Procedural Encoding of Scattered Data, Theory and Applications

Chair: Kelly Gaither
The University of Texasat Austin
Texas Advanced Computing Center
Austin, TX
kelly@tacc.utexas.edu
(512) 232-7751
(512) 475-9445
http://www.tacc.utexas.edu/~kelly

Instructors. Greg Nielson, Arizona State University, nielson@asu.edu
Hans Hagen, University of Kaiserslautern, hagen@informatik.uni-kl.de
David Ebert, Purdue University, ebertd@ecn.purdue.edu
Kelly Gaither, The University of Texas at Austin, kelly@tacc.utexas.edu

Length: Full Day
Level: I ntermediate/ Advanced

Abstract: Procedural encoding of scattered data setsis an active area of research with
great potential for reconstructing surface information and compactly representing large
data. The reduced storage requirements allow greater flexibility in the methods for
manipulating and analyzing this data interactively. In this course, we will cover both the
mathematical foundations behind existing encoding techniques, surface reconstruction
methods, and volumetric representations. Additionally, we will present methods for
feature analysis in the functional domain and conclude with applications and benefits of
functional encoding in the scientific and engineering disciplines.

Who Should Attend: Anyone interested in learning how to represent either scattered,
surface or volumetric datain afunctional form, and anyone interested in learning how to
manipulate this functional representation to generate feature information and
visualizations.

What Attendees Will Gain: The mathematical foundations for encoding scattered,
surface and volumetric data and concrete examples of extracting features from and
visualizing the data expressed in a functional representation.

CourseOutline:
1. Introduction (Kelly Gaither 15 minutes, 8:30 am — 8:45 am)
The introduction will open up with the motivation behind putting this material
together into one course, and the goals that we hope to achieve by presenting the
material to the course attendees. Thiswill set the stage for the full day. The
presentation of the material is organized such that the mathematical theory is
presented in the first half of the day, and applications of the theory and techniques are
presented in the second half of the day.



a. Motivation and Goals
b. Overview of the Course

2. Mathematical Foundations (Greg Nielson, Hans Hagen 2 %2 hours, 8:45 am —
11:15 am)
The mathematical foundations will be a survey of several techniques for modeling
scalar and vector valued functions that are based upon arbitrarily discrete sample
measurements in a plane, a 3D volume, on manifolds, and in adomain that consists of
both Euclidean space and time. Scattered data of this type occursin many science,
engineering and medical applications.
a. Data Examples— (Pressure over awing , CAT, MRI, and fMRI , Rainfall over
the Earth, Well Log Data, Big Sur Data, Flame Data, Car Flow Data, Brain
Data, Climate Model Data, Stock Market Data, FEM Data, Reservoir Data)
b. Classification of Data
I. Source: measured/simulated
ii. Dimension: range/domain
iii. Structure, Topology and Grids (uniform, rectilinear, curvilinear,
triangular, tetrahedral, etc.)
c. Sampling and Brief Overview of Modeling Methods
i. Basicldeas— (Motivation, Problem, Basis Functions)
ii. Methods— (Modified Quadratic Shepard, Volume Splines, Multiquadrics,
Volume Minimum Norm Network, Localized Volume Splines)

BREAK (10:00 am — 10:30 am)

lii. Comparisons
1. Analytical Comparisons
a MQS: Fast, reasonably good fitting properties, very large data sets
b. Volume Splines: Easy to implement, VG fitting, Conditioning
problems
c. Multiquadrics. Easy, excellent fitting, Conditioning and parameter
selection
d. Volume MNN: Massive Data, VG fitting, Not easy to implement
e. Loca Volume Splines: Massive Data, good fitting, problem with
subdivision selection
2. Resultsof Empirical Comparison

3. Surface Reconstruction (Greg Nielson, Hans Hagen 1 hour 45 minutes, 10:30
am —12:15 pm)

Following the presentation of the necessary mathematical theory, the course will

cover specific techniques that can be used for surface reconstruction.

