 F'ki(Vi) = (xk-xi)Fx(Vi) + (yk-yi)Fy(Vi) , 
 
 F'ji(Vi) = (xj-xi)Fx(Vi) + (yj-yi)Fy(Vi) , 
 

 w = 
bibjbk

bibj+bibk+bjbk
  , I = { (i,j,k), (j,k,i), (k,i,j) } , 

 
and 
 

 αij = 
||ejk||2 + ||eik||2 - ||eij||2

 2||eik||2   . 

 
We use  ||eij|| to denote the length of edge eij.  This 9-parameter, C1 interpolant is a 

discretized version of a transfinite, C1, triangular interpolant which is described in [178]. 
The derivatives which are in a direction perpendicular to an edge vary linear along an 
edge.  This guarantees that when two of these interpolants share a common edge the two 
surface patches will join with continuous first order derivatives.  It is possible to 
discrectize the same transfinite interpolant and use an additional three parameters 
consisting of cross boundary derivatives at the midpoints of the three edges.  This leads 
to an interpolant that has all first order derivatives varying quadratically along the edges.   
For a comparison of the C∆ interpolant to the Clough/Tocher interpolant within the 
context of triangle based scattered data models, see Franke and Nielson [97]. 
 
2.6.4 C1, Transfinite Interpolation in Triangles 

 
In this section, we extend the problem of interpolating to transfinite data on the 

boundary to include also the requirement that the interpolant match user specified 
transfinite derivative data on the boundary.  These types of interpolants can be used to 
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construct surfaces over triangulated domains which are C1; that is, functions which have 
continuous first order partial derivatives.  One of the most versatile and easily described 
C1, transfinite interpolants is the C1, side-vertex interpolant [177].  
 

 

 
 

Figure 2.6.7. The data for C1 interpolants position and derivative boundary values. 
 

Earlier, we saw that the basic building blocks of the C0, side-vertex interpolant 
consisted of linear interpolation along lines joining a vertex and its opposing side.  In 
order to extend these ideas to C1 data, we make use of the univariate cubic, Hermite 
interpolation applied along rays emanating from a vertex and joining to the opposing 
edge.  See Figure 2.6.4.  Cubic Hermite interpolation will match position and derivatives 
at the two ends of the interval.  We assume that position and derivative information is 
available on the entire boundary of a triangle Tijk.  

 
 Si[F](p) = bi2(3-2bi)F(Vi) + bi2(bi-1)F'(Vi)  
 
 + (1-bi)2(2bi+1)F(Si) + bi(1-bi)2F'(Si) 
 

where F'(Vi) = 
(x-xi)Fx(Vi)+(y-yi)Fy(Vi)

1-bi
  and  

F'(Si) = 
(x-xi)Fx(Si)+(y-yi)Fy(Si)

1-bi
 .   

Si[F] has the property that it interpolates to the boundary data provided by F at Vi and on 
the entire opposing edge ekj.  It also matches first order derivatives on this edge and at 
Vi.  It does not necessarily interpolate F or its derivatives on the other two edges.  In 
order to have an interpolant for the entire boundary of the triangular domain, we could try 
to construct one using the ideas of Boolean sums as was done earlier for the C0, side-
vertex interpolant.  Even though the interpolants Si, Sj and Sk commute so that their 
Boolean sums are well defined, this approach does not work (see [177]) and so the use of 
convex combination techniques has been suggested.  This leads to the interpolant 
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 S[F] =  
b2

j b2
kSi[F] + b2

i b2
kSj[F] + b2

j b2
i Sk[F]

 b2
i b2

j  + b2
j b2

k + b2
i b2

k
   

 
which has the property that it matches F and its first order derivatives on the entire 
boundary of the triangular domain.  In the case where the boundary information has been 
discretized with cubically varying (Hermite) position values and linearly varying cross 
boundary derivatives, it is possible to obtain a final interpolant with simpler weights in 
the convex combination.  Namely, 
 

 S[F] =  
b 

jb
 
kSi[F] + b 

ib
 
kSj[F] + b 

jb
 
iSk[F]

 b 
ib

 
j + b 

jb
 
k + b 

ib
 
k

 .  

 
3 Tetrahedrizations 

 
In this section we follow the outline of the previous section as best possible.  Since 

the dimension is one less and since bivariate problems have been considered for a much 
longer period of time, the development in the 3D domain is not as rich as the 2D domain 
and so we can not exactly parallel the previous section, but most everything generalizes 
or leads to something interesting and often useful. 

 
3.1 Basics 

 
3.1.1 Definitions, Data Structures and Formulas for Tetrahedrizations 

 
Our definition of a tetrahedrization follows very closely to that given for a 

triangulation at the beginning of Section 2.1.  We start with a collection of points pi = (xi, 
yi, zi), i = 1, . . . , N which we assume are not collectively coplanar.  We denote this 
collection of point by P.  A tetrahedrization consists of a list of 4-tuples which we denote 
by It.  Each 4-tuple, ijkl ∈ It denotes a single tetrahedron with the four vertices pi, pj, pk 
and pl.  The following conditions must hold: 

 
i) No tetrahedron Tijkl , ijkl ∈ It is degenerate.  That is, if ijkl ∈ It then pi, pj, 

pk and pl are not coplanar. 
ii) The interior of any two tetrahedral do not intersect. That is if ijkl ∈ It and 

αβγδ ∈ It then Int(Tijkl) ∩ Int(Tαβγδ) = φ . 
iii) The boundary of two tetrahedra can only intersect at a common triangular 

face. 
iv) The union of the all triangles is the domain D = ∪ijkl ∈ It Tijkl . 

 
We should point out that condition iii) must hold in the strictest sense and so 

tetrahedra joining as shown in right side of Figure 3.1.1 are not allowed.  The reason for 
this condition (and all the others) is that same as before with the conditions of a 
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triangulation and that is we eventually wish to be able to define C0 functions in a 
piecewise manner over the domain consisting of the union of all tetrahedra.   
 

 

 
 

Figure 3.1.1. The configuration indicated by the diagram on the left is acceptable while 
that on the right is not acceptable for a tetrahedrization.  It is eliminated by condition iii) 

above. 
 

The triangular grid data structure for representing triangulations (illustrated in Figure 
2.1.8) generalizes very nicely to a structure for representing tetrahedrizations.  For 
example, in Figure 3.1.2, we show a tetrahedrization of the cube into 5 tetrahedra. 
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Figure 3.1.2. An example which defines the tetrahedral grid data structure. 

 
We saw earlier in the case of  triangulations that once the boundary is specified, the 

number of triangles comprising the triangulation was fixed and more over we had a 
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simple approach to determining a formula for the number of triangles that existed in the 
triangulation.  This property allowed for the definition of the vectors of angles which lead 
to the criterion for optimal triangulations and so was rather important. It would be nice if 
everything extended to 3D in a straightforward manner.  That is, we would like to say 
that any polyhedron can be decomposed into tetrahedra and there is a fixed formula of the 
following form Nt = aNb + bNi + c where as before, Nb and Ni are the number of vertices 
on the boundary and interior, respectively.  Unfortunately, this is not the case and in fact 
the situation is much worse than that.  We saw earlier that any polygon bounded region 
can be triangulated using only the vertices of the polygon.  This is one of the first areas 
where matters differ significantly when going from 2D to 3D.  It turns out that not every 
polyhedron can be tetrahedrized.  The example illustrated in Figure 3.1.3 is originally due 
to Schoenhardt [221].  It can be visualized as a prism which has been twisted until each 
face (a quadrilateral comprised of two triangles) has "buckled" inward.  Any tetrahedron 
we form from these vertices must include an edge which lies outside the domain of the 
"twisted prism" and so it is clear that the object can not be tetrahedrized. 
 

 

 

 
Figure 3.1.3. The twisted prism of Schoenhardt [221] which cannot be tetrahedrized. 

 
One very basic operation does carry over in a straightforward manner from 2D to 3D 

and this the process of inserting an additional vertex into the interior of an existing 
tetrahedrization.  If the new vertex p lies interior to an existing tetrahedron, say Tabcd, 
then this tetrahedron is simply replaced with the four tetrahedron, Tabcp, Tabdp, Tbcdp, 
Tacdp adding a net increase of three tetrahedra.  If the new vertex p lies on the common 
triangular face of two tetrahedra, then these two tetrahedra are replaced with six new 
tetrahedra Tabcp, Tbcdp, Tabdp, Taecp, Tecdp, Taedp resulting in a net increase of four new 
tetrahedra.  This latter aspect of the number of tetrahedra increasing which is different 
here from the 2D case is that net increase in the number of tetrahedra depends on the 
actual location of the interior point to be inserted.  This observation points out that not 
only can the number of ways that a data set is tetrahedrized vary, but even the number of 
tetrahedra can vary.  We will illustrate this further with some examples even without 
interior points. 
 

 
53



d

a

c
p

b

d

b
p

c

a

e

 

 
 

Figure 3.1.4. Inserting a point interior to an existing tetrahedrization.  On the left, the 
new point is interior to a tetrahedron and on the right it is on a common face fo two 

tetrahedra. 
 

We have already seen (see Figure 3.1.2) the decomposition of a cube into five 
tetrahedra.  It is also possible to tetrahedrize the cube into six tetrahedra.  This is 
illustrated in Figure 3.1.5. 
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Figure 3.1.5. A tetrahedrization of the cube into six tetrahedra. 
 

It is interesting to note that from the exterior, the tetrahedrization of Figure 3.1.5 
looks exactly the same a that of Figure 3.1.2 as all external edges are the same.  Another 
interesting connection between these two tetrahedrization of the cube is that one can be 
obtained from the other by "swapping" operations similar to those used in the Lawson 
algorithm for computing optimal triangulations.  Previously, in the case of triangulations, 
there was the possibility of two triangulations of a convex quadrilateral.  The analogous 
situation in 3D is the tetrahedrization of the region formed by five vertices when two 
tetrahedra meet at a common triangular face.  If the line segment joining the two vertices 
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not on the common face intersect the interior of the common face then, analogous to the 
convex quadrilateral case in 2D, there is the possibility of an alternate tetrahedrization.  
But what is really different from the 2D case is that the number of tetrahedra changes 
from two to three!.  This is illustrated in Figure 3.1.6.  This basic operation was applied 
to the center and upper, back right tetrahedra of Figure 3.1.2 to arrive at the 
tetrahedrization of Figure 3.1.5.   
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Figure 3.1.6. Two different tetrahedrizations of five points.  

 
Another example worth noting in this context is the case where pi = (i, i2, i3), i = 1, . . 

. , N.  The (Delaunay) tetrahedrization of the convex hull of this set of points consists of 
the tetrahedra with vertices pi, pi+1, pj and pj+1 of which there are a total of ((N-2)(N-
1))/2 tetrahedra.  Bern and Eppstein [ 16] point out that this example provides an upper 
bound on the number of tetrahedra in a tetrahedrization of an N-vertex polyhedron and 
that a lower bound is provided by the fact that any tetrahedrization of a simple 
polyhedron has at least N-3 tetrahedra. 

 
3.1.2 Some Special Tetrahedrizations 

 
Following the pattern established in the earlier sections on triangulations, we first 

discuss tetrahedrizations related to Cartesian grids followed by tetrahedrizations 
associated with curvilinear grids.  A 3D Cartesian grid involves three monotonically 
increasing sequences, xi, i = 1, . . . , Nx , yj, j = 1, . . . , Ny and zk, k = 1, . . . , Nz.  The 
grid points have coordinates (xi, yj, zk)  and these points mark out a cellular 
decomposition of the domain consisting of regular parallelepipeds.  Each of these cells 
can be tetrahedrized in a manner similar to that given for the cube in the previous section.  
Probably the most popular, is the tetrahedrization involving five tetrahedra shown in 
Figure 3.1.2.  So as to not end up with a non tetrahedrization with problems similar to 
those shown in the right side of Figure 3.1.1, it is necessary to "alternate" the 
tetrahedrization from cell to the next so that adjoining cells have the same diagonal on 
the common faces.  This alternate tetrahedrization is not really different and is  just a 
rotation of its companion.  It is shown in Figure 3.1.8.  Another popular choice is the 
tetrahedrization shown in the upper left corner of Figure 3.1.9.  It has the advantage that 
all of the tetrahedra are the same shape (up to mirror images).  Actually, it turns out that 
there are six different tetrahedrizations of a cube (parallelepiped).  See Nielson [183].  
We have previously shown pictures of two of them in Figure 3.1.2 and Figure 3.1.5.  The 
other four are shown in Figure 3.1.9. 
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(x  , y  , z   )i j k

(x    , y    , z     )i+1 j+1 k+1

 

 
 

Figure 3.1.7. Three dimensional Cartesian grid. 
 

  

 

 
 

Figure 3.1.8. The two alternating tetrahedrizations with five tetrahedra of the cell of a 3D 
Cartesian grid.  (One can be rotated to the other.) 

 
 

  
 

Figure 3.1.9. Four different tetrahedrizations of the cube each with six tetrahedra. 
 

All six tetrahedrizations of the cube are comprised of five primitive tetrahedra which 
are shown in Figure 3.1.10.  We use the names of 0F, 1F, 2Fr, 2Fl and 3F for these 
tetrahedra so as to indicate the number of exterior faces for each tetrahedra.  There are 
two different primitive tetrahedra with two exterior faces; one is a mirror image version 
of the other and so it can not be rotated to the other.  The tetrahedron 0F has volume 1/3 
and all the others have volume 1/6.  During informal discussion we most often use the 
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names 3F = "corner", 2Fr or 2Fl = "right wedge" or "left wedge", 1F = "kite" and 0F = 
"equi" or "fatboy".  
 

0F 1F

2Fr 2Fl

3F

 

 
 

Figure 3.1.10. The five primitive tetrahedra comprising the tetrahedrizations of the cube. 
 

In a joining similar to that shown in Figure 3.1.6, three 1F tetrahedra can come 
together to form the same exact shape formed by a 0F and a 3F together.  Also a 2Fl and 
2Fr together form the same shape as a 1F and a 3F, but two 2Fr's or two 2Fl's can not 
share a common face and remain inside a unit cube.  There are four tetrahedrizations 
(each comprised of three primitive tetrahedra) of the prism making up half of the cube.  
They are 3F, 1F, 2Fl; 3F, 1F, 2Fr; 2Fr, 2Fl, 2Fr, and 2Fl, 2Fr, 2Fl.  In Figure 3.1.11 we 
show the dual graphs of the six tetrahedrizations of the cube.  A node is a primitive 
tetrahedron and an arc is a common triangular face.  As expected, in each case the 
"names" add to twelve. 
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Figure 3.1.11. The six tetrahedrizations of the cube shown as dual graphs.  (These are the 
only tetrahedrizations of the cube.) 

 
Each of these six tetrahedrizations has its own unique and interesting properties.  The 

tetrahedrization of 3.1.2 and Figure 3.1.5 both "swap" diagonals on all three pairs of 
opposing faces.  The tetrahedrization shown in the lower right of Figure 3.1.9 swaps the 
diagonals of two pair of opposing faces and the of the upper right swaps one pair.  The 
two tetrahedrizations on the left of Figure 3.1.9 do not swap any diagonals of any 
opposing faces.  The tetrahedrization of the upper left of Figure 3.1.9 can be realized with 
three cuts of the entire cube. while the others cannot.  This particular tetrahedrization also 
has the unique property of being comprised only of 2F primitives whose faces are all 
right triangles and they all (six) share the diagonal of the cube as a common edge.  This 
tetrahedrization has been discussed and used widely.  It is call the CFK-triangulation of 
the cube after Coxeter [47], Freudenthal [79] and Kuhn [137].  A replacement rule can be 
used to generate this tetrahedrization.  Using the labeling scheme of Figure 3.1.2, we start 
with the four vertices P2i-1, i = 0, 1, 2, 3 and replace each vertex Vj, other than V0 and 
V7, with Vj+1 + Vj-1 - Vj.  Explicitly, this will successively generate the six tetrahedra: 
p0,p1p3p7; p0p2p3p7; p0p2p6p7; p0p4p6p7; p0p4p5p7; p0p1p5p7.  The CFK triangulation 
generalizes to n-dimensions as does the "replacement" algorithm for generating the 
simplicial decomposition. 

 
It is interesting to note that not all possible face triangulations are realized by the six 

possible tetrahedrizations of the cube.  In addition to the five different face triangulations 
(note that two tetrahedrizations have the same face triangulations) which are realizable 
there are three others which can not be realized.  They are shown in Figure 3.1.12.  In 
order to determine these eight unique face triangulations, we start with the 64 = 26 face 
triangulations and then grouped them into these eight equivalence classes by rotations.   
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Figure 3.1.12. Face triangulations which are not consistent with any tetrahedrization of 
the cube. 

 
Theorem:  It is impossible to tetrahedrize a cube and yield face triangulations as shown 
in Figure 3.1.12. 
 
Proof: We give only the proof for the case in the top, center as the others are similar.  We 
use the same labeling as shown in Figure 3.1.5.  We start with the face 457.  Only vertex 
0 can be attached to the face 457 which gives the tetrahedron 0457.  The internal face 047 
must be shared by some other tetrahedron.  Any vertex, however, cannot be joined to the 
face of 457 without violating the conditions of the face triangulations and so this 
completes the argument. 
 

Earlier we discussed triangulations related to curvilinear grids.  We now take up the 
topic of tetrahedrization of 3D curvilinear grids.  Analogous to the 2D situation, a 3D 
curvilinear grid is specified by three geometry arrays xijk, yijk, zijk, i = 1, . . ., Nx; j = 1, . 
. . , Ny; k = 1, . . . , Nz.  In the 2D case a cell Cij consisted of the quadrilateral with 
vertices (xij, yij), (xi+1,j, yi+1,j), (xi,j+1, yi,j+1), (xi+1,j+1, yi+1,j+1), and the cells serve as a 
decomposition of the domain.  
 