Triangular Patches

Bezier Techniques

BBG Methods

The Side-Vertex Method for Interpolation in Triangles

op oo



e. Variation of Design
LUNCH BREAK (12:15 pm — 1:45 pm)

4. Volume Encoding (David Ebert 1% hours, 1:45 pm — 3:15 pm)
This portion of the course will cover the process and methods for encoding
volumetric scalar, vector and multifield data sets. RBF encoding methods are
presented to provide specific examples of encoding volumetric data sets.
Additionally, the benefits of being able to render this encoded data are presented to
the attendees by covering a variety of techniques for direct rendering of the
functionally encoded data.
a. RBF Encoding Techniques
i. Motivation and Survey of Approaches
ii. Advantagesand Comparisons
lii. Details of One System for Gaussian RBF Encoding of Scalar Data
iv. Gaussian RBF Encoding of Vector Data
b. Rendering Issuesfor Interactive Exploration and Visualization
I. Surface Generation and Visualization
ii. Direct Rendering from Functional Encoding
1. Hardware Capabilitiesand Limits
2. Splatting Approaches
3. Texture-based Volume Rendering
4. Comparison and Trade-Offs

5. Feature Analysis Using Functional Encoding (Kelly Gaither 1%z hours, 3:15

pm — 4:45 pm)
The motivation and a brief survey of existing feature detection techniques are
presented to the course attendees to provide a basis from which specific feature
definitions are presented. These feature definitions are then presented in the
functional domain by performing a change of basis on the fundamental operators and
directly computing the feature equationsin this basis.

a. Motivation and Survey of Existing Techniques

b. FeatureDefinitions

i. Nomenclature
ii. FeatureDefinitions

BREAK (3:45pm —4:15 pm)

c. Computing Featuresin the Functional Domain
i. Mathematical Operators
ii. Computing in the Functional Domain

6. Applications (Kelly Gaither 1 hour, 4:45pm — 5:45pm)

The course will close by presenting examples of using the functionally encoded
representation to solve systems of equations, feature definitions, and to analyze and
visualize theresults.



a. Meshless Methods for Solving Systems of Partial Differential Equations
b. Examplesof using functional encoding to analyze computational data sets
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Mathematical Foundations of Procedural Encoding of
Scattered Data

Gregory M. Nielson, nielson@asu.edu

1. Data Examples

Rectilinear, Cartesian Grids, Well Log, Curvilinear Grids, Free hand US, Flame

2. Models and Methods
2.1 Interpolation Methods

2.1.1 Sampling of Methods and Techniques
(1) Inverse Distance and related RBFs
(i1) Volume Splines and related RBFs
(111) Multiquadrics
(iv) Volume version of Minimum Norm Network
(v) Localization techniques for massive data sets

References:
1) Nielson, Minimum Norm Network, Math. Comp. 40:161, 253-271
2) Nielson, Multivar. Smoothing Splines, SIAM J. Num. Anal., 11:2, 435-446

2.1.2 Comparisons
(1) Ease of Implementation, (ii) Applicability
(ii1) Feature maintenance quality (iv) Efficiency

References
3) Franke, Scattered Data Interpolation, Math. Comp. 38:157, 181-200
4) Nielson, Scattered Data Modeling, CG&A4, 13:1, 60-70

2.2 Approximation Methods

2.2.1 Least Squares
(1) Knot Selection, (i1) Total Fit, (iii) Venetia Criteria

2.2.2 Adaptive/Progressive Models
(1) Refinement strategies (ii) Cracking problems (iii)

References:
5) Roxborough et al. Progressive Models for US, Vis 2000, 93-100
6) Nielson, Triangulations & Tetra., Scientific Visualization, 429-525
7) Chen et al. Volume Graphics, Springer, 29-48.



A Method for Interpolating Scattered Data Based Upon a Minimum Norm
Network

Gregory M. Nielson
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A Method for Interpolating Scattered Data
Based Upon a Minimum Norm Network*

By Gregory M. Nielson

Abstract. A method for interpolating scattered data is described. Given (x4 Yiy2;),i=1,...,N,
a bivariate function S with continuous first order partial derivatives is defined which has the
property that S(x;, y;) = z;, i = 1,...,N. The method is based upon a triangulation of the
domain and a curve network which has certain minimum pseudonorm properties. Algorithms
and examples are included.

1. Introduction. In this paper, we present a new method for interpolating scattered
data. Given the data (%45 ¥i» 2;), i = 1,...,N, we describe the construction of a
bivariate function S which has continuous first order partial derivatives and
S(x;, ¥;) = z;,i = 1,...,N. The method consists of three separate steps:

(i) Triangulation. The points Vi=(x;, y),i=1,...,N, are used as the vertices of
a triangulation of a domain D.

(ii) Curve Network. The approximation S and its first order partial derivatives, S,
and S, are defined on the subset consisting of the union of all edges.

(iii) Blending. S is extended to D by means of a blending method which will
assume arbitrary position and slope on the boundary of a triangular domain.

The basic idea of an interpolant which is defined in a piecewise fashion over
triangles is not new. Both Lawson [7] and Akima [1] have described such methods.
Lawson’s paper contains a good discussion of many of the aspects of triangulating
the convex hull of ¥, i = 1,...,N. Both of these methods make use of a discrete C!
interpolant (i.e., a C' finite element) for each triangle followed by a local method for
estimating certain partial derivatives. Even though our method is based upon the
approach of a curve network followed by the use of a triangular blending (trans-
finite) interpolant, the particular method we eventually propose can be viewed as an
assembly of discrete C' interpolants along with a technique for estimating partial
derivatives.

2. The Curve Network. We assume N = 3 and that the points V,, i = 1,...,N, are
not collinear. Let 7;, denote the triangle with vertices Vi, Viand V, i #j # k +# i.
The list of triple indices which determines the triangulation is denoted by 7, so that
D=U, e, Ty Lete, ; represent the line segment with endpoints ¥; and V., and let
N, ={j:i, j € {a,B,v)},aBy € 1,} be a list of the indices representing the edges of

the triangulation. In terms of this notation, the domain of the curve network is

Received January 22, 1979; revised April 13, 1981 and June 21, 1982.

1980 Mathematics Subject Classification. Primary 65D05; Secondary 41A15.

Key words and phrases. Bivariate interpolation, scattered data interpolation, random data interpolation,
splines, multivariate approximation and interpolation.
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254 GREGORY M. NIELSON

E=U, jen, €~ The derivative normal to an edge e, is given by

dF ()’j_Yi) oF (xj_xi) a__F

ony eyl 3x eyl 3y

b

where |l e;;1| is the length of e; ;. The derivative along an edge is given by

3_F:(xj_xi) oF (yj—yi) oF
T P I P PO R T

Therefore,

F_(y—x) o (5—%) oF
ax e, Il e, lle; Il adn;;°

oF (yj — %) oF (xj_xi) oF

and so it is clear that if S and 3S/9n,; are known on each edge, the information
required for step (ii) is available. It is more convenient to specify S and its normal
derivatives on E since these values can be defined independent of each other at all
points except the vertices. We will first define S on E, but prior to this, we review
some material concerning univariate cubic splines which motivates our particular
choice of the curve network.