(x     , y    , z     )ijk ijkijk

(x                , y                , z               )i+1,j+1,k+1 i+1,j+1,k+1 i+1,j+1,k+1

 
Figure 3.1.13. Single cell of a 3D curvilinear grid. 
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In the 3D case, matters are not as straightforward as we might expect and there are 

some areas where we need to be concerned.  These have mainly to do with just exactly 
what comprises a cell.  In 3D the cell Cijk has the eight vertices (xabc, yabc, zabc), a = i, 
i+1, b = j, j+1, c = k, k+1 but there is not always a consistent definition for the cell 
boundaries.  We mention briefly some possible choices.  If the geometry arrays are 
constrained so that each collection of four vertices of the six "faces" of the cells are 
coplanar, then an obvious choice for the cell boundaries is this common planar 
quadrilateral.  In this case the cells are hexahedron and it is relatively easy to determine 
whether or not an arbitrary point, (x, y, z) is in a particular cell or not.  Often this 
planarity  condition does not hold and cell boundaries are taken to be the parametrically 
defined (hyperbolic) surface obtained by substituting 0 or 1 for any of the parameter 
value s, t, u in the following trilinear mapping: 
 
 Ci,j,k(s,t,u)  = (1-s)(1-t)(1-u)Pi,j,k + (1-s)(1-t)uPi,j,k+1  
 + (1-s)t(1-u)Pi,j+1,k + (1-s)tuPi,j+1,k+1 
 + s(1-t)(1-u)Pi+1,j,k + s(1-t)uPi+1,j,k+1 
 + st(1-u)Pi+1,j+1,k + stuPi+1,j+1,k+1 
 
where 
 
 Pi,j,k = (xi,j,k, yi,j,k, zi,j,k) 
 
 

Given a point (x,y,z) in the cell Cijk, the value (s, t, u) which associates with it via the 
trilinear mapping is called the corresponding computational coordinate.  In fact, in order 
to determine whether or not an arbitrary point is in this type of cell or not requires that we 
solve the three nonlinear equations which represent this association.  This can be a 
considerable problem from a computational point of view.  Most methods use some 
heuristics to obtain an initial approximation for some type of Newton's method.   Another 
choice for the cell boundaries in the event the four vertices of a face are not coplanar is 
choose them to be piecewise planar.  That is, a diagonal edge is selected and boundary 
between the two cells consists of the two triangles which result.  Often the cell would be 
further decomposed into tetrahedra thus leading to a an overall tetrahedrization of the 
curvilinear grid.  We should point out that not all choices for the diagonals can lead to a 
tetrahedrization of the cell.  In order to be specific about this, consider the cell illustrated 
in Figure 3.1.14.  This cell was created from a unit cube by cutting notches in the faces so 
as to force  the diagonal edges p2p7, p4p1, p3p5, p3p0, p0p6, p6p5 to be exterior to the cell.  
If the depth of the notches is ε then this results in the points po = (0, ε, 0), p1 = (1-ε, 0, ε), 
p2 = (ε, 1, ε), p3 = ( 1, 1-ε, 0), p4 = (ε, 0, 1-ε), p5 = (1, ε, 1), p6 = ( 0, 1-ε, 1) p7 = (1-ε, 1, 
1-ε).  Note that p6, p3, p4 and p1 all lie in the plane x + z - 1 = 0 and p2, p7, p0 and p5 are 
in the plane x - z = 0. 
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Figure 3.1.14. A curvilinear grid cell (polyhedron) that can't be tetrahedrized. 

 
Theorem:  The polyhedron of Figure 3.1.14 can not be tetrahedrized. 
 
Proof:  Consider the triangle face with vertices p6, p4 and p7.  In any tetrahedrization, 
this face must be joined to some vertex to form a tetrahedron.  By considering the 
remaining five vertices p5, p0, p2, p1 and p3 we find that the only p3 would not lead to a 
tetrahedron with an edge which is outside the cell.  If the tetrahedron p6, p4, p7 and p3 is 
included in the list of tetrahedra, then the interior triangle face p3p4p7 must connect to 
another vertex (besides p6) to form a tetrahedron.  But a consideration of each of the 
possible vertices p5, p1, p2 and p0 each lead to an edge which is exterior to the cell and 
this concludes the argument. 
 

We conclude this discussion on the tetrahedrization of the cells of a curvilinear grid 
by pointing out that some hexahedra will decompose into seven tetrahedra.  Consider the 
cell of Figure 3.1.13 and let the six faces be planar, but assume that the four diagonal 
points pijk, pi+1,j+1,k+1, pi,j,k+1 and pi+1,j+1,k are not coplanar so that they will form a 
tetrahedron.  Remove this tetrahedron leaving two prisms with two planar quadrilateral 
faces which can each be decomposed into three tetrahedra.  We should point out that we 
have observed cases where this decomposition was the Delaunay tetrahedrization. 
 

In Section 2.1.3 we described two different approaches leading to nested subdivision 
triangulations and pointed out their potential value in multiresolution approximations.  
These both have analogs in 3D and these are shown in Figures 3.1.15 and 3.1.16 
respectively.  The first one is based upon recursive subdivision and the second one is 
called "symmetric" subdivision and is related to the CFK-tetrahedrization of the cube 
[170].  It is comprised of six 2Fr's and two 2Fl's and is the same shape and twice the size 
of one 2Fr. 
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Figure 3.1.15. Nested tetrahedral subdivision analogous to that of Figure 2.1.16. 
 

 

  
Figure 3.1.16. Symmetric nested tetrahedral subdivision. 

 
It should be noted that if primitive tetrahedra of the shape shown in Figure 3.1.17 are 

assembled as in Figure 3.1.16, then we obtain a composite tetrahedron which is twice the 
size and exactly the same shape as the primitive tetrahedron.  This particular 
tetrahedrization of tetrahedra is related to the Delaunay tetrahedrization of the BCC 
lattice which is the union of the lattices { (i,j,k) : i, j and k are integers} and {(i+1/2, j+1/2, 
k+1/2): i, j and k are integers}.  See also Senechal [229] for a discussion of tetrahedra that 
can be decomposed into similar tetrahedra. 
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(α, α, 0)

(0, α, α/2)

(α, 0, α/2)

 

 
 

Figure 3.1.17. A tetrahedron that can be tetrahedrized into eight tetrahedra each of which 
are the same shape as the original yet half size. 

 
3.2 Algorithms for Delaunay Tetrahedrizations 
 

needle cap wedge sliver
 

Figure 3.2.1. Examples of poorly shaped tetrahedra. 
 

Analogous to the examples of Figure 2.2.1, examples of poorly shaped tetrahedra are 
shown in Figure 3.2.1.  The sliver has small dihedral angles, but need not have any small 
planar angles.  Several measures of the quality of tetrahedrizations have been proposed.  
See Baler [12] and Field [86].  For example the ratio of the inradius (radius of inscribed 
sphere) and the circumradius.  The problem here is there is no apparent way to order the 
collection of all tetrahedrizations of a point set.  The approach of lexicographically 
ordering the associated vectors of angles as we described in Section 2.2 does not extend 
to 3D because the number of tetrahedra in a tetrahedrization is not necessarily fixed.  
Nevertheless, the Delaunay tetrahedrization of the convex hull which is dual to the 
Dirichlet tessellation is well defined (in the absence of neutral cases where points lie on a 
common sphere) and so the remainder of this section is devoted to a discussion of the 
extension of the previously discussed 2D algorithms for computing the Delaunay 
triangulations to the case of 3D tetrahedrizations.   

 
Extension of Lawson's Algorithm (Incremental Flipping): It is possible to extend 

this algorithm to 3D, but the extension is not as simple as one might expect.  The first 
major difference that one encounters is the character of the basic swapping step.  In 2D 
we take an edge and consider the quadrilateral formed by the two triangles which share 
this edge.  If the quadrilateral is convex we can swap the diagonal if this step moves us 
closer to the optimal solution which can easily be determined by applying the circle 
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inclusion test.  Two triangles are replaced by two other triangles.  But the analogous steps 
in 3D can lead to a situation where the two tetrahedra sharing a face can be replaced with 
3 tetrahedra.  See Figure 3.2.2 for an example.   
 

3-2

2-3

2-2

4-4

 
Figure 3.2.2. Different cases of swapping for 3D version of Lawson's algorithm. 

 
Joe [122] showed that if the points are inserted in a particular manner, then 

incremental flipping will lead to the optimal Delaunay tetrahedrization.  Edelsbrunner 
and Shah have generalized these results [72].  Software based upon these ideas is 
provided by the Software Development Group at the National Center for Supercomputing 
Application is available at the WWW site: 

http://www.ncsa.uiuc.edu/SDG/Brochure/Overview/ALVIS.overview.html. 
 

Extensions of the algorithm of Green & Sibson: There does not seem to be an 
apparent method of extending this type of algorithm to 3D.  The algorithm is dependent 
upon the "contiguity list" and here lies the difficulty to extend to 3D.  We included this 
algorithm in our selection of 2D algorithms so that this very point could be made.  Some 
concepts extend easily to 3D and others do not. 
 

Bowyer's Algorithm for 3D: It is a straight forward exercise to extend Bowyer's 2D 
algorithm to 3D.  In fact, the original paper of Bowyer [21] describes the algorithm for 
arbitrary dimensions.  Bowyer also mentions that with some care, the algorithm can be 
extended to other domains.  In [164] there is a brief discussion of Bowyer's algorithm 
along with some code. 
 

Watson's Algorithm for 3D: The original description of Watson's algorithm applies 
to arbitrary dimension.  In the paper [254]  results for 2, 3 and 4 dimension are reported.  
Information on implementing this algorithms in 3D is given by Field in [86] and [87].  It 
is also the basis for the 3D algorithms discussed in [29]. 
 

Embedding/Lifting Algorithms for 3D: Software for computing general dimension 
convex hulls and Delaunay tetrahedrizations based on the relationship mentioned earlier 
in Section 2.2 are provided by the Geometry Center, University of Minnesota at the 
WWW site: http://freeabel.geom.umn.edu/software/download/qhull.html. 
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3.3 Visibility Sorting of Tetrahedra 
 
We first give a motivation for the definition and the need of a visibility sort.  We use 

the example of volume rendering which is a means of graphing (visualizing) a density 
function (cloud) d(x,y,z) defined over a 3D domain (which is often a cube).  A view point 
V is selected along with a projection plane.  A rectangular portion of the projection plane 
is subdivided into a rectangular array of subrectangles which associate directly with the 
pixels of an image to be generated.  The RGB value for each pixel is defined by 
 

 F(i,j) = 
⌡

⌠

0

D

δ(s)C(s) e
-⌡⌠

s

D
δ(u)du

  
ds  + F0e

-⌡⌠
0

D
δ(u)du

 
  (3.3.1) 

 
where the integral is taken along the ray emanating from the viewpoint and passing 
through the center of the subrectangle associated with the pixel at location (i,j), F0 is the 
background intensity and D is a distance along the ray sufficiently large so that the ray 
completely passes through the domain of interest.  The function C, also defined over the 
same domain as δ, is called the color function and governs the color of light emanating 
(by reflection say) from a point within the density cloud.  In actual application the 
integrals are approximated by numerical schemes based upon sampled values of the 
integrand.  The sample values are often obtained by some simple interpolation into the 
cells covering the domain.  And these cells are often a result of the positions where δ has 
been measured.  If we let 0 = x0 < x1 < x2 < • • • < xn-1 < xn=D be the distances from the 
viewpoint to each sampled value along the ray then the upper Riemann sum 
approximation to this integral is 
 

 Fn=  ∑
i=o

n

∆xiδ(xi)Ci ∏
j=i+1

n
tj  , (3.3.2)  

 

where Ci = C(xi), tj = e
-∆xiδ(xi)
   and ∆xi = xi - xi-1 .  This discrete approximation can be 

computed by the compositing process  
 

 Fi = tiFi-1 + Ii , (3.3.3) 
 
 
where Ii = ∆xiδ(xi)Ci.   
 

Another way to view this compositing process is as a simple model of transparency 
where an object of thickness ∆xi attenuates the incoming light intensity Fi-1 by the factor 
ti and this object emits light of intensity Ii.  Algorithms which accumulate these values 
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into a frame buffer (with each location holding the value for a pixel) can either be image 
space oriented or object space oriented.  Image space algorithms proceed along the lines 
of our development here and accumulate all contributions for a pixel along a particular 
ray.  Object space algorithms compute exactly the same values but the calculations are 
done in a different order.  These algorithms sequential process each cell by accumulating 
into the proper location of the frame buffer all contributions of a particular cell.  Due to 
the nature of the compositing process, it is mandatory that these accumulations be done 
in the proper order.  It is this latter approach which motivates the definition and need for 
visibility sorting in this context. 
 

Definition of Visibility Order: Let T and T' be tetrahedra of a tetrahedrization and 
let V be the enter of perspective projection.  If there is a ray emanating from V which 
intersects T' before T, then T is said to precede T' and we write T < T'. 
 

The purpose of a visibility sort is find a linear ordering of all of the tetrahedra of a 
tetrahedrization so that the ordering relation is never violated. 
 

Definition of Visibility Ordering:  A visibility ordering of a tetrahedrization is a 
sequence, n1, n2, . . . , nT which has the property that whenever Tni < Tnj then i < j. 
 

The implication of the definition of visibility ordering for splatting or object space 
traversal algorithms for volume rendering is that a tetrahedron T must be processed 
(sampled and composited into the frame buffer) before T' whenever T < T'.  
 

A couple of items should be noted at this point.  The relation of visibility order is in 
the strict mathematical sense not a partial ordering.  A partial ordering is required to be i) 
transitive: x < y, y < z implies x< z; ii) antisymmetric: x < y and y < x implies x = y; and 
iii) reflexive: x < x.  It is entirely possible that a visibility order could not exist at all due 
the presence of cycles as shown in Figure 3.3.1. 
 

 

 
 

Figure 3.3.1. An example of three tetrahedra that can not be visibility ordered. 
 

Knuth [136] has discussed in some detail (including MIX programs) the  topological 
sort algorithm as a means of "embedding a partial order in a linear order."  A linear 
ordering is a partial ordering where either x <  y or y < x for all x, y.  Even though this 
does not strictly apply in the context of a general tetrahedrization, the basic ideas (mainly 
due to the manner in which it is described) are very useful for developing visibility 
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sorting algorithms for specific applications and so we include a description of the 
topological sort algorithm here. 
 

Topological Sort Algorithm: The topological sort algorithm as described by Knuth 
[136] starts with a directed, acyclic graph (DAG).  The DAG can be represented with a 
diagram using nodes and arrows.  See Figure 3.3.2.  The nodes represent the elements of 
the set to be ordered and an arrow from node x to node y represents the relation of the 
partial ordering, x < y.  The algorithm is simple.  Any node that has no incoming arrow is 
removed from the DAG (with all of it attached arrows) and placed in the linear ordering.  
This process is repeated until the DAG is empty.  It is easy to prove (left to the reader) 
that if the DAG represents a partial ordering, a linear ordering will always be produced 
by this algorithm. 
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Figure 3.3.2. An example of the topological sort algorithm. 
 

Max [166] has discussed the application of the ideas of the topological sort algorithm 
to the problem of producing a visibility sort for a cellular decomposition of a domain.  
Max defines the order relation in the following way.  The DAG contains an arrow for 
each face common to two cells x and y.  The arrow is directed from x to y if the 
viewpoint is on the same side of the face as x meaning that y must be process before x.  
Max mentions that the topological sorting algorithm will be successful "if every ray 
through the data volume intersects it in a single sequence of adjacent cells."  Of course, if 
the cell complex contains cycles (see Figure 3.3.1), then a visibility sort is not possible.  
Williams [257] discusses similar algorithms applied to a very general cellular 
decomposition which may contain empty cavities. 
 

We conclude this section with some rather interesting properties about the special 
case of the Delaunay tetrahedrization of the convex hull of a collection of 3D points.  The 
power of a tetrahedra is defined as D2 - R2 where D is the distance to the viewpoint from 
the center of the circumsphere of the tetrahedron and R is the radius of the 
circumscribing sphere.  A visibility sort can be accomplished by a simple sort based upon 
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the power.  This property is covered [69] and used by Max, Hanrahan, and Crawfis [167].  
We caution the reader that this approach breaks down in the presence of neutral cases 
where possibly several tetrahedra have the same power (as in the case of decomposing 
the cube).  One additional; interesting observation in this context is that a sort based upon 
the power of the tetrahedra does not require the neighborhood information as is required 
for the algorithms using the ideas of topological sorting.  Another method which does not 
use adjacency information is described by Stein, Becker and Max [240]. 
 

D
R

 

 
 

Figure 3.3.3. Elements of the definition of the power of a tetrahedron. 
 

3.4 Data Dependent Tetrahedrizations 
 

Lee [148] has investigated the topic of data dependent tetrahedrizations.  This work 
generalizes from 2D to 3D the ideas and techniques of [67] and [225].  Similar to the 
algorithms of [225], simulated annealing is used.  The initial tetrahedrization is the 
Delaunay tetrahedrization of the convex hull of the independent data site locations.  
Local swapping of tetrahedra is performed based upon random values compared to an 
annealing schedule and a cost function.  This "randomness" of the simulated annealing 
approach allows the algorithm to escape local extrema of the cost function.  Local 
swapping for 2D simply involves the choice of one or the other of the diagonals of a 
quadrilateral.  In 3D the situation is more complex.  There are four cases which are 
shown in Figure 3.2.2 which are the same as those used in the 3D version of Lawson's 
algorithm.  In the first case, three triangles are swapped for two.  The second case is the 
reverse of the first case and two tetrahedra are replaced by three tetrahedra.  The third 
case is where two triangles are on the boundary of the convex hull and the two tetrahedra 
can be swapped for two other tetrahedra.  In the last case four tetrahedra are swapped for 
four other tetrahedra. 
 

In Section 2.4, we described the cost function used by Dyn, Levin & Rippa [67].  
Analogous to these cost functions for 2D, Lee [148] uses the following criterion for 3D: 
 
Gradient Difference:  Let T1 and T2 be two tetrahedra with a common triangular face.  
Let G1 be the gradient of the linear function which interpolates the data at the four 
vertices of T1 and let G2 be the similar gradient for the linear interpolant of T2.  The 
gradient difference is defined as ||G1 - G2||. 
 
Jump in Normal Direction Derivatives:  Let L1(x,y,z) = a1x + b1y + c1z + d1 be the 
linear function which interpolates to the data at the four vertices of T1 and let L2(x,y,z) = 
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a2x + b2y + c2z + d2 be the similar function for T2.  Let N = (nx, ny, nz) be the normal 
(normalized) of the common triangular face of T1 and T2.  The D1 = a1nx + b1ny + c1nz 
is the directional derivative of L1 in the direction of N.  D2 = a2nx + b2ny + c2nz is the 
analogous value for T2.  The jump in normal direction criterion is |D1 - D2| = |(a1-a2)nx + 
(b1-b2)ny + (c1-c2)nz)|. 
 
Some example results reported by Lee [148] are repeated here in Figure 3.4.1.  This 
example involves a test function, F(x,y) = (Tanh(9y-9x-9z) + 1)/9, which provides the 
dependent data.  The piecewise linear interpolant over the tetrahedrization is compared to 
the test function.  The RMS errors based upon evaluations of the functions and this 
approximation over a 20×20×20 Cartesian grid.  The dependent data sit locations are 
taken to be 1000 random points in the unit cube.    
 

Method RMS Error
Delaunay .007475

.005445
.004361

Difference in Gradient
Jump in Normal Derivative

 

 
 

Figure 3.4.1. Errors for the piecewise linear interpolant using different tetrahedrizations. 
 

In Figure 3.4.2 are shown some graphs which can be considered as 3D analogs of the 
graphs shown in Figure 2.4.2 of Section 2.4.  Similar to the 2D case the data dependent 
tetrahedrization involves some badly shaped tetrahedra.  This is the cost of having an 
optimal (or nearly optimal) piecewise linear approximation. 
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Figure 3.4.2.  Data dependent tetrahedrization compared to the Delaunay tetrahedrization. 

 
70



 
3.5 Affine Invariant Tetrahedrizations 
 

In this section we extend the results of Section 2.5 on affine invariant triangulations 
to that of affine invariant tetrahedrizations.  Prior to discussing the characterization and 
computation of this type of tetrahedrization, we make some comments about the need for 
such a tetrahedrization over and above those reasons for the 2D case.  It appears that as 
the dimension of the independent data increases, our need to be concerned about lack of 
affine invariance also increases. 

 
One source of 3D independent data is the case of time varying 2D data.  In some 

cases the data measurement locations might stay fixed over time and some cases they 
may vary over time.  For example, if we have a vector field which is known (say by 
means of a numerical simulation) at the locations of a 2D curvilinear grid (xij, yij), i = 1, . 
. . , Nx; j = 1, . . . , Ny.  As time proceeds, the vector field varies, but the dependent data 
site locations stay fixed.  So in this case, we have data which can be represented as (Vijk; 
xij, yij, tk), i = 1, . . . , Nx , j = 1, . . . , Ny, k = 1, . . . , Nt.  If the definition of a modeling 
function F(x, y,t), designed to interpolate the data, F(xij, yij, tk) = Fijk,  is based upon a 
tetrahedrization of the 3D independent data (xij, yij, tk), then this model will not 
necessarily be affine invariant and the units used to measure and represent the physical 
coordinates and time could have an affect on the modeling function F(x, y, t) and 
subsequently an affect on the visualization and analysis.  The same problem could also 
occur for time varying vector field over a curvilinear grid which also varies over time.  
That is, data of the type (Fijk; xijk, yijk, tk), i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nt.  
In general, any tetrahedrization of the independent data of (Fijk, xi, yj, zk) where the 
choice of the units of measurement used for the independent data could lead to a non-
uniform scaling could have the problem of being dependent on the choice of the units 
used.  If each of the variables use the same units then there will be no problems of this 
type because a scale transformation of the form x ← ax, y ← ay, z ← az where the scale 
change is uniform for each variable will not affect the tetrahedrization.  It is only the non-
uniform scaling x ← ax, y ← by, z ← cz which creates the problem.  An example of a 
scale change affecting the tetrahedrization is shown in Figure 3.5.1.  Here there are 10 
data points.  In the right image, the data has been scaled in the y-variable by a factor of 2.  
Not only does the tetrahedrization change, but even the number of tetrahedra changes.  
The Delaunay tetrahedrization of the original 10 data points has eighteen tetrahedra and 
the scaled data has thirteen tetrahedra. 
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Figure 3.5.1 Delaunay tetrahedrization of 10 data points and a scaled version of the same 

data points. 
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We now describe the 3D version of the affine invariant norm  which leads (by way of 
the Dirichlet tessellation) to an affine invariant tetrahedrization.  Actually, we can define 
it so that it is clear what the generalization is for any dimension.  Let 
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As with the 2D case, there are some different approaches to modifying an existing 
tetrahedrization procedures.  Probably the simplist is to preprocess the data with the 
transformation given by the lower triangular matrix, L(V) which results form the 
Cholesky decomposition of (VV*)-1 
 

L(V) L(V)* = (VV*)-1  . 
 
Explicitly in the 3D case, we use the transformed data 
 
 Xi  = l11xi + l21yi + l31zi 
 
 Yi  = l22yi + l32zi 
 
 Zi  = l33zi 
 
where 
 

 l11  = a11  ,  l21 = 
a11
l11

  ,  l31 = 
a13
l11

  

 

 l22 = a22-(l21)2  ,  l32 = 
a33-l21l31

l22
  , 

 
 l33 = a33-(l31)2-(l32)2  
 
 A  = (aij) = (VV*)-1 = L(V)L(V)* 
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We conclude this section with some examples illustrating this affine invariant norm 

and its use in characterizing affine invariant tetrahedrizations.  In Figure 3.5.2 there are 
shown four graphs of 13 data points.  The transparent ellipsoids represent all the points 
that are 0.25, 0.50 and 1.0 units from the center point using the affine invariant norm.  
The different graphs show the data after it has undergone an affine transformation.  The 
original data is displayed in the upper left.  The upper right show the data after it has 
been rotated by 44 degrees about the z-axis.  The lower right is after it has subsequently 
been scaled in the x-variable by a factor of 1.5.  The lower left is after it has been scaled 
in y by a factor of 0.6.  A close examination of these graphs will show that the relative 
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distances (as measured by the affine invariant norm) between points is unchanged by this 
transformations.  In Figure 3.5.3 an affine invariant tetrahedrization is shown.  In 
comparison the conventional Delaunay tetrahedrization is shown in Figure 3.5.4. 
 

y  ← .6y

orig in al 
   data

rotate  44

x ← 1.5x

 
 

Figure 3.5.2. Examples illustrating the affine invariant norm.  The ellipsoids are 0.25, 
0.50 and 1.0 units from the center point. 
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Figure 3.5.3. Examples of affine invariant tetrahedrization. 
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Figure 3.5.4. Delaunay tetrahedrization of the same data as in Figure 3.5.3. 
 
3.6 Interpolation in Tetrahedra 

 
As with the bivariate case covered in Section 2.6, there are two concepts of interest 

for interpolation in tetrahedra.  The first is concerned with the amount of boundary data 
that is proved or assumed to be available.  This can be discrete data provided at a finite 
number of locations (usually the vertices or midpoints) or transfinite data where 
boundary data values are assumed to be available at all locations on the boundary.  The 
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second concept relates to the degree of continuity of a piecewise defined interpolant 
using the local interpolants described here.  C0 interpolants only use boundary position 
data and lead to overall interpolants which are continuous.  C1 interpolants utilize first 
order derivative information and lead to global interpolants which have all first order 
derivative continuous.  These two concepts lead to four possibilities which comprise the 
outline of this section. 

 

Section 3.6.1

Section 3.6.4

Section 3.6.2

Section 3.6.3

TransfiniteDiscrete

C0

C1

  
Figure 3.6.1. Outline of Section 3.6. 

 
Section 3.6.1 C0, Discrete Interpolation in Tetrahedra 
 

Analogous to the bivariate linear interpolant which will match predescribed values at 
the three vertices of a triangle, there is a unique trivariate linear interpolant which will 
match data at the four vertices of a tetrahedra, Tijkl.  Given F(Vi), F(Vj), F(Vk) and F(Vl) 
the coefficients of this linear function 
 

F(x, y, z) = a + bx + cy + dz 
 
which interpolates this data can be found by solving the linear system of equations 
 
 a + bxi + cyi + dzi  = F(Vi) 
 
 a + bxj + cyj + dzj  = F(Vj) 
 
 a + bxk + cyk + dzk  = F(Vk) 
 
 a + bxl + cyl + dzl  = F(Vl) 
 
As before, it is also possible to use barycentric coordinates.  The barycentric coordinates 
of a point V= (x, y, z) are defined by the relationships 
 
 V  = biVi + bjVj + bkVk + blVl 
 
 1  = bi + bj + bk + bl 
 
and the linear interpolant has the form 
 
 F(x, y, z) = F(V) = biF(Vi) + bjF(Vj) + bkF(Vk) + blF(Vl) (3.6.1) 
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As before, there are several ways of defining or computing barycentric coordinates.  The 
analog of the ratios of areas before is the ratio of volumes of subtetrahedra, 
 

bi = 
Vol(TVjkl)
Vol(Tijkl)  ,     bj = 

Vol(TiVkl)
Vol(Tijkl)     

 

bk = 
Vol(TijVl)
Vol(Tijkl)  ,     bl = 

Vol(TijkV)
Vol(Tijkl)   

 
where TVjkl is the tetrahedron with vertices V, Vj, Vk, and Vl and similar definitions for 
the other subtetrahedra.  The volume of a tetrahedron, Tabcd, with vertices a, b, c and d is  
 
 Vol(Tabcd) = 16 [(d-a)•((b-a)×(c-a)))] 
 
Also determinants can be used, 
 

bi = 








x-xj x-xk x-xl

y-yj y-yk y-yl
z-zj  z-zk  z-zl









xi-xj xi-xk xi-xl

yi-yj yi-yk yi-yl
zi-zj  zi-zk  zi-zl

  ,    bj = 








x-xi x-xk x-xl

y-yi y-yk y-yl
z-zi  z-zk  z-zl









xj-xi xj-xk xj-xl

yj-yi yj-yk yj-yl
zj-zi  zj-zk  zj-zl

   , 

 

bk = 








x-xi x-xj x-xl

y-yi y-yj y-yl
z-zi  z-zj  z-zl









xk-xi xk-xj xk-xl

yk-yi yk-yj yk-yl
zk-zi  zk-zj  zk-zl

  ,   bl = 








x-xi x-xj x-xk

y-yi y-yj y-yk
z-zi  z-zj  z-zk









xl-xi xl-xj xl-xk

yl-yi yl-yj yl-yk
zl-zi  zl-zj  zl-zk

   . 

 

Vi

Vj

Vk

Vl

Mjk

 
Figure 3.6.2. Data site locations for trivariate quadratic interpolation. 
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Given the values at the four vertices and the six midpoints of a tetrahedron, there is a 
unique trivariate quadratic which interpolates this data, 
 
 Q(x, y, z) =  F(Vi)bi(bi - bj - bk - bl) + F(Vj)bj(bj - bi - bk - bl) 
 
 +  F(Vk)bk(bk - bi - bj - bl) + F(Vl)bl(bl - bi - bj - bk) 
 
 +  F(Mik)4bibk + F(Mjl)4bjbl + F(Mij)4bibj 
 
 +  F(Mjk)4bjbk + F(Mil)4bibl + F(Mkl)4bkbl (3.6.7) 
 
where Mij = (Vi + Vj)/2 and the other midpoints are defined similarly. 
 
Section 3.6.2 C0, Transfinite Interpolation in Tetrahedra 
 

As before in Section 2.6.2, we give a sampling of interpolants.  One is a 
generalization of the side-vertex interpolant and the other is a generalization of the C* 
interpolant.  Both of these bivariate interpolants were discussed previously in Section 
2.6.2. 
 

Vi

Vj

Vk

(x, y, z) = V

Vl

F i

 
Figure 3.6.3. Notation for the Face-Vertex interpolant. 

 
The C0, Face-Vertex Interpolant: Analogous to the basic interpolants used to 

construct the side-vertex interpolant, we have the interpolants which consist of linear 
interpolation along edges joining a vertex and the opposing face 
 
 Ai[F] = biF(Vi) + (1-bi)F(Fi) 
 
 Aj[F] = bjF(Vj) + (1-bj)F(Fj) 
 
 Ak[F] = bkF(Vk) + (1-bk)F(Fk) (3.6.3) 
 
 Al[F] = blF(Vl) + (1-bl)F(Fl) 
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where Fi = 
bjVj+bkVk+blVl

bj+bk+bl
 , Fj = 

biVi+bkVk+blVl
bi+bk+bl

 , Fk = 
biVi+bjVj+blVl

bi+bj+bl
  and  

Fl = 
biVi+bjVj+bkVk

bi+bj+bk
  . 

 
Computing the Boolean sum of these four interpolants leads to 
 
 A[F] =  (1-bi)F(Fi) + (1-bj)F(Fj) + (1-bk)F(Fk) + (1-bl)F(Fl) 
 
 - (bk+bl)F(Skl) - (bi+bl)F(Sil) - (bj+bl)F(Sjl) 
 
 - (bj+bk)F(Sjk) - (bi+bk)F(Sik) - (bi+bj)F(Sij) 
 
 + biF(Vi) + bjF(Vj) + bkF(Vk) + blF(Vl) (3.6.4) 
 

where Smn = 
bmVm+bnVn

bm+bn
 , mn = kl, il, jl, jk, ik, ij 

 
The C* Interpolant (for a tetrahedron): The analog of the bivariate C* interpolant 

described in Section 2.6.2 is 
 
 C*[F] =  biF(Vi) + bjF(Vj) + bkF(Vk) + blF(Vl) 
 

 + Wl{F(Ql) - (bi+
bl
3  )F(Vi) - (bj+

bl
3  )F(Vj) - (bk+

bl
3  )F(Vk)} 

 

 + Wk{F(Qk) - (bi+
bk
3  )F(Vi) - (bj+

bk
3  )F(Vj) - (bl+

bk
3  )F(Vl)} 

 

 + Wj{F(Qj) - (bi+
bj
3  )F(Vi) - (bk+

bj
3  )F(Vk) - (bl+

bj
3  )F(Vl)} 

 

 + Wi{F(Qi) - (bj+
bi
3  )F(Vj) - (bk+

bi
3  )F(Vk) - (bl+

bi
3  )F(Vl)} (3.6.5) 

 

where Ql = (bi+
bl
3  )Vi + (bj+

bl
3  )Vj + (bk+

bl
3  )Vk ,  

Wl = 
27bibjbk

(3bi+bl)(3bj+bl)(3bk+bl)  and the other Q's and W's are defined in a similar manner. 

 
The NTW Interpolant (for a tetrahedron):  The analog of the bivariate NTW 

interpolant described in Section 2.6.2 is 
 

[ ] llkkjjii SbSbSbSbFNTW +++=  
 
where 
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Section 3.6.3 C1, Transfinite Interpolation in Tetrahedra 
 

The C1, Face-Vertex Interpolant: It is a straightforward process to extend the C1, 
transfinite side-vertex interpolant to a tetrahedral domain, Tijkl.  It is called the C1, face-
vertex interpolant and we assume that position and derivative information is available at 
all locations on the four faces which make up the boundary of the tetrahedron Tijkl.  The 
basic face-vertex operator is defined as 

 
 Si[F](p) = bi2(3-2bi)F(Vi) + bi2(bi-1)F'(Vi)  
 
 + (1-bi)2(2bi+1)F(Fi) + bi(1-bi)2F'(Fi) (3.6.6) 
 

where F'(Vi) = 
(x-xi)Fx(Vi)+(y-yi)Fy(Vi)+(z-zi)Fz(Vi)

1-bi
  and  

F'(Fi) = 
(x-xi)Fx(Si)+(y-yi)Fy(Si)+(z-zi)Fz(Vi)

1-bi
 .  The point Fi is the intersection point of 

the ray from Vi through V and the face opposite Vi and the derivatives are taken in the 
direction of this same ray.  If we form the convex combination 
 

S[F] =  
b2

j b2
kb2

l Si[F] + b2
i b2

kb2
l Sj[F] + b2

j b2
l b2

i Sk[F] + b2
j b2

kb2
i Sl[F]

 b2
j b2

kb2
l  + b2

i b2
kb2

l  + b2
j b2

kb2
i  + b2

i b2
j b2

k
  

 
then S[F] will match position and derivative values on the entire boundary of Tijkl.  
 
Section 3.6.4 C1, Discrete Interpolation in Tetrahedra 
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Vi

Vj

Vk

Vl

 
Figure 3.6.4.  The data for a 16 parameter, C1, interpolant over a tetrahedron. 

 
For a C1, discrete interpolant, we assume that position and first order derivative 

information is given at all four vertices of the tetrahedron Tijkl.  Since there are three 
(linearly independent) directional derivatives at each vertex, this amounts to a total of 
sixteen data values.  The method for describing an interpolant that will match these 
sixteen pieces of data and which also has the property that all first order derivatives 
across a face with common data will be continuous is somewhat different that the 
previous interpolants we have described so far.  Our description (and subsequent 
implementation) is based upon a two step procedural discretization process.  We use the 
transfinite interpolant of the previous section.  In order to apply this transfinite 
interpolant, we need to define position and derivative values on the entire boundary of 
Tijkl.  First we assume that information is known on all the edges of the tetrahedra and we 
describe how to extend it to the entire boundary.  Secondly, we describe how to provide 
this transfinite edge data from only the discrete data at the vertices.  If we know both 
position and derivative information on the edges, then we can use any C1 transfinite 
planar triangular interpolant to define position values on the interior points of the face 
triangles.  For example, the side-vertex method itself could be used.  Specifying position 
information on a face also implies some information about the derivatives on the interior 
of a triangle.  Namely, all directional derivatives in a direction parallel to the face triangle 
are determined and so, in order to completely specify all derivatives, we need only 
provide a definition for the derivative perpendicular to the face.  For this we use the C0 
version of the side-vertex interpolant which interpolates position data only and not 
derivatives, but we apply it to the edge data consisting of derivatives normal to a face.  

We now describe the second step of the discretization which is how to compute edge 
information when only the point and derivative values are known at the four vertices.  
For position only on an edge, we simply use univariate cubic Hermite interpolation.  This 

will also specify one directional derivative on the edge; namely 
�F

 �eij
  which will vary as a 

quadratic polynomial.  In order to get a C1 join from one tetrahedron to the next, the 
other two directional derivatives must vary linearly along this edge.  This is 
accomplished by specifying the gradient, ∇F, by the relationship 
 
 ∇Fij(p) = (1-t)∇Fi + t∇Fj 
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 + [
�F
�eij

(p)  - ( (1-t)∇Fi+t∇Fi, eij)]eij (3.6.8) 

 

where ∇Fi = (Fx(pi), Fy(pi), Fz(pi)) and t = 
||p-pi||
 ||pj-pi|| .  This interpolation of the gradient is 

consistent with the value 
�F
�eij

  already specified because (∇Fij(p),eij) = 
�F

 �eij
  and it also 

has the property that for (n,eij) = 0, 
 
 (∇Fij(p), n) = (1-t)(∇Fi,n) + t(∇Fj,n), 
 
and so we have linear interpolation for any derivative in a direction perpendicular to eij.  
This completes the definition of the 16-parameter, C1, tetrahedral interpolant which is 
based upon the face-vertex interpolant.  Examples and more discussion on this 
interpolant can be found in [187].  The Clough-Tocher interpolant has been generalized 
to n-dimensional by Worsey and Farin [261].  Other C1, discrete interpolants for a 
tetrahedral domain are discussed in [2], [3], and [Worsey and Piper in CAGD, 1988], but 
each have some problem or drawback.  The method of [2] is based upon the side-side, 
transfinite method of interpolation and apparently it has a problem with the linear 
independence of the discretized data.  The method of [3] requires C2 data for a C1 
interpolant and the method of [260] has a problem similar to its bivariate precursor [199] 
and [198].  This problem lies in the constraint that the center of the circumcircle of each 
triangle must lie interior to the triangular domain. 
 