Given the data (#;,s,), i=1,...,n, where ¢, <t,<---<t¢,, the univariate
natural spline of interpolation can be characterized (cf. de Boor and Lynch [4]) as
the unique solution to the problem

. I 2
Min "(t)]” dr,
(2_1) fEH[1,1,] -/;, [f ( )]

subject to: f(¢,) = s,,

where H[t}, 1,1 = {f: f€ C[t,,1,), ' is absolutely continuous, f” € L?[t,, 1,]}.
From this point of view, the mathematical spline is an analogue of the physical
spline. As a result of this minimization, it can be shown that s is a piecewise cubic
polynomial which has a continuous second derivative and s”(¢;) = s”(z,) = 0.
Towards the definition of a curve network with an analogous characterization, we
introduce C[E] = {F: F is the restriction to E of some C' function defined on D
and the univariate function obtained as the restriction of F to e;; is an element of
Hle,;]}. Analogous to the minimum pseudonorm property of univariate splines, we
consider the problem of finding an interpolating curve network which minimizes

2 2

9°F ds

2
ae,.j

22 o(F)= X

JEN, €

ij*

where ds;; represents the element of arc length on the curve consisting of the line
segmente, ;.

We find it convenient to view each F € C[E] as a collection of univariate
functions

(2.3) L) =F(1 =)V, +1V), §EN,0<t<]l.
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With the following parametrization of the curve e, S
x(t):(l_t)xi+txj’ y(t)=(1_t)yi+tyj9
and the fact that

L, _or
lle, 11277 de?,

b
e

we have that

o(F)= 3 f[ (”)2} V(0 +[y/(0)] a

JEN,

— 1 y R
= 2 o Lol a

JEN,

THEOREM 2.1. Let S € C[F] be the unique piecewise cubic network with the
properties that S(V;) = z;,i = 1,...,N, and

@9 3 Sl - xs )+ 0,080

20 = 5)8.7) + 70, = 0)8,(0) + 22— 2] =0,
3 %[( =58 + (= 3)S,(%)

20y = x)8.) + 30, =0)8,(1) + 32— )] =0,
where

N, ={ij:e ;1S the edge of the triangulation with the endpoint Vi}.

Then, among all functions F € C[E], F(V))=1z,i=1,...,N, the function S uniquely
minimizes o( F).

Proof. We first define the inner product

F.6)= 3 1 U”3 IRACEACK:
and note that
o(F)—o(S)=(F—S,F—S)+ 2(S,F—S).
For the moment, we assume that (2.4) has a solution and write
5i,(1) = 123 = 2t)z; + (1 — 1)’ 21 + 1)z

+e(1=1)*[(x; = x)SUV) + (3, = 3)S,(V)]
+12(t — 1)[(x X, )S( ) +(yj yi)Sy(I/j-)].
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If F is any element of C[ E] which interpolates, then

/ o] () = sp(0)] de

—S;-'j' i — +fS (t) .f;j(t) Sij(t)] d

1
1 o o
= Sij[ ij Sij] 0

7

— o o
—s,-j[ ij s,.j]

Since
si(1) = 6lz,— 2,1 + 2[(x; = x)S.(V;) + (3 — »)S,(V)]
+4[(x, — x)S.¥) + (0~ 3)8,(%)],
5/7(0) = 6[z;, — z,] — 4[(x- —x;)8.(V;) +(y _yi)Sy(I/i)]
—2[(x; = x)8.(¥;) + (3 — »)S,(¥)],
we conclude that

25) 2

JEN, ” Ij

:§{2 1”3[6(2 z;) + 2(x; — x,)(S.(V, 7) +28,.(V;))

i=1 LjEN, ”elj

5 [l = s o) a

+2(3, = »)(8,(¥) +25,(7))]
X [(xj - X;) [f;(Vl) — SX(V;)] +(yj -yl)[}:;)(l/t) - Sy(Vz)”}

The change in summation is allowable because s;;(1) = s//(0). This last equation
points out the fact that (S, F — ') is independent of whether ij or ji is listed in N,.
This is the reason we were not definite about this before. Applying (2.4) to (2.5), we
have that