Acknowledgments 
 

This work was supported by the North Atlantic Treaty Organization under grant RG 
0097/88.  We wish to thank Herbert Edelsbrunner for the idea of the dual graphs of 
Section 3.1 and other insightful discussions about tetrahedrizations.  We wish to thank 
Kun Lee for his help in generationg the images of Sections 3.4 and 3.5.   

 
References 
 
1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear time algorithm for 

computing the Voronoi diagram of a convex polygon, Disc. and Comp. Geometry 
4, 1989, pp. 591-604. 

 
2. P. Alfeld, A discrete C1 interpolant for tetrahedral data, The Rocky Mountain 

Journal of Mathematics, Vol. 14, No. 1, Winter 1984, pp. 5-16. 
 
3. P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data, Computer 

Aided Geometric Design, Volume 1, Number 2, 1984, pp. 169-181. 
 
4. T. Asano and R. Pinter, Polygon triangulation: efficiency and minimality, J. 

Algorithms, Vol. 7, 1986, pp. 221-231. 

 
84



 
5. D. Avis, and B. K. Bhattacharya, Algorithms for computing d-dimensional 

Voronoi diagrams and their duals, Advance in Computing Research, Vol. 1, pp. 
159-180. 

 
6. D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex 

enumeration of arrangements and polyhedra, Proceedings 7th Annual ACM 
Symposium Computational Geometry, 1991, pp. 98-104. 

 
7. D. Avis and G. T. Toussaint, An efficient algorithm for decomposing a polygon 

into star-shaped polygons, Pattern Recogn. Vol. 13, No. 6, 1981, pp. 395-398. 
 
8. F. Aurenhammer, Voronoi diagrams - A survey of a fundamental geometric data 

structure, ACM Computing Surveys, Vol. 23, 1991, pp. 345-405 
 
9. I. Babuska, and A. Aziz, On the angle condition in the finite element method, 

SIAM J. Numer. Analysis, Vol. 13, 1976, pp. 214-227. 
 
10. P. I. Baegmann, M. S. Shepard, and J. E. Flaherty, A posterori error estimation for 

triangular and tetrahedral quadratic elements using interior residuals, Internat. J. 
Numer. Meth. Eng., Vol. 34, 1992, pp. 979-996. 

 
11. F. Bagemihl, On indecomposable polyhedra, American Mathematical Monthly, 

September 1948, pp. 411-413. 
 
12. T. J. Baker, Automatic mesh generation for complex three-dimensional regions 

using a constrained Delaunay triangulation, Eng. with Computers, Vol. 5, 1989, 
pp. 161-175. 

 
13. B. S. Baker, E. Grosse, and C. S. Rafferty, Nonobtuse triangulation of polygons, 

Disc. and Comp. Geom., Vol. 3, 1988, pp. 147-168. 
 
14. G. Baszenski and L. L. Schumaker, Use of simulated annealing to construct 

triangular facet surfaces, in: Curves and Surfaces, P.-J. Laurent, A. Le Mehaute 
and L. L. Schumaker (eds.), Academic Press, Boston, 1991, pp. 27-32. 

 
15. M. Bern and D. Eppstein, Polynomial-size nonobtuse triangulation of polygons, 

Proc. 7th ACM Symp. Comp. Geometry, 1991, pp. 342-350. 
 
16. M. Bern, and D. Eppstein, Mesh generation and optimal triangulation. In F. K. 

Hwang and D.-Z. Du, Editors, Computing in Euclidean Geometry, pp. 23-90. 
World Scientific, Singapore, 1992. 

 
17. M. Bern, D. Dobkin, and D. Eppstein, Triangulating polygons with large angles, 

Proc. 8th ACM Sym. Comp. Geometry, 1992. 
 
18. M. Bern, D. Eppstein, and F. Yao, The expected extremes in a Delaunay 

triangulation, Int. J. Comp. Geometry and Applications, Vol. 1, 1991, pp. 79-92. 

 
85



 
19. J. Bloomenthal, Polygonization of implicit surfaces, CAGD, Vol. 5, 1988, pp. 341-

355. 
 
20. C. Borgers, Generalized Delaunay triangulations of nonconvex domains, 

Computers & Mathematics with Applications, Vol. 20, No. 7, 1990, pp. 45-49. 
 
21. A. Bowyer, Computing Dirichlet tessellations, Computer J., Vol. 24, 1981, pp. 

162-166. 
 
22. C. Bradford, D. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull 

algorithm for convex hull, Tech. Rep. GCG53-93, Geometry Center, University 
of Minnesota, July 1993. 

 
23. J. Bramble and M. Zlamal, Triangular elements in the finite element method, 

Math. Comp., Vol. 24, 1970, pp. 809-820. 
 
24. K. E. Brassel and D. Reif, A procedure to generate Thiessen polygons, Geograph. 

Anal., Vol. 11, 1979, pp. 289-303. 
 
25. W. Brostow, J. P. Dussault, and B. L. Fox, Construction of Voronoi polyhedra, J. 

Comp. Physics, Vol. 29, 1978, pp. 81-92. 
 
26. J. L. Brown, Vertex based data dependent triangulations, Computer Aided 

Geometric Design, Vol. 8, 1991, pp. 239-251. 
 
27. K. Q. Brown, Voronoi diagrams from convex hulls, Inform. Process. Lett., Vol. 9, 

1979, pp. 223-228. 
 
28. J. C.. Cavendish, Automatic triangulation of arbitrary planar domains for the 

finite element method, Int. J. for Numer. Methods in Engr., Vol. 8, 1974, pp. 679-
696. 

 
29. J. C. Cavendish, D. A. Field, and W. H. Frey, An approach to automatic three-

dimensional finite element mesh generation, Int. J. Numer. Meth. Eng., Vol. 21, 
1985, pp. 329-347. 

 
30. M. S. Chang, N.-F. Huang, and C. Y. Tang, Optimal algorithm for constructing 

oriented Voronoi diagrams and geographic neighborhood graphs, Information 
Processing Letters, Vol. 35, No. 5, August 1990, pp. 255-260. 

 
31. R. C. Chang and R. C. T. Lee, On the average length of Delaunay triangulations, 

BIT, Vol. 24, 1984, pp. 269-273. 
 
32. S. Chattopodhyay and P. P. Das, Counting thin and bushy triangulations, Pattern 

Recognition Letters, Vol. 12, No. 3, 1991, pp. 139-144. 
 

 
86



33. B. Chazelle, Convex partitions of polyhedra: a lower bound and worst-case 
optimal algorithm, SIAM J. Comput., Vol. 13, 1984, pp. 488-507. 

 
34. B. Chazelle, Triangulating a simple polygon in linear time, Disc. and Comp. 

Geometry, Vol. 6, 1991, pp. 485-524. 
 
35. B. Chazelle and D. Dobkin, Decomposing a polygon into its convex parts, in: 

ACM Proceedings of the 11th Symposium on Theory of Computing, 1979, pp. 
38-48. 

 
36. B. Chazelle, H. Edelsbrunner, L. J. Guibas, J. E. Hershberger, R. Reidel, and M. 

Sharir, Selecting multiply covered points and reducing the size of Delaunay 
triangulations, In Proc. 6th ACM Symp. Comp. Geometry, 1990, pp. 116-127. 

 
37. B. Chazell and J. Incerpi, Triangulating a polygon by divide and conquer, 

Proceedings of the 21st Allerton Conference on Communications, Control and 
Computing, 1983, pp. 447-456. 

 
38. B. Chazelle and J. Incerpi, Triangulation and shape complexity, ACM Trans on 

Graphics, Vol. 3, 1984, pp. 135-152. 
 
39. B. Chazelle and L. Palios, Triangulating a nonconvex polytope, Disc. and Comp. 

Geometry, Vol. 5, 1990, pp. 505-526. 
 
40. L. P. Chew, Constrained Delaunay triangulations, Algorithmica, Vol. 4, 1989, pp. 

97-108. 
 
41. B. K. Choi, H. Y. Shin, Y. I. Yoon, and J. W. Lee, Triangulation of scattered data 

in 3D space, CAD, Vol. 20, 1988, pp. 239-248. 
 
42. K. L. Clarkson, R. E. Tarjan, and C. J. Van Wyk, A fast Las Vegas algorithm for 

triangulating a simple polygon, Discrete and Computational Geometry, Vol. 4, 
1989, pp. 423-432. 

 
43. A. K. Cline and R. J. Renka, A constrained two-dimensional triangulation and the 

solution of closest node problems in the presence of barriers, SIAM Journal on 
Numerical Analysis, Vol. 27, No. 5, 1990, pp. 1305-1321. 

 
44. A. K. Cline and R. L. Renka, A storage-efficient method for construction of a 

Thiessen triangulation, Rocky Mountain Journal of Mathematics, Vol. 14, No. 1, 
Winter 1984, pp. 119-140. 

 
45. H. E. Cline, W. E. Lorensen, S. Ludke, C. R.  Crawford, and B. C. Teeter, Two 

algorithms for the reconstruction of surfaces from tomograms, Medical Physics, 
June 1988. 

 
46. Y. Correc and E. Chapuis, Fast computation of Delaunay triangulations, Advances 

in Engineering Software, Vol. 9, No. 2, 1987, pp. 77-83. 

 
87



 
47. H. S. M. Coxeter, Discrete groups generated by reflections, Ann. Math. Vol. 35, 

1934, pp. 588-621. 
 
48. J. R. Davy and P. M. Dew, A note on improving the performance of Delaunay 

triangulation. in: New Advances in Computer Graphics: Proceedings of Computer 
Graphics International 89, R. A. Earnshaw and B. Wyvill (eds.), Springer, Tokyo, 
1989, pp. 209-226. 

 
49. A. M. Day, The implementation of an algorithm to find the convex hull of a set of 

three-dimensional points, ACM Transactions on Graphics, Vol. 9, No. 1, January 
1990, pp. 105-132. 

 
50. L. De Floriani, A pyramidal data structure for triangle-based surface 

representation, IEEE Computer Graphics and Applications, Vol. 9, March 1989, 
pp. 67-78. 

 
51. L. De Floriani, B. Falcidieno, and C. Pienovi, Delaunay-based representation of 

surfaces defined over arbitrarily shaped domains, Computer Vision, Graphics, and 
Image Processing, Vol. 32, 1985, pp. 127-140. 

 
52. L. De Floriani and E. Puppo, An on-line algorithms for constrained Delaunay 

triangulation, CVGIP: Graphical Models and Image Processing, Vol. 54, No. 3, 
1992, pp. 290-300. 

 
53. L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi, On sorting triangles in a 

Delaunay tessellation, Algorithmica, Vol. 6, 1991, pp. 522-532. 
 
54. B. Delaunay, Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie 

Matematicheskii i Estestvennyka Nauk 7, (Bull. Acad. Sci. U.S.S.R.(VII), Classe 
Sci. Mat. Nat), 1934, pp. 793-800. 

 
55. P. A. Devijver and M. Dekesel, Insert and delete algorithms for maintaining 

dynamic Delaunay triangulations, Pattern Recogn. Lett., Vol. 1, 1982, pp. 73-77. 
 
56. T. Dey, Triangulation and CSG representation of polyhedra with arbitrary genus. 

In Proc. 7th ACM Symp. Comp. Geometry, 1991, pp. 793-800. 
 
57. T. Dey, K. Sugihara and C. L. Bajaj, Delaunay triangulations in three dimensions 

with finite precision arithmetic, Computer Aided Geometric Design, Volume 9, 
Number 6, pp. 457-470. 

 
58. M. B. Dillencourt, Realizability of Delaunay triangulations, Information 

Processing Letters, Vol. 33, No. 6, 1990, pp. 283-287. 
 
59. G. L. Dirichlet, Über die reduktion der positiven quadratischen formen mit drei 

unbestimmten ganzen zahlen, J. Reine u. Angew. Math., Vol. 40, 1850, pp. 209-
227. 

 
88



 
60. H. Djidjev and A. Lingas, On computing the Voronoi diagram for restricted planar 

figures, Proc. 2nd Workshop Algorithms Data Struct. Volume 519 of Lecture 
Notes in Computer Science, Springer, 1991, pp. 54-64. 

 
61. D. P. Dobkin, Computational geometry and computer graphics, Proc. IEEE, Vol. 

80, No. 9, September 1992, pp. 1400-1411. 
 
62. D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of three-

dimensional subdivisions, Algorithmica, Vol. 4, 1989, pp. 3-32. 
 
63. D. Dobkin, S. Friedman, and K. Supowit, Delaunay graphs are almost as good as 

complete graphs, Disc. and Comp. Geometry, Vol. 5, 1990, pp. 389-423. 
 
64. D. Dobkin, S. Levy, W. Thurston, and A. Wilks, Contour tracing by piecewise 

linear approximations, ACM Trans. on Graphics, Vol. 9, 1990, 389-423. 
 
65. R. A. Dwyer, A faster divide and conquer algorithm for construction Delaunay 

triangulation, Algorithmica, Vol. 2, 1987, pp. 137-151. 
 
66. N. Dyn and I. Goren, Transforming triangulations in polygon domains, Computer 

Aided Geometric Design, Volume 10, Number 6, December 1993, pp. 531-536. 
 
67. N. Dyn, D. Levin, and S. Rippa, Data dependent triangulations for piecewise linear 

interpolation, IMA Journal of Numerical Analysis, Vol. 10, 1990, pp. 137-154. 
 
68. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer Verlag, 1987. 
 
69. H. Edelsbrunner, An acyclicity theorem for cell complexes in d dimensions, 

Combinotorica, Vol. 18, 1990, pp. 251-260.  Also: Proceedings of the 5th Annual 
ACM Symposium on Computation Geometry, 1989, pp. 145-151. 

 
70. H. Edelsbrunner and E. P. Mücke, Simulation of simplicity, a technique to cope 

with the degenerate cases in geometric computations, ACM Trans. Graphics, Vol. 
9, 1990, pp. 66-104. 

 
71. H. Edelsbrunner and E. P. Mücke, Three dimensional alpha shapes, ACM 

Transactions on Graphics, Vol. 13, 1994, pp. 43-72. 
 
72. H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for 

regular triangulations, in: Proceedings of the 8th Annual ACM Symposium on 
Computational Geometry, pages 43-52, June 1992. 

 
73. H. Edelsbrunner and T. S. Tan, A quadratic time algorithm for the minmax length 

triangulation, in: Proc. 32nd IEEE Symp. foundations of Comp. Science, 1991, pp. 
414-423. 

 

 
89



74. H. Edelsbrunner and T. S. Tan, A cubic bound for conform Delaunay 
triangulations, In Proc. 8th Symp Comp. Geometry, 1992. 

 
75. H Edelsbrunner, T. S. Tan, and R. Waupotitsch, A polynomial time algorithm for 

the minmax angle triangulation, In Proc. 5th Symp Comp. Geometry, 1990. 
 
76. H. Edelsbrunner, T. S. Tan, and R. Waupotitsch, O(N2 log N) time algorithm for 

the minmax angle triangulation, SIAM Journal on Scientific and Statistical 
Computing, Vol. 13, No. 4, July 1992, pp. 994-1008. 

 
77. H. Edelsbrunner, F. P. Preparata, and D. B. West, Tetrahedrizing point sets in 

three dimensions, J. Symbolic Comp., Vol. 10, 1990, pp. 335-347. 
 
78. M. Elbaz and J.-C. Spehner, Construction of Voronoi diagrams in the plane by 

using maps, Theoretical Computer Science, Vol. 77, No. 3, 1990, pp. 331-343. 
 
79. H. ElGindy and G. T. Toussaint, On geodesic properties of polygons relevant to 

linear time triangulation, Visual Computer, Vol. 5, No. 1, 1989, pp. 68-74. 
 
80. D. Eppstein, The farthest point Delaunay triangulation minimizes angles, Comput. 

Geom. Theory Appl., Vol. 1, 1992, pp. 143-148. 
 
81. D. Eppstein, Approximating the minimum weight triangulation, In Proc. 3rd 

ACM-SIAM Symp. Disc. Algorithms, 1992. 
 
82. G. Erlebacher and P. R. Eiseman, Adaptive triangular mesh generation, AIAA 

Journal, Vol. 25, 1987, pp. 1356-1364. 
 
83. T. P. Fang and L. A. Piegl, Delaunay triangulation using a uniform grid, IEEE 

Computer Graphics and Application, Vol. 13, No. 3, pp. 36-47, May 1993. 
 
84. G. Farin, A modified Clough-Tocher Interpolant, Computer Aided Geometric 

Design, Volume 2, Numbers 1-3, pp. 19-27. 
 
85. G. Fekete, Rendering and managing spherical data with sphere quadtrees, 

Proceedings of Visualization '90, IEEE Computer Society Press, 1990, pp. 176-
186. 

 
86. D. Field, Implementing Watson's algorithm in three dimension. In Pro. 2nd ACM 

Symp. Comp. Geometry, 1986, pp. 246-259. 
 
87. D. Field, A generic Delaunay triangulation algorithm for finite element meshing, 

Adv. Eng. Software, Vol. 13, 1991, pp. 263-272. 
 
88. D. Field, Laplacian smoothing and Delaunay triangulations, Comm. in Applied 

Numer. Analysis, Vol. 4, 1988, pp. 709-712. 
 

 
90



89. D. Field and W. D. Smith, Graded tetrahedral finite element meshes, Int. J. 
Numer. Meth. Eng. Vol. 31, pp. 1991, pp. 413-425. 

 
90. R. Forrest, Computational Geometry, Proc. Royal Society London, Vol. 321, 

Series 4, 1971, pp. 187-195. 
 
91. S. Fortune, Numerical stability of algorithms for 2-d Delaunay triangulations and 

Voronoi diagrams, Proc. 8th Annual. ACM Symposium. Comput. Geom., 1992, 
pp. 83-92. 

 
92. S. Fortune, Voronoi diagrams and Delaunay triangulations.  In F. K. Hwang and 

D.-Z. Du (eds.), Computing in Euclidean Geometry, pp. 193-233. World 
Scientific, Singapore, 1992. 