(2.6) (S, F—8)=0,
and so

o(F)—o(S)=0a(F—5)=0
for any curve network F such that F(V;) =z, This establishes the minimum
property assuming that S exists. The existence of S requires a solution of the 2N
linear equations of (2.4). We will show that this system has a solution by showing
that the homogeneous system (z; =0, i = 1,...,N) has oBIy the trivial solution.
This argument will also establish the uniqueness of S. Let S be the piecewise cubic
curve network associated with the solution S.(V)), S(V), i=1,...,N, of the
homogeneous system. The same line of reasoning which led to (2.6) can be used to
conclude that

(5, 8)=0.
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That is, we replace both S and F — S with S. Therefore, LS dt =0, €N,
which implies that s, ;18 linear. But 5, ;0) =5,,(1) = 0, and so

(x; = x)S.(V) + (5 = »)S,(V) =0,  §EN,i=1,.,N.
Since each V; is the vertex of some nondegenerate triangle, this is sufficient to imply

that ASTX(Vi) = STy(V,.) =0,7=1,...,N, and so the proof is complete.

COROLLARY 2.2. If the data (X;s ¥i» 2:), i = 1,...,N, lie on a plane, then the curve
network S of Theorem 2.1 will also lie on this plane.

Proof. Let P represent the plane, and let
S=P|,

be the restriction of this plane to the edges. Then S € CIE), S interpolates and
a(S) = 0. Since the minimum norm network is unique, it must be that case that
S=S5.

In order to complete the information required by step (ii), we need to define the
normal derivative on each edge. We make a particularly simple choice here and take
the normal derivatives to be linear. That is,

(1= 0¥+ ) = (1 - ,)[ (=208 — b~ 2)5 (%)

i

(Yj _)’i)Sx(Vj) - (xj - xi)Sy(K')

+t
eIl

, G EN.

3. The Blending Method. We now discuss the choice of the triangular blending
method to be used to extend the curve network to the domain D. For these purposes,
we let T represent an arbitrary triangle with vertices V,i=12,3,and b, = b,(x, y),
i = 1,2,3, denote the barycentric coordinates given by

X =bx; + byx, + byx,,

y=by,+ by, + byy;,
1=b,+b,+ b,.

Let 7= {(1,2,3),(2,3,1),(3,1,2)}.

The first method of approximation to assume predescribed values of a function
and its first order derivatives on the boundary of a triangle is due to Barnhill,
Birkhoff and Gordon [3]. This method requires the specification and compatibility
of the cross partials:

92F _ a2F o
W(K)-W(m’ (i, j, k) €1

While those values are obtainable from the curve network information, in general
they will not be compatible.
In fact,
9%S

W(K)ZS{}(O)iji+ajidkji, (i,ﬂk) el,
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where
Un = (I = V) (V) = S(V,)) + (x,, = x,)(85,(V,) — S,(V,,)),
o= e x ) = %) + (= 2 = 2)
fmr e, lllle,,,II3
and

(xl — xn)(ym _yn) - (yl _yn)(xm B xn)
le,lle,, I )

Therefore 3°S(V;) /de, de;; will involve z;, S(V}) and S(V;), while 82S(I/,-)/8eik8e,.j
will involve z;, S,(V}) and S,(¥,), and so in general these two partials will not be
equal. A recently developed method which does not explicitly involve or require the
compatibility of the cross partials is described in [9]. This method is based upon the
combination of three interpolants each having certain miminum norm properties.
When the boundary values given by the curve network are substituted into this
triangular blending method we obtain the following nine-parameter C' interpolant
defined over 7.

G Sp(xny)= T S()[62(3 — 2b) + 6wh (b, + bay,)]

G, j,k)El

+8,(V;)[ 626, + wh,(3b,,, + b, — b,)]

d =

Imn

+8/(V,)[ 626, + wh,(3b,0 + b, — B))]
where
S/(V) = (x; = x)8(V)) + (3 — »)S,(V)),
b,b,b,

¥ = b.b, + b,b, + byb,’
el + lley I — lle, 12
;= 2
2lle; |l

If S, is used to represent the same discrete interpolant for the triangle 7, k> then
the final interpolant can be represented as

S(x,y) = Sijk(x’ y) for(x, y) € Ty

Concerning the degree of algebraic precision of S, it can be shown that S, will
reproduce quadratics but the curve network is limited to linear precision and so the
final interpolation operator has precision of degree one.