 
93. S. Fortune, Sweepline algorithm for Voronoi diagrams, Algorithmica, Vol. 2, No. 

2, 1987, pp. 153-174. 
 
94. A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent 

problems, ACM Transaction on Graphics, Vol. 3, No. 2, April 1984, pp. 153-174. 
 
95. R. J. Fowler and J. J. Little, Automatic extraction of irregular network digital 

terrain models, Computer Graphics, Vol. 13, No. 2, August 1979, pp. 199-207. 
 
96. R. Franke, Scattered data interpolation: Tests of some methods, Math. Comp., 

Vol. 38, 1982, pp. 181-200. 
 
97. R. Franke and G. Nielson, Surface construction based upon triangulations, in 

Surfaces in Computer Aided Geometric Design, Springer, 1983, pp. 163-179. 
 
98. R. Franke and G. Nielson, Scattered Data Interpolation and Applications: A 

Tutorial and Survey, in: Geometric Modelling: Methods and Their Application, H. 
Hagen and D. Roller (eds.), Springer, 1990.  

 
99. H. Freudenthal, Simplizialzerlegungen von beschränkter Flachheit, Ann. Math. 

Vol. 43, 1942, pp. 580-582. 
 
100. W. H. Frey and D. A. Field, Mesh relaxation: a new technique for improving 

meshes, Int. J. Numer. Neth. Eng. Vol. 31, 1991, pp. 1121-1133. 
 
101. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a 

simple polygon, Inform. Process. Lett., Vol. 7, 1978, pp. 175-179. 
 
102. P. L. George and F. Hermeline, Delaunay's mesh of a convex polyhedron in 

dimension d. Application to arbitrary polyhedra, International Journal for 
Numerical Methods in Engineering, Vol. 33, No. 5, April 1992, pp. 975-995. 

 

 
91



103. J. Gleue, Triangulierung und Interpolation von im R2 unregelmäßig verteilten 
Daten, HMI B 357, 1981. 

 
104. M. T. Goodrich, Efficient piecewise-linear function approximation using the 

uniform metric, Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, pp. 322-
331. 

 
105. S. Goldman, A space efficient greedy triangulation algorithm, Information 

Processing Letters, Vol. 31, No. 4, 1989, pp. 191-196. 
 
106. T. Gonzalez and M. Razzazi, Properties and algorithms for constrained Delaunay 

triangulations, Proc. 3rd Canad. Conf. Comput. Geom., 1991, pp. 114-117. 
 
107. P. J. Green and R. Sibson, Computing Dirichlet tessellations in the plane, The 

Computer Journal, Vol. 21, 1978, pp. 168-173. 
 
108. P. J. Green and B. W. Silverman, Constructing the convex hull of a set of points 

in the plane, The Computer Journal, Vol. 22, No. 3, 1979, pp. 262. 
 
109. J. A. Gregory, Error bounds for linear interpolation on triangles, in: The 

Mathematics of Finite Elements and Application II, J. R. Whiteman, ed., 
Academic Press, London, 1975, pp. 163-170. 

 
110. J. A. Gregory, A blending function interpolant for triangles, in D. G. Handscomb. 

ed., Multivariate Approximation, Academic Press, London. 
 
111. J. A. Gregory, Interpolation to boundary data on the simplex, Computer Aided 

Geometric Design, Volume 2, Numbers 1-3, pp. 43-52. 
 
112. J. A. Gregory, Error bounds for linear interpolation on triangles, in: The  

Mathematics of Finite Elements and Applications II, J. Whiteman (ed.), Academic 
Press, London, 1975, pp. 163-170. 

 
113. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions 

and the computation of Voronoi diagrams, ACM Trans. Graphics, Vol. 4, 1985, 
pp. 74-123. 

 
114. L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental construction 

of Delaunay and Voronoi diagrams, in: Automata, Languages and Programming, 
LNCS N.443, pages 414-431, Springer-Verlag, 1990. 

 
115. A. J. Hansen  and P. L. Levin, On conforming Delaunay mesh generation, Adv. 

Engineering Software, Vol. 14, No. 2, 1992, pp. 129-135. 
 
116. D. Hansford, The neutral case for the min-max triangulation, CAGD, Vol. 7, 

1990, pp. 431-438. 
 

 
92



117. F. Hermeline, Triangulation automatique d'un polyedre in dimension n, RAIRO 
Anal. Numer., Vol. 76, 1982, pp. 211-242. 

 
118. C. Hazelwood, Approximating constrained tetrahedrizations, Computer Aided 

Geometric Design, Volume 10, Number 1, pp. 67-87. 
 
119. S. Hertel and K. Mehlhorn, Fast triangulation of simple polygons, 4th Conf. 

Foundations of Computation Theory, Springer LNCS 158, 1983, pp. 207-218. 
 
120. H. Jin and R. I. Tannel, Generation of unstructured tetrahedral meshes by 

advancing front technique, Internat. J. Numer. Meth. Eng. Vol. 36, 1993, pp. 1805-
1823. 

 
121. B. Joe, Three-dimensional triangulations from local transformations, SIAM 

Journal Sci. Stat. Comput., Volume 10, pp. 718-741, 1989. 
 
122. B. Joe, Construction of three dimensional Delaunay triangulations using local 

transformations, Computer Aided Geometric Design, Volume 8, Number 2, pp. 
123-142, 1991 

 
123. B. Joe and C. A. Wang, Duality of constrained Voronoi diagrams and Delaunay 

triangulations, Algorithmica, Vol. 9, No. 2, 1993, pp. 149-155. 
 
124. D.-M. Jung, An optimal algorithm for constrained Delaunay triangulation, 

Proceedings Twenty-Sixth Annual Allerton Conference on Communication, 
Control and Computing, Urbana, Il, 1988, pp. 85-86. 

 
125. Y. H. Jung and K. Lee, Tetrahedron-based octree encoding for automatic mesh 

generation, Computer Aided Design, Vol. 25, 1993, pp. 141-153. 
 
126. T. C. Kao and D. M. Mount, An algorithm for computing compacted Voronoi 

diagrams defined by convex distance functions, Proc. 3rd Canad. Conf. Comput. 
Geom., 1991, pp. 104-109. 

 
127. T. C. Kao and D. M. Mount, Incremental construction and dynamic maintenance 

of constrained Delaunay triangulations, Proc. 4th Canad. Conf. Comput. Geom., 
1992, pp. 170-175. 

 
128. M. D. Karasick, D. Lieber, and L. R. Nackman, Efficient Delaunay triangulation 

using rational arithmetic, ACM Transactions on Graphics, Vol. 10, No. 1, January 
1991, pp. 71-91. 

 
129. J. Katajainen and M. Koppinen, Constructing Delaunay triangulations by merging 

buckets in quadtree order, Annales Societatis Mathematicae Polonae, Series IV, 
Fundamenta Informaticae, Vol. 11, No. 3, 1988, pp. 275-288. 

 
130. D. G. Kirkpatrick, A note on Delaunay and optimal triangulations, Inform. 

Process. Lett., Vol. 10, 1990, pp. 127-128. 

 
93



 
131. D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan, Polygon triangulation in O(n 

log log n) time with simple data structures, Proc. 6th Annual ACM Symposium. 
Comput. Geom. 1990, pp. 34-43. 

 
132 V. Klee, On the complexity of d-dimensional Voronoi diagrams, Arch. Math., Vol. 

34, 1980, pp. 75-80. 
 
133. R. Klein, Concrete and abstract Voronoi Diagrams, Volume 400 of Lecture Notes 

in Computer Science, Springer, 1989. 
 
134. R. Klein and A. Lingas, A note on generalizations of Chew's algorithm for the 

Voronoi diagram of a simple polygon, Proc. 9th Annu. ACM Sympos. Comput. 
Geom., 1993, pp. 124-132. 

 
135. G. T. Klincsek, Minimal triangulations of polygonal domains, Ann. Disc. Math., 

Vol. 9, 1980, pp. 121-123. 
 
136. D. Knuth, The Art of Computer Programming, Volume 1; Fundamental 

Algorithms, Addison Wesley, Reading MA, 1973. 
 
137. H. W. Kuhn, Simplicial approximation of fixed points, Proc. Nat. Acad. Sci. USA, 

Vol. 61, 1968, pp. 1238-1242. 
 
138. C. Lawson, Transforming triangulations, Discrete Mathematics, Vol. 3, 1972, pp. 

365-372. 
 
139. C. Lawson, Software for C1 surface interpolation, in Mathematical Software III, J. 

R. Rice (ed.), Academic Press, New York, 1977, pp. 161-194. 
 
140. C. Lawson, Properties of n-dimensional triangulations, Computer Aided 

Geometric Design, Volume 3, Number 4, pp. 231-246. 
 
141. C. Lawson, C1 surface interpolation for scattered data on a sphere, Rocky 

Mountain Journal of Mathematics, Vol. 14, No. 1, Winter 1984, pp. 177-202. 
 
142. C. Lee, Regular triangulations of convex polytopes, in: Applied Geometry and 

Discrete Mathematics: The Victor Klee Festschrift, edited by Gritzmann and B. 
Strumfels, Amer. Math. Soc., Providence, RI, 1991, pp. 443-456. 

 
143. D. T. Lee, Two dimensional Voronoi diagram in the Lp-metric, J. ACM , Vol. 27, 

1980, pp. 604-618. 
 
144. D. T. Lee and A. Lin, Generalized Delaunay triangulation for planar graphs, Disc. 

and Comp. Geometry, Vol. 1, 1986, pp. 201-217. 
 

 
94



145. D. T. Lee and C. K. Wong, Voronoi diagrams in L1 (L∞) metrics with 2-
dimensional storage applications, SIAM J. Comput., Vol. 9, 1980, pp. 200-211. 

 
146. D. T. Lee, and B. J. Schacter, Two algorithms for constructing a Delaunay 

triangulation, Int. J. of Computer and Information Science, Vol. 9, No. 3, 1980, 
pp. 219-242. 

 
147. J. Lee, Comparison for existing methods for building triangular irregular network 

models of terrain from grid digital elevation models, Int. J. of Geographical 
Information Systems, Vol. 5, No. 2, July-September 1991, pp. 267-285. 

 
148. K. Lee, Data dependent tetrahedrizations, Ph. D. Thesis, Arizona State 

University, 1995. 
 
149. N. J. Lennes, Theorems on the simple finite polygon and polyhedron, American 

Journal of Mathematics, Vol. 33, 1911, pp. 37-62. 
 
150. C. Levcopoulos and A. Lingas, On approximation behavior of the greedy 

triangulation for convex polygons, Algorithmica, Vol. 2, 1987, pp. 175-193. 
 
151. B. A. Lewis and J. S. Robinson, Triangulation of planar regions with applications, 

Computer J., Vol. 21, 1978, pp. 324-332. 
 
152. A. Lingas, Advances in minimum weight triangulation, Ph. D. Thesis, Linköping 

Univ., 1983. 
 
153. A. Lingas, Voronoi diagrams with barriers and the shortest diagonal problem, 

Inform. Process. Lett., Vol. 32, 1989, pp. 191-198. 
 
154. D. Lischinski, Incremental Delaunay triangulation, In Graphic Gems IV, Paul S. 

Heckbert (editor), Academic Press, 1994, pp. 47-59. 
 
155. E. L. Lloyd, On triangulations of a set of points in the plane, In Proc. 18th IEEE 

Symp. Found. Comp. Sci., 1977, pp. 228-240. 
 
156. S. Lo, Delaunay triangulations of nonconvex planar domains, Int. J. Numer. 

Meth. Eng., Vol. 28, 1989, pp. 2695-2707. 
 
157. S. Lo, Volume discretizations into tetrahedra. I. verification and orientation of 

boundary surfaces, Computers and Structures, Vol. 39, 1991, pp. 493-500. 
 
158. R. Loehner and P. Parikh, Generation of three-dimensional unstructured grids by 

the advancing front method, Internat. J. Numer. Meht. Fluids, Vol. 8, 1988, pp. 
1135-1149. 

 

 
95



159. M. K. Loze and R. Saunders, Two simple algorithms for constructing a two-
dimensional constrained Delaunay triangulation, Applied Numerical 
Mathematics, Vol. 11, 1993, pp. 403-418. 

 
160. W. Lorensen and Cline H.E., Marching cubes:  A high-resolution 3D surface 

construction algorithm, SIGGRAPH 87 Conference Proceedings, Computer 
Graphics, Vol. 21, No. 4, July 1987, pp. 163-169. 

 
161. G. Macedonio and M. T. Pareschi, An algorithm for the triangulation of arbitrarily 

distributed points: Applications to volume estimate and terrain fitting, Computers 
& Geosciences, Vol. 17, No. 7, 1991, pp. 859-874. 

 
162. G. K. Manacher, and A. L. Zobrist, Neither the greedy nor the Delaunay 

triangulation approximates the optimum, Inform. Process. Lett., Vol. 9, 19790, pp. 
31-34. 

 
163. L. Mansfield, Interpolation to boundary data in tetrahedra with applications to 

compatible finite elements, J. Mant. Anal. Appl., Volume 56, pp. 137-164. 
 
164. G. Marton, Acceleration of ray tracing via Voronoi diagrams, in: Graphic Gems V, 

Alan Paeth, editor, Academic Press, 1995, pp. 268-284 
 
165. A. Maus, Delaunay triangulation and the convex hull of n points in expected 

linear time. BIT, Vol. 24, 1984, pp. 151-163. 
 
166. N. Max, Sorting for polyhedron compositing, in: Focus on Scientific 

Visualization, H. Hagen, H. Müller, G. M. Nielson (eds.), Springer, 1993, pp. 
259-268. 

 
167. N. Max, P. Hanrahan, and R. Crawfis, Area and volume coherence for efficient 

visualization of 3D scalar functions, Computer Graphics, Vol. 24, November 
1990, pp. 27-33. 

 
168. A. Mirante and N. Weingarten, The radial sweep algorithm for constructing 

triangulated irregular networks, IEEE Computer Graphics and Applications, May 
1982, pp. 11-21. 

 
169. G. H. Meisters, Polygons have ears, Amer. Math. Monthly, Vol. 82, 1975, pp. 648-

651. 
 
170. D. Moore, Subdividing simplices, in Graphics Gems III, D. Kirk (ed.), Academic 

Press, 1992, pp. 244-249. 
 
171. D. Moore, Understanding simploids, in Graphics Gems III, D. Kirk (ed.), 

Academic Press, 1992, pp. 250-255. 
 
172. J.-M. Moreau and P. Volino, Constrained Delaunay triangulation revisited, Proc. 

5th Canad. Conf. Comput. Geom., 1993, pp. 340-345. 

 
96



 
173. D. E. Muller and F. P. Preparata, Finding the intersection of two convex 

polyhedra, Theoretical Computer Science Vol. 7, 1978, pp. 217-236. 
 
174. E. J. Nadler,  Piecewise linear approximation on triangulations of a planar region, 

Ph.D. Thesis, 1985, Division of Applied Mathematics, Brown University. 
 
175. A. Narkhede and D. Manocha, Fast polygon triangulation based on Seidel's 

algorithm, in: Graphic Gems V, Academic Press, 1995, pp. 394-397. 
 
176. J. M. Nelson, A triangulation algorithm for arbitrary planar domains, Appl. Math. 

Modelling, Vol. 2, 1978, pp. 151-159. 
 
177. G. M. Nielson, The side-vertex method for interpolation in triangles, Journal of 

Approx. Theory, Vol. 25,1979, pp. 318-336. 

178. G. M. Nielson, Minimum norm interpolation in triangles, SIAM Journal Numer. 
Analysis, Vol. 17,1980, pp. 46-62. 

179. G. M. Nielson, A method for interpolating scattered data based upon a minimum 
norm network, Mathematics of Computation, Vol. 40, 1983, pp. 253-271. 

 
180. G. M. Nielson, An example with a local minimum for the MinMax ordering of 

triangulations, Arizona State University Computer Science Technical Report TR-
87-014, 1987. 

 
181. G. M. Nielson, Coordinate free scattered data interpolation, in: Topics in 

Multivariate Approximation, C. Chui, F. Utreras, L. Schumaker (eds.), Academic 
Press, NY, 1987, pp. 175-184. 

 
182 G. M. Nielson, A characterization of an affine invariant triangulation, in: 

Geometric Modelling, Computing Supplementum 8, G. Farin, H. Hagen, H. 
Noltemeier, W. Knoedel (eds), Springer, 1993, pp. 191-210. 

 
183. G. M. Nielson, How many ways can a cube be subdivided into tetrahedra?, 

Arizona State University Computer Science Department Technical Report TR-95-
13, 1995. 

 
184. G. M. Nielson and T. Foley, A Survey of Applications of an Affine Invariant 

Metric, in: Mathematical Methods in Computer Aided Geometric Design, T. 
Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1989, 445-467. 

185. G. M. Nielson and R. Ramaraj, Interpolation over a sphere, Computer Aided 
Geometric Design, Vol. 4, 1987, pp. 41-57. 

186. G. M. Nielson and B. Hamann, The asymptotic decider: Resolving the ambiguity 
in marching cubes, in: Proceedings of Visualization '91, IEEE Computer Society 
Press, Los Alamitos, California, 1990, pp. 83-91. 

 
97



 
187. G. M. Nielson and K. Opitz, The face-vertex method for interpolating in 

tetrahedra, in: Workshop on Computational Geometry, A. Conte, V. Demichelis, 
F. Fontanella and I. Galligani (eds.), World Scientific, 1993, pp. 231-244. 

 
188 G. M. Nielson and J. Tvedt, Comparing methods of interpolation for scattered 

volumetric data, in: State of the Art in Computer Graphics - Aspects of 
Visualization, D. Rogers and R. A. Earnshaw eds., Springer-Verlag, 1994, pp. 67-
86. 

 
189. G. M. Nielson, D. H. Thomas, and J. A. Wixom, Interpolation in triangles, Bull. 

Austral. Math. Soc. Vol. 20, 1979, pp. 115-130. 
 
190. T. Ohya, M. Iri, and K. Murota, Improvements of the incremental method for the 

Voronoi diagram with computational comparison of various algorithms, Journal of 
the Operations Research Society of Japan, Vol. 27, No. 4, 1984, pp. 306-336. 

 
191 A. Okabe, B. Boots, and K. Sugihara, Spatial tessellations: Concepts and 

applications of Voronoi diagrams, Wiley & Sons, 1992. 
 