4. Algorithms and Examples. The first step in applying the approximation S
requires a triangulation of D. In those cases where D is the convex hull of v,
i=1,...,N, we have incorporated an algorithm described by Lawson [7] which
selects a particular triangulation on the basis of the max-min angle criterion. The
program that implements this algorithm produces information describing the
boundary along with three arrays n,, n, and n,, each of length N,, which form a list
of the vertices of each triangle of the triangulation. An example of a triangulation

produced by this program is given in Table 1 and Figure 1.
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TABLE 1
Data Boundary Triangulation
1, vyes
i X Yi i ny(i) no(i) n3(i)
0, no

1 21 .88 1 1 7 1 8
2 46 .93 1 2 1 7 2
3 .83 .89 1 3 7 8 10
4 .97 54 1 4 7 10 11
5 .67 1 0 5 2 7 6
6 .53 .74 0 6 6 7 11
7 28 77 0 7 10 8 9
8 .07 .70 1 8 11 10 17
9 .06 43 1 9 17 10 9
10 25 .56 0 10 11 17 16
11 48 .61 0 11 11 16 12
12 .67 .54 0 12 6 11 5
13 i 45 0 13 2 6 5
14 .90 31 0 14 5 11 12
15 .66 35 0 15 17 9 18
16 .50 47 0 16 17 19 16
17 32 44 0 17 19 17 18
18 25 31 0 18 16 19 15
19 .46 33 0 19 12 4 5
20 57 .20 0 20 2 5 3
21 75 25 0 21 12 16 15
22 .94 .05 1 22 12 15 13
23 46 .07 0 23 18 9 24
24 .18 .19 0 24 18 23 19
25 .14 .06 1 25 23 18 24
26 4 12 13
27 15 19 20
28 15 20 21
29 13 15 21
30 24 9 25
31 19 23 20
32 23 24 25
33 13 21 14
34 3 5 4
35 20 22 21
36 22 20 23
37 4 13 14
38 23 25 22
39 14 21 22
40 4 14 22

259

The next step of our method requires the solution of (2.4). The coefficient matrix
of this linear system is in general quite sparse, but the structure is sufficiently
complicated to eliminate the use of a direct method which takes advantage of this
sparseness. We have found that an iterative method based upon the following

equivalent form of (2.4) works quite well:

(s =-05
Sy; o B

Bi
Yi

-1
) jEN,

2 IBUSXI'"_ 2 Sy — 2y

2 a,-ijj+ 2 Bl-ijj—Zx,-

JEN,

jEN,

GEN,



260 GREGORY M. NIELSON

2

0.62

NV,

34

0.37

YA

26

AR

32 36
<5 00 0. 12 0.25 0.37 050 0.62 0.75 .87
X=AX1S
FIGURE 1
where Sx; = S(V;), Sy, = S(V))
(xj—xi)z
ai': s Oti:Z ai"
TP 2,
(x'_xi)(y'_yi)
Bi‘: : j3 ) '8122 2 Bij,
(Y‘_Yi)z
Yij = - 3 Y, =2 2 Yijs
e, | .
z,.—z ) x, — x,
Zx,':é 2 ( . l)( j3 ’)’
‘]EN, ”e,_]”
and
Zy,:% (Zj_ zi)(yj_yi)