192. A. A. Oloufa, Triangulation applications in volume calculation, Journal of 

Computing in Civil Engineering, Vol. 5, No. 1, January 1991, pp. 103-121. 
 
193. T. K. Peucker, R. J. Fowler, and J. J. Little, The triangulated irregular network, 

Proceedings ASP-ACSM Symposium on Digital Terrain Models, 1978. 
 
194. C. S. Peterson, Adaptive contouring of three-dimensional surfaces, CAGD, Vol. 1, 

1984, pp. 61-74. 
 
195. L. A. Piegl and A. M. Richard, Algorithm and data structure for triangulating 

multiply connected polygonal domains, Computers & Graphics, Vol. 17, No. 5, 
1993, pp. 563-574. 

 
196. D. A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. Algorithms, Vol. 

8, 1987, pp. 405-437, 
 
197. Pourazady, M. and M. Radhakrishnan, Optimization of a triangular mesh, 

Computers and Structures, Vol. 40, No. 3, 1991, pp. 795-804. 
 
198. M. J. D. Powell, Piecewise quadratic approximation on triangles, in; Software for 

Numerical Mathematics, D. J. Evans (ed.), Academic Press, NY, 1974 
 
199. M. J. D. Powell and M. A. Sabin, Piecewise quadratic approximation on triangles, 

ACM Trans. on Mathematical Software, Vol. 3, 1977, pp. 316-325. 
 
200. P. L. Power, Minimal roughness property of the Delaunay triangulation: a shorter 

approach, Computer Aided Geometric Design, Vol. 9, 1992, pp. 491-494. 
 

 
98



201. P. L. Power, The neutral case for the min-max angle criterion: a generalized 
approach, Computer Aided Geometric Design, Vol. 9, 1992, pp. 413-418. 

 
202. F. P. Preparata and S. J. Hong, Convex hull of a finite set of points in two and 

three dimension, Commun. ACM, Vol. 20, No. 2, Feb. 1977, pp. 87-93. 
 
203. F. P. Preparata and M. I. Shamos, Computational geometry: An introduction, 

Springer-Verlag, New York, 1985. 
 
204. E. Quak and L. L. Schumaker, Cubic spline fitting using data dependent 

triangulations, Computer Aided Geometric Design, Volume 7, Numbers 1-4, 1990, 
pp. 293-301. 

 
205. E. Quak and L. L. Schumaker, C1 surface fitting using data dependent 

triangulations, in: Approximation Theory VI, C. Chui, L. L. Schumaker, and J. 
Ward, editors, Academic Press, 1989, pp. 545-548. 

 
206. E. Quak And L. L. Schumaker, Least squares fitting by linear splines on data 

dependent triangulations, in: Curves and Surfaces, P.-J. Laurent, A. Le Mehaute 
and L. L. Schumaker, editors, Academic Press, 1991, pp. 387-390. 

 
207. R. J. Renka, Algorithm 624: Triangulation and interpolation of arbitrarily 

distributed points in the plane, ACM TOMS, Vol. 10, 1984, pp. 440-442. 
 
208. V. T. Rajan, Optimality of the Delaunay triangulation in Rd, In Proc. 7th ACM 

Symp. Comp. Geometry, 1991, pp. 357-363. 
 
209. P. N. Rathie, A census of simple planar triangulations, J. Comb. Theory B, Vol. 

16, 1974, pp. 134-138. 
 
210. D. Rhynsburger, Analytic delineation of Thiessen polygons. Geograph. Anal., 

Vol. 5, 1973, pp. 133-144. 
 
211. S. Rippa, Minimal roughness property of the Delaunay triangulation, Computer 

Aided Geometric Design, Vol. 7, 1990, pp. 489-497. 
 
212. S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM 

Journal on Numerical Analysis, Vol. 29, No. 1, February 1992, pp. 257-270. 
 
213. S. Rippa, Piecewise linear interpolation and approximation schemes over data 

dependent triangulations, Ph. D. Thesis, 1989, Tel Aviv. 
 
214. S. Rippa and B. Schiff, Minimum energy triangulations for elliptic problems, 

Comp. Meth. in applied Mech. and Eng., Vol. 84, 1990, pp. 257-274. 
 
215. C. A. Rogers, Packing and covering, Cambridge University Press, 1964. 
 

 
99



216. J. Ruppert and R. Seidel, On the difficulty of tetrahedralizing 3-dimensional 
nonconvex polyhedra, In Proc. 5th ACM Symp. Comp. Geometry, 1989, pp. 380-
393. 

 
217. N. Sapidis and R. Perucchio, Delaunay triangulation of arbitrarily shaped planar 

domains, Computer Aided Geometric Design, Vol. 8, 1991, pp. 421-438. 
 
218. V. Sarin and S. Kapoor, Algorithms for relative neighbourhood graphs and 

Voronoi diagrams in simple polygons, Proc. 4th Canad. Conf. Comput. Geom. 
1992, pp. 292-298. 

 
219. L. Scarlatos and T. Pavlidis, Optimizing triangulation by curvature equalization, 

Proceedings of Visualization '92, IEEE CS Press, October 1992, pp. 333-339. 
 
220. B. Schachter, Decomposition of polygons into convex sets., IEEE Transactions on 

Computing C-27, Volume 11, November 1978, pp. 1078-1082. 
 
221. E. Schönhardt, Über die zerlegung von dreieckspolyedern in tetraeder, Math. 

Annalen, Vol. 98, 1928, 309-312. 
 
222. W. J. Schroeder and M. S. Shephard, Geometry-based fully automatic mesh 

generation and the Delaunay triangulation, Int. J. Numer. Meth. Eng. Vol. 26, 
1988, pp. 2503-2515. 

 
223. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of triangle meshes, 

In SIGGRAPH '92, Volume 26, July 1992, pp. 65-70. 
 
224. L. L. Schumaker, Fitting surfaces to scattered data, in: Approximation Theory II, 

G. G. Lorentz, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, 1976, pp. 
203-268. 

 
225. L. L. Schumaker, Computing optimal triangulations using simulated annealing, 

Computer Aided Geometric Design, Volume 10, Numbers 3-4, pp. 329-345. 
 
226. L. L. Schumaker, Triangulation methods, in: Topics in Multivariate 

Approximation, L. L. Schumaker, C. Chui and F. Utreras (eds.), Academic Press, 
New York, 1987, pp. 219-232. 

 
227. L. L. Schumaker, Triangulations methods in CAGD, IEEE Computer Graphics 

and Applications, Vol. 13, January 1993, pp. 47-52. 
 
228. A. Seidel, Constrained Delaunay triangulations and Voronoi diagrams with 

obstacles, in: 1978-1988 Ten Years IIG, H. S. Poingratz and W. Schinnerl ( eds.), 
1988, pp. 178-191. 

 
229. M. Senechal, Which tetrahedra fill space?, Math. Magazine, Vol. 54, 1981, pp. 

227-243. 
 

 
100



230. M. I. Shamos, Computational Geometry, Ph. D. Dissertation, Yale University, 
1978. 

 
231. M. Shapiro, A note on Lee and Schachter's algorithm for Delaunay triangulation, 

International Journal of Computer and Information Sciences, Vol. 10, N. 6, 1981, 
pp. 413-418. 

 
232. D. N. Shenton and Z. J. Cendes, Three-dimensional finite element mesh 

generation using Delaunay Tessellation, IEEE Trans. on Magetics, MAG-21, 
1985, pp. 2535-2538. 

 
233. D. Shirley and A. Tuchman, A polygonal approximation to direct scalar volume 

rendering, Computer Graphics, Vol. 24, November 1990, pp. 63-70. 
 
234. G. M. Shute, L. L. Deneen, and C. D. Thomborson, An O(N log N) plane-sweep 

algorithm for L1 and L∞ Delaunay triangulations, Algorithmica, Vol. 6, 1978, pp. 
207-221 

 
235. R. Sibson, Locally equiangular triangulations, Computer J., Vol. 21, 1978, pp. 

243-245. 
 
236. R. Sibson, A brief description of natural neighbour interpolation, Chapter 2 of 

Interpreting Multivariate Data, Wiley, New York, 1981. 
 
237. C. T. Silva, J. S. B. Mitchell, and A. E. Kaufman, Automatic generation of 

triangular irregular networks using greedy cuts, Proceedings of Visualization '95, 
IEEE CS Press, October 1995, pp. 201-208. 

 
238. S. W. Sloan, A fast algorithm for constructing Delaunay triangulations in the 

plane, Advances in Engineering Software, Vol. 9, January 1987, pp. 34-55. 
 
239. S. W. Sloan and G. T. Houlsby, An implementation of Watson's algorithm for 

computing 2-dimensional Delaunay triangulations, Advances in Engineering 
Software, Vol. 6, 1984, pp. 192-197. 

 
240. C. Stein, B. Becker, and N. Max, Sorting and hardware assisted rendering for 

volume visualization, in: 1994 Symposium on Volume Visualization, Washington 
DC, October 1994, pp. 83-89. 

 
241. K. Sugihara and M. Iri, Construction of the Voronoi diagram for "one million" 

generators in single-precision arithmetic, Proceedings of the IEEE, Vol. 80, 1992, 
pp. 1471-1484. 

 
242. M. Tanemura, T. Ogawa, and W. Ogita, A new algorithm for three-dimensional 

Voronoi tessellation, Journal of Computational Physics, Vol. 51, 1983, pp. 191-
207. 

 

 
101



243. R. E. Tarjan and C. J. Van Wyk, An O(n log log n)-time algorithm for 
triangulating a simple polygon, SIAM J. Comput., Vol. 17, 1988, pp. 143-178. 

 
244. A. H. Thiessen, Precipitation averages for large areas, Monthly Weather Review, 

Vol. 39, 1911, pp. 1032-1034. 
 
245. J. F. Thompson, Numerical Grid Generation, North-Holland, 1982. 
 
246. J. C. Tipper, Straightforward iterative algorithm for the planar Voronoi diagram, 

Information Processing Letters, Vol. 34, No. 3, April 1990, pp. 155-160. 
 
247.  J. C. Tipper, FORTRAN programs to construct the planar Voronoi diagram, 

Computers & Geosciences, Vol. 17, 1991, pp. 597-632. 
 
248. G. Toussaint, Efficient triangulation of simple polygons, Visual Comput., Vol. 7, 

1991, pp. 280-295. 
 
249. G. T. Toussaint, C. Verbrugge, C. Wang, and B. Zhu, Tetrahedrization of simple 

and not simple polyhedra, CCCG Proc. of the fifth Canadian Conference on 
Computational Geometry, 1994. 

 
250. V. J. D. Tsai, Delaunay triangulation in TIN creation: An overview and a linear-

time algorithm, Int. J. Geographical Information Systems, Vol. 7, 1993, pp. 501-
524. 

 
251. W. T. Tutte, A census of planar triangulations, Canadian J. Math., Vol. 14, 1962, 

pp. 21-38. 
 
252. G. Voronoi, Nouvelles applications des paramatres continusala theorie des formes 

quadratiques, Deuxieme Memoire, Recherches sur les parallelloedres primitifs, J. 
reine angew. Mathe. , Vol. 134, 1908, pp. 198-287. 

 
253. C. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay 

triangulation of a set of line segments, In Proc. 3rd ACM Symp. Comp. 
Geometry, 1987, pp. 223-232. 

 
254. D. F. Watson, Computing the n-dimensional Delaunay tessellation with 

application to Voronoi polytopes, Comp. J., Vol. 24, 1981, pp. 167-172. 
 
255. D. F. Watson and G. M. Philip, Systematic triangulations, Computer Vision, 

Graphics, and Image Processing, Vol. 26, 1984, pp. 217-223. 
 
256. N. D. Weatherhill and O. Hassan, Efficient three-dimensional Delaunay 

triangulation with automatic point creation and imposed boundary constraints, 
Internat. J. Numer. Meth. Eng. Vol. 37, 1994, pp. 2005-3039. 

 
257. P. Williams, Visibility ordering meshed polyhedra, ACM Transactions on 

Graphics, Vol. 11, No. 2, 1992, pp. 103-126. 

 
102



 
103

 
258. B. Woerdenweber, Automatic mesh generation of 2- and 3-dimensional 

curvilinear manifolds, Ph. D. Dissertation, University of Cambridge, 1981. 
 
259. B. Woerdenweber, Finite-element analysis for the naive user, in Solid Modeling 

by Computers from Theory to Applications, M. S. Pickett and J. Boyse (eds), 
Plenum, Ny, 1984, pp. 81-100. 

 
260. A. J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant, Computer Aided 

Geometric Design, Volume 5, Number 3, 1988 pp. 177-186. 
 
261. A. J. Worsey and G. Farin, An n-dimensional Clough-Tocher interpolant, 

Constructive Approximation, Vol. 3, 1987, pp. 99-110. 
 
262. F. F. Yao, Computational geometry, in: Handbook of Theoretical Computer 

Science, Vol. A, Chapter 7, J. van Leeuwen (ed.), Elsevier and MIT Press, 1990, 
pp. 343-389. 

 
263. A. Zenisek, Polynomical approximation on tetrahedrons in the finite element 

method, J. Approximation Theory, Vol. 7, 1973, pp. 334-351. 
 



Volume Modelling

Gregory M. Nielson

Reference:

Nielson, GM, Volume Modelling. In: M. Chen et al. (eds.). Volume Graphics,

Springer, 2000; 29-48.

2.1 Introduction

This chapter will present an overview of the emerging research area of volume
modelling. To date, there has been considerable research on the development of
techniques for visualising volume data, but very little on modelling volume data.
This is somewhat surprising since the potential benefits of volume models are
tremendous. This situation is somewhat explained by the fact that volume data is
relatively new and researchers have spent their efforts in figuring out ways to “look”
at the data and have not been able to afford the resources needed to develop methods
for modelling volume data. In addition to providing a means for visualising volume
data, some of the benefits of a volume model are the generation of hierarchical and
multi-resolution models which are extremely useful for the efficient analysis,
visualisation, transmission, and archiving of volume data. In addition, the volume
model can serve as the mathematical foundation for subsequent engineering
simulations and analysis required for design and fabrication.

While interest is steadily growing, the area of volume modelling is still in its
infant stages and currently there are few techniques and little expertise available. In
the next section, we give some precise definitions and describe the scope of our
vision of volume modelling and generally make an appeal for its development. It is
important to realise that practically all visualisation tools require some type of
volume model for their application. Sometimes the model is so obvious that we may
fail to notice it. (For example, the linear interpolation into voxels used by the
standard marching cubes algorithm.) Many of the relatively simple modelling
techniques used for the more popular visualisation tools of today do not apply or
scale up to the data sets currently of interest. These data sets require much more
sophisticated modelling techniques. Another barrier to analysing volume data sets is
the fact that they are often large, and because of this, they are normally associated
with complex and complicated phenomena. Multi-resolution models can be helpful
in this regard. Wavelet models (and the concepts related to wavelet models) have
traditionally been targeted at compression, but they can also form the basis for
analysis tools that allow for removal of clutter and detail and assist in efficient
browsing and zooming. In the third section of this chapter, we will discuss some
research issues in representing volume models.

We think that it would benefit our readers if we were to be somewhat clear about
some very commonly used terminology in this area:
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• Volume Visualisation. We use this as the umbrella term. It encompasses all
aspects of analysing and visualising volume data and models.

• Volume Graphics. This topic deals with the issues of producing the images
associated with volume visualisation. It is analogous to the traditional
polygon graphics. It includes viewing models, illumination models, and scan
conversion algorithms and related issues required for the creation of images.
A more comprehensive definition can be found in [1]

• Volume Rendering. While this term appears somewhat generic, over the
years it has become associated with that particular method of rendering a
volume model which is based upon a certain model of transparency (called
the volume rendering integral). We use it in this context.

• Volume Modelling. This is the topic of this chapter. Our purpose is to more
precisely define this topic and to make a general appeal for its development
and growth.

2.2 Definition and Scope of Volume Modelling

In this section, we take three possible approaches to a definition of volume
modelling: (1) A volume model can be viewed as the process of modelling volume
data. (2) It can be thought of as a generalisation in dimension to surface modelling.
(3) It can be viewed as the means to provide the input to the volume rendering
integral. In the following subsections, we expand on each of these approaches.

2.2.1 Definition by Modelling of Volume Data

Volume scanning devices produce a value of a dependent quantity at various
locations in space. Examples are widespread, and include:

1. the results of MRI and CAT scanners in the medical field,
2. measurements of mineral concentration from core samples scattered over

some typography,
3. results of a 3D, CFD simulation and
4. free-hand ultrasound where a 3D position/orientation sensor is attached to an

ultrasound probe.
What is common here is that each sample of the data consists of a position in space
and the measurement or computation of an associated dependent variable. Invoking
mathematical means of modelling and representing this type of data is one definition
of volume modelling. Volume data does not need to have just a single scalar
dependent variable, there may be several. In fact, some volume data has a dependent
variable that is a vector. This is the case for the data of CFD simulations. Here the
dependent data consists of a single scalar (pressure) and a vector (velocity of the
flow).

In this subsection, we describe four examples of volume data sets. Each requires
some type of volume model before a visualisation tool can be applied. For some of
the data sets, adequate volume models are not currently available.
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Rectilinear, Cartesian Grids from Medical Scanners

This is an example of the most conventional type of data we see in volume
visualisation. It represents the results of some scanning device (such as MRI or
CAT) and can be viewed as measurements on a Cartesian grid. Because of this, the
domain is implied and so a simple three dimensional array of dependent values,

zyxijk NkNjNid ,,1,,,1,,,1, LLL ===  can be used to represent the data. The

images of Figure 2.1 show isosurfaces which have been extracted from a type of
wavelet model applied to this type of data.

 

Figure 2.1. Examples of isosurfaces extracted from a volume model called Blend of Linear
and Constant (BLaC) wavelets. The left image is based upon ∆ = 0.0 and the right, ∆ = 0.43.

Seismic Data Samples in Geophysical Studies

This data is typical of measured data extracted from core samples which are taken at
scattered locations, as shown in Figure 2.2. The measurements within core samples
are not necessarily at uniform depths and can vary from one core sample to the next.
Mathematically, we can represent this data as

ijiiii NiNiMZYX
jj

,,1;,,1),;,,( LL == .

Location (X, Y, Z) Mineral

5.50 1.00 0.00 11.0
5.50 1.00 10.00 10.0
… … … …
… … … …
… … … …

Figure 2.2. Diagram depicting core samples.
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In Figure 2.3, we show a snapshot of an interactive tool for interrogating this
type of data. Colour contours are shown at a user specified height. Any number of
these can exist and they can be moved up and down. It is clear that this type of
visualisation or any other would not be possible without a volume model.

Figure 2.3. Screen snapshot of an interactive tool for visualising model of core sample data.
(Courtesy of David Kao).

Curvilinear Grids from Computational Fluid Dynamics Simulations

A time-dependent, 3D curvilinear grid is described by three, four-dimensional
geometry arrays, ),,( lll ijkijkijk ZYX  which provide the vertices for a cellular

decomposition of the domain of interest for each time step, lt  (Figures 2.4 and 2.5).

The numerical simulation provides the solution to the Navier/Stokes equations at
these vertices. This information is provided by four additional arrays

),,,( llll ijkijkijkijk WVUP , where lijkP  is a scalar representing pressure and

),,( lll ijkijkijk WVU  is the velocity at vertex ),,( lll ijkijkijk ZYX at time step lt . Typical

spatial resolutions of interest and value today range from 102 to 103. For efficiency,
time-dependent grids are often partitioned into blocks with vertices of some blocks
moving over time and others being stationary. For example, the V-22 Tiltrotor data
set [2] consists of 26 blocks, of which 9 are time dependent and the remaining ones
are steady. For this data set there are 1,400 time steps each consisting of about 100
MB of data.

Free-hand Ultrasound Data

A typical ultrasound probe produces a “slice” of data through an object. These are
called B-scans and are viewed and manipulated as images (Figure 2.6). The use of
the phrase “free-hand” means the addition of a 3D POSE (Position and Eularian
angles) sensor attached to the conventional ultrasound probe. This allows one to
associate a position in 3D space for each of the pixels of a B-scan image.
Mathematically, we can then view each pixel as a sample of the volume model and
represent it as Nidzyx iiii ,,1),;,,( L= .
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Figure 2.4. A diagram illustrating a 3D curvilinear grid.

 

Figure 2.5. Curvilinear grid on left and resampled rectilinear grid on right.

 

Figure 2.6. The process of collecting free-hand ultrasound data
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The idea of free-hand ultrasound data is over ten years old [3-4], but effective
and efficient modelling of this type of data is a very difficult problem which is only
recently receiving some attention [5]. We will cover some exciting new work in this
area in the next section of this chapter. A volume rendering (MIP) based upon these
new progressive models is shown in Figure 2.7.

Figure 2.7. A snapshot from an interactive viewing of a progressive volume model (discussed
in the next section) of ultrasound data. (Data is courtesy of Bill Lorensen.)

2.2.2 Definition by Analogy to Surface Modelling

In Figure 2.8, we see that the flow of information from top to bottom is “surface” to
“volume” and left to right is “modelling” to “graphics”. The traditional computer
graphics pipeline, which is illustrated in the top half of Figure 2.8, consists of a
parametric surface model that is evaluated at a set of parameter values in order to
obtain a polygon tessellation or approximation. The polygons are mapped by the
viewing transformation to device coordinates and then scan converted. In a similar
manner we can envision a “volume graphics” system that takes cells (the 3D
analogues of polygons) that have an associated intensity at each vertex and scan
converts them to a 3D frame buffer which subsequently is used to produce a volume
rendering (either by hardware or software). In the diagram of Figure 2.8, volume
modelling is represented by the oval, which is providing the information for the
tessellation process. That is, volume modelling from this point of view is whatever
is evaluated and used to produce the 3D tessellation with density values at the
vertices.
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Modeling Graphics
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S(u, v) = (X(u, v), Y(u, v), Z(u, v))
{(x, y, z): F(x, y, z) = 0}

?

Figure 2.8. Diagram depicting the analogy between surface modelling and volume modelling.

2.2.3 Definition by Input to the Volume Rendering
Equation

Ray cast volume rendering images are based upon a compositing process. Given a
sorted collection of objects, which emit iC  and have transparency iτ , we compute

the observed intensity by applying a very simple model of transparency and
successively computing 1)1( −+−= iiiii FCF ττ (Figure 2.9). A standard limiting

process on this discrete compositing leads to the volume rendering integral
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point of view, in order to produce a volume rendering we need a trivariate density
function, δ, and a trivariate colour function C. The mathematical model from which
these two trivariate functions are obtained is called a volume model. In many
applications, one data function D leads to both of these. A transfer operator
(function) is applied to D to yield δ. One can use the choice of this transfer function
to make certain values opaque and visible and other ranges transparent. If additional
attributes are known, or if information is known about the location of objects, then it
may be possible to also define the colour function C. This is related to the very
difficult problem of segmenting the data into different classes of materials from
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which the colour function can be determined (possibly in a piece-wise constant
fashion). Often C is taken as a direct relation from D, or possibly it is computed
from D and the gradient of D in order to flush out isosurfaces.

C1

T1

Ci

Ti

Cn

Tn

color
transparency

Figure 2.9. Compositing.

2.2.4 Summary of Definition of Volume Modelling

As we can see, all three of these approaches (volume data, volume rendering integral
and analogue to surface modelling) lead to the same definition of volume modelling.
A volume model is a trivariate relationship whose independent argument is a
position in 3D space and whose dependent argument is a scalar or tuple of scalars or
even a vector. The volume model might also have the aspect of varying over time.

Before we leave this section, we should mention some concepts with similar
terminology, which are not volume models. Even though it is an important part of
certain algorithms in volume graphics the problem of scan converting lines, curves,
surfaces or solids into discrete voxels [6-7] is not the process of volume modelling.
Nor is a model of a volume (Figure 2.10), as for example described by the methods
of CSG (constructive solid geometry). It is a region of space. For the same reasons

Figure 2.10 A model of a volume is not a volume model
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that a collection of pixels is not a curve (Figure 2.11) and a cloud of points is not a
surface (Figure 2.12), a collection of voxels or tetrahedra (see Figure 2.13) is not a
volume model. It is a spatial enumeration and is missing the important component of
a relationship possessed by a volume model. But on the other hand, we can make the
following observation. Just as it is possible (though not necessarily easy) to
parameterise and fit a collection of points to a curve and just as it possible (but even
more difficult) to parameterise a cloud of unorganised points to a surface, it is
possible to construct a volume model based upon discrete voxels and points.

pixels:

(6,16),
(33,19),
(13,20),

. . .

Figure 2.11. A collection of pixels is not a curve, but it may lead to one when an ordering and
other implications are added.

 

Figure 2.12. A collection of points is not a surface, but it may lead to one when the topology
of a triangulation is added. (Images courtesy of UNI-KL.)

   

Figure 2.13. A collection of voxels is not a volume model. It is a voxelised volume that
serves as a means to describe a region of 3D space. (The left image is courtesy of Arie
Kaufman and the right image is courtesy of Lego.)
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2.3 Research Issues in Representing Volume
Models

In this section, we cover a sampling of methods for representing volume models
along with some research issues for each of these methods.

Basis Functions

This is the most straightforward approach to representing a volume model. In this
approach, we assume a general form of the volume model. It involves coefficients
and basis functions. The volume data or other considerations are then used to select
the coefficients in the generic form of the model. In mathematical terms, the volume
model takes the form:

),,(),,(
1

zyxbazyxVM i

N

i
i∑

=

= (2.1)

where Nizyxbi ,,1),,,( L= denote the basis functions and the unknown coefficients

are Niai ,,1, L= . This type of volume model is often used in a visualisation tool

even though it may not be completely apparent what the form of volume model
really is. For example, with the marching cubes algorithm piece-wise linear
interpolation into voxels is used. This is equivalent to using a volume model of the
form given in Equation 2.1 where the basis functions are the 3D versions of the
“hat” functions based upon a Cartesian grid. Viewing the modelling process this
way opens up the possibility of using many other, possibly more efficient, basis
functions.

Research Issues:  The research question for a particular application then becomes
how to select the basis functions and then how to select the method of computing the
coefficients of the volume model. Ideas about choices for basis functions come from
generalising useful and successful basis functions for lower dimension problems.
For example, splines have served the surface modelling community very well. So
then the question arises as to what are the proper basis functions for a spline volume
model. Some suggestions and comparisons are discussed in [8]. Issues as to whether
interpolation or approximation is most appropriate must be addressed. Also, should
the basis functions have local or global support? Are there numerical condition
problems in the computation of the coefficients? What type of basis functions will
allow interactive speeds? o

Mathematical Modelling

Prior to describing this method of representing volume models, let us first establish a
context by mentioning a few simple things about mathematical/physical modelling.
One of the first uses of mathematical modelling, that we all see, are the equations for
a pendulum introduced in a beginning physics course. If )(tΘ  represents the angle
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of deflection at time t, then Newton’s second law takes the form )sin(
2

2

ΘΘ
L
g

dt

d −
=

where g is the gravitational constant and L is the length of the pendulum. To
completely determine the solution, the initial conditions 0)0( Θ=Θ  and

0)0( Θ′=
Θ

dt
d

 must be provided. Even though these equations uniquely determine the

solution, there is not a simple formula for )(tΘ . A solution usually requires infinite

expansions or numerical techniques.
For CFD (computational fluid dynamics) studies, the Navier/Stokes equations

characterise the volume model as the solution of a second-order PDE:
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where V = (u, v, w) = (u(x, y, z), v(x, y, z), w(x, y, z)) represents the velocity vector and
p = p(x,y,z) is a scalar valued function representing pressure. The scalar constant r is
fluid density, and m is the dynamic viscosity. The external forces are F = (X, Y, Z).
As with the pendulum problem, a solution of Equation 2.2 for V and p requires some
type of approximation or numerical technique. This is where curvilinear grids come
into play. They are often used for the numerical solutions of the PDE’s that
characterise a volume model. Either they serve as a cellular decomposition for a
finite element approach to a solution or they are used in the finite difference
approach where partial derivatives are replaced with discrete approximations. In
either case, a solution to the volume model is computed at each of the nodes of the
curvilinear grid. Later, this data is passed along for post visualisation and analysis.
What is often not passed along is the method of solution. Most data
visualisation/analysis tools require that the discrete data be modelled or interpolated
in some manner. Quite often, the simplest or most readily available method is used
for this purpose whether or not it has anything to do with the underlying volume
model. This is an unfortunate situation which is likely to change as the scientists
themselves are getting more and more involved in the analysis and visualisation of
their data and as the general level of knowledge and mathematical sophistication is
increasing in the area of volume visualisation.

Research Issues:  Can the mathematical model be “attached” to the simulated data?
Can the mathematical model be applied locally? In a multi-resolution manner? How
much error is associated with each approach? o

Deformations

In a nutshell, the basic idea here is described as follows: We start with a generic
model which has an associated classification function and morph this generic model
to a particular model inferred by the collected data. This is done with the use of
function norms and a minimisation strategy. The classification function for the
particular data is now obtained by composing the morphing function and the generic



40 Nielson

classification function.
A 3D morph can be accomplished with a trivariate map:
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which maps a portion of 3D space onto itself. It deforms the space. These types of
maps have been used for designing objects [9] and animations [10]. The basis
functions Mi(Xg, Yg, Zg) would usually be polynomial or piece-wise polynomial. The
coefficients of the morph (ai, bi, ci)

t
 may be thought of as control points and the idea

is to manipulate these values so as to accomplish the desired end.
And now more details: Suppose the generic model has been segmented so that

we have a trivariate function C(x, y, z) which represents the colour or classification
function. This function tells us what material is located at position (x, y, z). It might
be that C(x, y, z) is piece-wise defined (say over voxels) but the precise type of
function it is, is not important in this context. Also associated with this generic
model is a data function d(x, y, z). This is to represent, for example, a model
obtained from applying our scanning device to the generic model and then fitting
this data with a volume model. This function may possibly be obtained by a
simulation of a mathematical model of the generic model using C(x, y, z) and the
physical properties of the materials that are classified or even scanning a physical
phantom model. Both C and d are based upon some type of basis functions and
therefore we can represent them as follows:

),,(),,( zyxCazyxC ii∑= ,   ∑= ),,(),,( zyxdazyxd ii .

Next we obtain the scanned data which we represent as dp(x, y, z) where p is for
“particular”. What we want is the colour or classification function for this particular
data. Let us call it Cp(x, y, z). We first find a morphing function M which maps the
generic model into the particular model. This is done on the basis of the scanned
data. We choose M so that the function d(M(x, y, z)) is close to function dp(x, y, z).
This will require a representation of M in terms of some unknown coefficients and a
norm or method of discretely measuring the error between these two functions. This
leads to a minimisation problem where the parameters of M are manipulated until
the optimal or best fitting morphing function is obtained. We then take as the
classification function for the particular model to be:

)),,((),,( zyxMCzyxC p =

Research Issues:  What is the form of the morphing map? Trivariate Bezier?
Catmull/Clark solid? Piece-wise linear over tetrahedra? How to incorporate
particular data into the computation of the morphing map coefficients? Least squares
with cost function? Simulated annealing? o
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Wavelet-Type Multi-resolution Models

The ideas and concepts of wavelets have their origins in the univariate world of time
varying signals [11-12]. Many of the more useful techniques have been extended to
certain types of surface models in the past several years [13]. The first use of
wavelet techniques for volume data was by Muraki who used tensor product
techniques to obtain wavelet models for MRI data. In [14] he discussed the
application of Batelle-Lamarie wavelets and later [15] he compared these results to
those of the DOG wavelets (difference of Gaussian). While tensor product methods
afford a relatively easy way to extend the original univariate wavelet models to 3D
data, they are often not suitable for certain applications and types of volume data.
This includes the volumetric curvilinear grids of CFD data, as we will explain later
in this section.

Wavelet expansions often are based upon basis functions with different
resolutions and within each of these resolutions there are basis functions with
different regions of support. This yields two views of the wavelet expansion and
allows for two very useful types of reconstructions. We can pick out the resolution
of interest and approximate with only these basis functions. This would allow, for
example, the elimination of noise or clutter in order to visualise an overview or trend
in some data. We can pick a region of interest and only use the basis functions that
have support (non-zero values) in this region. This allows for efficient means to
zooming in and out for browsing.

high          medium               low            

)()()()()()(
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11 xRxRxHcxMbxLaxF
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Both of the properties of compact support and orthogonality are important to the
successful application of wavelets. Unfortunately if we also impose symmetry then
we are frustrated in our attempts to define piece-wise linear (polynomial in general)
wavelets. A recently developed wavelet [16] overcomes this obstacle with a
technique for blending the piece-wise constant and piece-wise linear wavelets. There
is a parameter, ∆, which allows the user to emphasise the compact support properties
of the Haar wavelet or to emphasise the higher order approximations possible with a
piece-wise linear wavelet.

We now turn our attention to wavelets for curvilinear grids. Recently, we
published some results on the development of wavelets for 2D curvilinear grids in
[17]. We are currently working on extending these techniques to 3D. In this work,
the nested wavelet spaces are defined in a piece-wise manner over nested cellular
decompositions. One important constraint that we imposed on this cellular
decomposition was that the original inner boundary must persist at all levels. This
constraint added considerable complexity to the models and subsequent algorithms,
but without it, we felt that the application of the wavelets would suffer. One of the
reasons for this is the fact that much of the activity of the flow takes place near the
inner boundary and a degradation of this representation at low resolutions would
deter the possibility to analyse the flow. We opted for a knot removal approach for
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building the nested cellular decomposition. We will report on this work in the near
future.

Research Issues:  How to define wavelet volume models for the types of grids and
data sets of interest in volume visualisation today? For example, 3D, time dependent
curvilinear grids, tetrahedral decompositions, spherical curvilinear grids, free-hand
ultrasound data and, in general, scattered volume data. How important is the trade-
off between orthogonality and local support for this general application? Are nested
spaces critical? Is it better to build multi-resolution models for isosurfaces or the
volumes from which they are extracted. Can both be done at the same time? o

Progressive Volume Models

The basic idea of progressive models can be quickly gleaned from the univariate
data example illustrated in Figure 2.14. On the left, the raw data is modelled by a
piece-wise linear function in the bottom left graph. Successive local, piece-wise
approximations are replaced with more global models leading to the final model in
the top left graph. (See [18] for a model of this type applicable to Cartesian grids
and [19] for a more general algorithm which was applied to curvilinear grids.) On
the right, we start with a global model (linear least squares for example) and
examine if it is acceptable or not. If not, then the domain is split, a new piece-wise
model is computed and the same acceptability criterion is repeated for the sub-
models. These are simple, yet powerful ideas for obtaining models whose
complexity and ability to fit conform to the complexity and variability of the data.
We feel there is a great promise for these ideas in volume models, but it is not a
trivial matter to extend these ideas to 3D.

Bottom-Up/Collapsing

Top-Down/Adaptive

Figure 2.14. The univariate example illustrates the basic ideas of two approaches to
progressive models. Volume modelling is interested in these concepts extended to 3D.

In addition to the oracle (the general collapsing or subdivision decision making
process) there is the requirement of an effective and useful means of actually doing
the subdivision and collapsing. A general approach to solving the problem is to think
up something for 2D and then try to generalise it to 3D. The simplest and most
robust cells are triangles in 2D and tetrahedra in 3D. (See [20] for basic algorithms
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and data structures for triangles and tetrahedra.) The basic problem with building
meshes that are coarse in one region and fine in another is the avoidance of the so-
called “cracking problem”. We mention three approaches. See Figure 2.15. The
method of Maubach [21] performs a local subdivision and repairs the crack by
propagating this split out through the mesh. The method of Bey [22] has been used
in FEM [23] and a variation has been discussed and used for volume models by
Grosso et al. [24]. It uses a combination of two types of subdivisions to avoid cracks
and avoid poorly shaped tetrahedra. A new approach is based upon not worrying
about the crack, but rather using a Coons patch local model that covers it over [25-
26]. Each of these approaches has it own set of research issues that must be worked
out before the methods become viable, but each shows promise.

BeyMaubach Coons

2D

3D

Figure 2.15. Three different approaches to the cellular decomposition for progressive models
which avoid the cracking problem. (The 2D is shown only for illustration purposes. Volume
modelling is concerned with the 3D case.)

We now describe some current research results in this area. They are rather exciting.
In Figure 2.16, samples of some free-hand ultrasound data are shown. This data was
collected in the neck region and includes portions of the carotid artery and the
thyroid gland. The complete set of data consists of approximately a million data
points. It is noisy (due to the ultrasound sensors) and it is redundant due to the
overlaps caused by the free-hand method of collection. A typical tetrahedral mesh
resulting from the adaptive method of fitting is shown in the right image of Figure
2.16. Note that the tetrahedra are much smaller and denser in the regions where the
data is more dense and exhibit greater variation. This shows the ability of the model
to conform to the complexity of the data. In Figure 2.17, we show the results of a
very low resolution model. The left image of Figure 2.17 shows 5 B-scans of the
original data and a “floating window” reconstructed from the volume model. On the
right the same five data B-scans are shown alongside their corresponding
approximations. Also the reconstruction of the “floating window” is shown on the
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right. Figure 2.18 shows a higher resolution model. The results are impressive in
light of the number of vertices and the detail that is present in the approximations. A
different and quite interesting way to compare the approximation is shown in Figure
2.19. And due to the existence of the volume model, tools such as that shown in
Figure 2.20 are possible. Figure 2.7 is also based upon the volume modelling
techniques we have just described.

  

Figure 2.16. Free-hand ultrasound data collection and typical tetrahedral mesh for
progressive model. (Data courtesy of Cambridge University.)

Figure 2.17. Results from progressive fit with a fairly large RMS error of 17.3 with only 909
vertices (approximately 1000 to 1 reduction).
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Figure 2.18. The same information as in the previous figure, but the RMS is 9.94 and the
number of vertices is 53,995 (approximately a 20 to 1 reduction). The quality of the
reconstructed images is excellent!

Research Issues:  These results show the promise and potential of progressive
models for this type of data and for this reason they are exciting. Is it possible to
develop very fast and efficient algorithms that will operate in real time? Imagine an
environment where a user sees the results of the volume model as the data is being
collected. If a region is of special concern, the probe can be positioned so as to
collect more and more data in this region resulting in better and better fitting
models. This type of performance will require efficient data structures for the
tetrahedralisation and efficient means to compute the coefficients of the volume
model. What is the best subdivision strategy? The results we just described (Figure
2.7 and Figures 2.17-2.21) are based upon a particular 3D version of the Maubach
algorithm [21]. We previously mentioned two other possibilities: (1) The red/green
strategy of Bey [22] and Banks [23] and (2) the idea of using triangular Coons
patches. Are there others, and what special properties do they have? What is the best
oracle or fitting strategy? Top-Down/Adaptive or Bottom-Up/Collapsing? Within
either general strategy there are choices to be made. For example, how do you
decide which cells to split or collapse? For some splitting strategies and
applications, it may be advantageous to go very deep and for others there are reasons
for keeping the overall meshing more uniform and shallow. The results reported
here use a piece-wise linear model. Is it worth it to use higher order functions?
Second order, for example? We suspect that the savings in the total number of
tetrahedra will indicate that this is a wise decision for some applications. o
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Figure 2.19. Comparison of actual B-scan and approximation.

Figure 2.20. Using a slice tool to interactively view a volume model of ultrasound data.
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2.4 Conclusions

In this chapter, we have presented a definition of volume modelling, made an appeal
for its general development and covered some basic methods of representing volume
models. The methods covered are only a sampling. Many techniques have not been
covered. For example there have been a number of procedural techniques developed
where the primary goal is to generate an image or animation which is acceptable to
the viewer. In these applications the picture is the main goal and the volume model
is not so important. Fire, gases, clouds, fluids and many other phenomena have been
considered. Discussion of these procedural techniques can be found in [27] and the
references therein. Also, we did not cover the very interesting and potentially very
useful topic of layered manufacturing (see Chapter 5). Volume models are needed to
drive these new and interesting methods of fabrication, for instance, the use of
transfinite deformation maps for describing volume models [28].
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Radial Basis Functions:
RBF Interpolation
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Encoding System
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RBF Encoding of Volume Data:
Calculate Weight

Minimize the sum squared error for all data 
points
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Encoding Statistics

X38 
Shock

Natural 
Convection

Black Oil 
Reservoir Neghip Blunt Fin

# of Cells 1,943,483 48,000 156,642 32,768 40,960

# of Cells 
Encoded 89,140 48,000 156,642 32,768 40,960

Data Range 0.00 – 1.65 0.00 – 1.00 0.00 – 1.00 0.00 – 1.00 0.19 – 4.98

# of RBFs 2,932 435 458 812 695

Avg. Error 0.05 0.04 0.007 0.012 0.11
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RBF Influence Calculation

For improved rendering performanceFor improved rendering performance
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Spatial Data Structure:
3D Spatial RBF Distribution
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Direct Rendering from Encoding:
Programmable Fragment Pipeline
General, orthogonal instruction set
Floating-point data types
Resources

• Large number of registers
• Long programs
• Unlimited texture lookups
• Multiple levels of dependent

texture lookup

High level programming languages
Very limited data dependent jumps or loops
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Direct Rendering from Encoding:
Fragment Based RBF 
Reconstruction
Similar to procedural textures
Decouple geometry from appearance
Compatible with various 
rendering/visualization algorithms
• Property texture for arbitrary geometry

– Pressure on airplane body
• Individual cutting slices
• Texture based volume rendering
• Includes volume rendered isosurfaces
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Direct Rendering from Encoding:
RBF Reconstruction during 
Rasterization

RBF Parameters

Texture 1

Texture 0

iµ iw
iσ

Fragment 
Program



Direct Rendering from Encoding:
High Level Rendering

Spatial decomposition (bricking)
Multipass rendering (last pass for all cells)

• Hardware accelerated p-buffers
• Uses ping-pong rendering
• Active cell list

Switching to cell-based traversal for single 
pass reconstruction
• Requires cell sorting by recursive depth-first traversal
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Direct Rendering from Encoding:
Texture Encoding

RBF parameters as two texture maps
• Resides in the local graphics memory
• Full precision floating-point textures

RBF parameters of a single cell
• Stored consecutively in the texture map
• Fragment program may access RBF parameter by 

lookup with increasing texture coordinate
• Avoid texture wrapping
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Direct Rendering from Encoding:
Texture Packing

RBF chunks for multipass rendering
• Different chunk sizes for reducing rasterization
• Specialized fragment programs
• Padding

RBF chunks for multipass rendering
• Different chunk sizes for reducing rasterization
• Specialized fragment programs
• Padding
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1 9 RBFs
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Direct Rendering from Encoding:
Fragment Program

float4 main (…)
{

float  val = 0.0;
float4 texpos = texstart;

for (float i = 0; i < CONST_NUMFUNCS; i++)
{

float4 tmp    = texRECT(rbfcenter, texpos.xy);
float  s2_inv = texRECT(rbfwidth,  texpos.xy);
float3 vec    = tmp.rgb – inpos.xyz;
float  expval = - dot(vec, vec) * s2_inv;
val    += tmp.a * ex2(expval);
texpos += texinc;

}

val += bias + error;

return tex1D(map, (val + mapSBA.r) * mapSBA.g);
}



Results:
X38 Crew Return Vehicle
Tetrahedral finite element 

viscous calculation on 
geometry
• Computed at Engineering 

Research Center at Mississippi 
State University by the 
Simulation and Design Center

• Single time step in the reentry 
process into atmosphere

• 1,943,483 tetrahedra at a 30 
degree angle of attack

Tetrahedral finite element 
viscous calculation on 
geometry
• Computed at Engineering 

Research Center at Mississippi 
State University by the 
Simulation and Design Center

• Single time step in the reentry 
process into atmosphere

• 1,943,483 tetrahedra at a 30 
degree angle of attack

2,932 RBFs
Shock Volume Rendering 
representing normal Mach 
number around 1.0



Results:
X38 Crew Return Vehicle

Cutting plane rendering 
of shock

Cutting plane rendering 
of shock

Volume isosurface
rendering of density

Volume isosurface
rendering of density

1,611 RBFs



Results:
Natural Convection in a box

80th time step of 
temperature from a 
natural convection 
simulation
• A non-Newtonian fluid in a 

cube
• Developed at The University of 

Texas at Austin
• 48,000 tetrahedral elements 
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Results:
Black Oil Reservoir Simulation
A simulation for 
prediction of 
placement of  water 
injection wells to 
maximize oil from 
production wells
• Computed by the Center for 

Subsurface Modeling at The 
University of Texas at Austin

• 156,642 tetrahedra
containing water pressure 
values for the injection well
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• Computed by the Center for 

Subsurface Modeling at The 
University of Texas at Austin

• 156,642 tetrahedra
containing water pressure 
values for the injection well

458 RBFs

222 RBFs
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Results:
Blunt fin

Volume rendering and RBF spatial 
distribution

Volume rendering and RBF spatial 
distribution

695 RBFs
238 Cells
< 60 RBFs/Cell



Results:
Tornado

Synthetic dataset
• Courtesy of Roger Crawfis

from The Ohio State 
University

• 32,768 cells 
• Visualization of velocity 

magnitude 
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Results:
Turbulent Channel Flow

Experiment studying of 
laminar-turbulent 
boundary layer 
transition in a water 
channel

• Provided by the Institute for 
Aerodynamics and 
Gasdynamics of the 
University of Stuttgart

• 32,085 cells
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Results:
System

Intel Pentium 4 2.80 GHz process, 2 GB 
memory

256 MB nVidia GeForce 6800GT graphics 
board
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Results:
Performance
Limited by the rasterization of the graphics card
Single cutting planes

>> 30 fps even for several thousands of RBFs per fragment
Volume Rendering by splatting approach

• 6.4 – 44.3 fps with 64 slices on 400 x 400 viewport
Volume Rendering by texture-based approach

• 0.96 – 10.5 fps with 64 slices on 400 x 400 viewport
• Limited by multipass rendering
• Isosurface shading

Optimization for nv40
• Code not optimized for new capabilities
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Conclusion

Effective encoding of scalar and vector fields 

Novel approach for interactive reconstruction 
and visualization of arbitrary 3D fields

Allows interactive exploration of large 
datasets from a variety of sources
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Future Work
Improve rendering and increase image 
quality by incorporating  pre-integrated 
volume rendering

Improve RBF encoding techniques for 
improved performance

Better error measurement methods for 
vector encoding
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Recent computational performance 
increases 

Massive dataset from advanced computing 
simulations

Difficulty in direct analysis of large datasets 
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Feature detection
• Powerful means of automatically detecting regions of 

interest

• Automates data analysis

• Extracts the salient features
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Survey of Techniques
J. Helman and L. Hesselink
• Evaluation of Flow Topology from Numerical Data, 1987

– Two dimensional topology using critical points
– Attachment and separation surfaces in three dimensional 

flows
• Representation and display of vector field topology in fluid flow 

data sets, 1989
– Representation of global topology based on the analysis of 

critical points
• Visualizing vector field topology in fluid flows, 1991

– Combining simplicity of scheme depiction with curves and 
surfaces directly from the data

J. Helman and L. Hesselink
• Evaluation of Flow Topology from Numerical Data, 1987

– Two dimensional topology using critical points
– Attachment and separation surfaces in three dimensional 

flows
• Representation and display of vector field topology in fluid flow 

data sets, 1989
– Representation of global topology based on the analysis of 

critical points
• Visualizing vector field topology in fluid flows, 1991

– Combining simplicity of scheme depiction with curves and 
surfaces directly from the data



Survey of Techniques
Globus et al. 
• A tool for visualizing the topology of three-dimensional vector 

fields, 1990

– Numerical analysis and graphical display of topological 
aspects of vector fields

– Critical points, their invariant manifolds, and integral curves 

Jeong and Hussain
• On the identification of a vortex, 1995

– Identifying a vortex core referred to as the λ2-definition
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Survey of Techniques
Lovely and Haimes
• Shock detection from computational fluid dynamics results, 1999

– Locating shocks in transient and steady state solution using 
flow physics

– Removing false shock detection using a set of filtering 
algorithms

Haimes and Kenwright
• On the velocity gradient tensor and fluid feature extraction, 1999

– Identifying global features using local analytical tests based on 
critical point theory, phase plane analysis, and the velocity 
gradient tensor 
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Survey of Techniques
Silver and Wang
• Tracking scalar features in unstructured datasets, 

1998

– Visualization of time-varying datasets and tracking 
volume features in unstructured scalar datasets

– Determining history of time-varying features 
difficult 
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Feature Definition
Critical point
• Stationary point

• Location in the vector field v where v=0

Vortex core
• Central core region of a vortex

Shock
• Connected regions of sharp discontinuities

• Very thin region in a supersonic flow
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Critical Points
Integral manifolds

• Combination of vector field topology consisting of key points, 
curves, and surfaces

With a few exceptions, all integral manifolds must 
begin and end at zeros in the vector fields

These zeros form the critical manifolds
Critical manifolds allow us to characterize the flow 
in the areas surrounding the critical points

Critical point contains a greater probability of a 
region of interest
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Critical Points Detection
Taylor series expansion of the vector field v

3x3 coefficient matrix

Taylor series expansion of the vector field v

3x3 coefficient matrix

( ) ( )(0) (0) i
i i j j k l

j

vv v x x O x x
x
∂

= + − + ∆ ∆
∂

( ) i
ij

j

vv
x
∂

∆ =
∂



Critical Points Detection
Classification of critical points
• Eigenvalues of the coefficient matrix

• Combination of real part and imaginary part
– Positive real part

– Repelling direction
– Negative real part

– Attracting direction
– Imaginary part

– Circulation
• Real eigenvalues all having same signs

– Purely repelling node
– Purely attracting node

Classification of critical points
• Eigenvalues of the coefficient matrix

• Combination of real part and imaginary part
– Positive real part

– Repelling direction
– Negative real part

– Attracting direction
– Imaginary part

– Circulation
• Real eigenvalues all having same signs

– Purely repelling node
– Purely attracting node

1 1,R iI+ 2 2 ,R iI+ 3 3R iI+



Critical Point Detection

[Hesselink and Helman, 1991]



Vortex Core Detection
Velocity gradient tensor 
• Symmetric part, strain-rate tensor

• Asymmetric part, spin tensor

Eigenvalues of 

Velocity gradient tensor 
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Vortex Core Detection
Vortex
• Connected region where             has two negative 

eigenvalues

Vortex core
• Points having negative

Vortex
• Connected region where             has two negative 

eigenvalues

Vortex core
• Points having negative 2λ

2 2S + Ω



Shock Detection
U represents 
• P, pressure

• ρ, density

• M, mach number
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Calculate quantities: 
[Marcum and Gaither, 
1997]

Calculate quantities: 
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Shock Detection

P ρ M

E1
Positive E1 : 
Compression shock

Positive E1 : 
Expansion shock

Positive E1 : 
Expansion shock

E2
Negative E2 : 
Expansion shock

Negative E2 : 
Compression shock

Negative E2 : 
Compression shock

E3
Representing shear shock  or contact discontinuities orthogonal 
to the flow direction



Shock Detection
Compression Shock of 
X38
Compression Shock of 
X38

Expansion Shock of X38Expansion Shock of X38



Shock Detection: U = P 

E1,2



Shock Detection: U = ρ

E1,2



Shock Detection: U = M



Shock Detection
Bunning’s technique [Haimes 1999]
• Normal mach number

• Stationary shock

Bunning’s technique [Haimes 1999]
• Normal mach number

• Stationary shock



Calculation of Velocity gradient
In the tetrahedral cell, 4 nodes are used to 
calculate velocity gradient
In the tetrahedral cell, 4 nodes are used to 
calculate velocity gradient



Computing Features in Functional 
Domain

Possible to compute features analytically

Functional representation    using RBF 
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Computing Features in Functional 
Domain

Partial derivatives of function s

Approximations of partial derivatives are 
used to compute a wide variety of features 
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Shift from scattered data approximation to 
numerical solution of partial differential 
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Mesh-free nature of RBFs: Motivation for 
dealing with PDEs

Shift from scattered data approximation to 
numerical solution of partial differential 
equations (PDEs)

Mesh-free nature of RBFs: Motivation for 
dealing with PDEs



Meshless Method
Scattered data approximation
• Globally supported RBFs for relative small number of 

points (400-500)

• For large datasets (> 10,000)

– Domain decomposition using fast multipole
method [Beatson et al. 2000]

– Domain localization [Nielson 1993]

– Partition of unity [Ohtake et al. 2003]
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Meshless Method
Scientific visualization 
• Providing a crucial role in the development and 

understanding of computational simulations

• Current focus: 

– improved understanding of results from traditional 
grid-based techniques (e.g., rectilinear, 
tetrahedral, curvilinear, and hierarchical grid 
structures)
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Meshless Method
Traditional methods for modeling numerical 
system
• Generation of an underlying grid structure (e.g., finite 

element methods (FEM), finite volume methods 
(FVM), and finite difference methods (FDM))

• Time consuming creation of “good” meshes 

• Prohibitively expensive to solve excessive change 
scale model by traditional FEMs (e.g., crack 
propagation)
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Meshless Method
Traditional methods for modeling numerical 
system:
• Construction of airtight geometry 

– free of cracks or holes

• Generation of surface mesh given 

– geometry description 

– set of point distributions

• Generation of a volume with elements (e.g., hexahedra, 
pyramids, prisms, tetrahedra)  adhering to desired spatial 
transitions
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Meshless Method
Traditional methods for modeling numerical 
system
• Grid generation technique balancing

– Manpower time required to generate the grid

– Resulting size of data set with proper resolution 
and spacing needed to maintain accuracy and 
convergence

• Storage of a set of discretized points with either 
implicit or explicit connectivity

Traditional methods for modeling numerical 
system
• Grid generation technique balancing

– Manpower time required to generate the grid

– Resulting size of data set with proper resolution 
and spacing needed to maintain accuracy and 
convergence

• Storage of a set of discretized points with either 
implicit or explicit connectivity



Meshless Method
Additional reasons for exploring meshless 
techniques [Kansa, 1990]
• Too much user tuning for multi-dimensional moving 

mesh schemes

• Modification of physics to accommodate the 
numerical schemes, rather than modification of 
numerical schemes to accommodate physics
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excessive variation in scale and large deformations (e.g., crack
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– Approximation of a scalar function by expanding 
several scaling and wavelet functions

– Direct construction of a vector wavelet transform
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dimensions

Smooth Particle Hydrodynamics (SPH)
• Lagrangian method for modeling a variety of computational fluid 

dynamics simulations
• Approximation of materials by particles that are free to move 

rather than being fixed at grid locations
• Convert PDEs governing forces (e.g. gravitational forces) into 

equations of motion
• Advantages

– Handles momentum dominated flows well
– Natural modeling for complex free surfaces
– Easy addition of complicated multi-phase physics, 

realistic equations of state, compressibility, radiation, 
and solidification

– Easy handing of complex geometries in two and three 
dimensions



Meshless Method: Hybrid 
Methods
Functions + Coarse background mesh
Radial basis functions (RBFs)
• Numerical solutions of PDEs via the method of collocation by 
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Shock Volume Rendering 
representing normal Mach 
number around 1.0

2,932 RBFs
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Compression Shock
5,703 RBFs

Expansion Shock
6,750 RBFs
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