JEN,

i

3
le,,
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For an initial approximation, we first obtain the first order partial derivatives of

each plane which interpolates over each triangle. Then for each vertex, we compute

the average of these derivatives for each triangle that involves this vertex. This

amounts to the following computation:
1

Jiin 1
Sx)=—=— 2 T, S=— 2
lMl ijkEM, Aijk lMI ijke

8ijk
M, Aijk
where M; = {abc: T,,. is a triangle with vertex V}},

| M;| is the number of elements of M,,
fiw = =y )z + e =3z + (i = 3z
G = (x, — x;)z; + (x; — xk)zj + (xj - x;)z;, and
A= (x; — xj)(yi — W)~ (y; _yj)(xi - x;).
The first pass of the following algorithm computes the initial values Sx?, Sy?,

i=1,...,N, as well as a,, B, v;, Zx;, Zy,, i = 1,...,N, which remain constant
throughout the iteration process.

For/=1,...,N,, do:

For (i, j, k) € I, do:
a=n(l),b=ny(l),c=nl)
| M, |=|M,| +1

Sx2: Sx2+fabc/Aabc

Sya = Syz?+gabc/Aabc

a, = +dab+&ac
Ba:Ba+Eab+Eac
Ya:Ya+?ab+?ac

ZXa — Zxa + g Tab(xb — xa)(jb — Za) + Tac(xc — xa)(:c — Za)
lle,pll lleg, |l

2

— +g[fa,,<y,,—ya)<z,,—za> . Tac(yc—m(zc—za)}

¢ ¢ 2 lle,sll? le,l?
Fori=1,...,N, do:
SxQZSX'Q
b M
0o S
7T M|
§=ay,— B’
_ Y;
“il—g
a_ B
! 8
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We have used the notation

Oy = TapQaps  Bab = TupBabs  Yab = TapYas
where

1 if ¥, and V) are on the boundary,
b= 1172 otherwise.

The factor of 7,, is necessary because we go sequentially through the list of triangles
causing each interior edge to be processed twice.
The iterative part of the algorithm can be described as follows:

Fori=1,...,N, do:
|__8i = Zx;, 8 = 2y,
Forn =0,1,..., until satisfied, do:
For/=1,...,N,, do:
For (i, j, k) €1, do:
a=n/l),b= n(l),c=nl)
8a = 8a - %[&absxlr; + &ac‘S’x:‘l + EabSy: + gacsycn]
_ Lo =60 = 4[BusSx + BooSXI + 7,800 + 57]
Fori=1,...,N, do:
Sx!t! = ao;'s, + B e,

Syt =BT+ v e

1

L L8, =2Zx;,e= 2y

In Figure 2, we show an example of the results of the above algorithm. The values z,,
i=1,...,N, are obtained from the function .25 EXP(-16((x — .5)* + (y — .5)%))
and the triangulation is that of Figure 1. In practice, we have found that, on the
average, about a dozen iterations will yield five or six digits of accuracy. Although
they are rare, we have encountered cases that take as many as eighteen and as few as
one to obtain this same accuracy.

The final step requires the evaluation of S given by (3.1) on the proper triangle. In
order to obtain a perspective plot of the surface, we evaluate the approximation on a
uniform rectangular grid. These values are stored in rectangular array S with

S(i, j)=8(x,,5), i=1,..,NR,j=1,...,NC,
where

,=XL+ (i—1)DX, 7 =YL+ (j—1)DY,

XH — XL _YH-—-YL
DX——————NR_ T and DY = NC —1

We take the approximation to be zero for those points which lie in the display
rectangle [ XL, XH] X [YL, YH] but outside D. Rather than stepping through the
values of (X;, y;) and asking which triangle these points lie in, our algorithm goes
through the list of triangles and computes the values of S(i, j) which are defined by
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a given triangle. More precisely,
For/=1,...,N,, do:

a= nl(l)’ b= n2(l)’ ¢ = n3(1)

IL = (min(x,, x,, x.) — XL) /DX

JL = (min(y,, y,, y.) — YL)/DY

IH = (max(x,, x,, x,) — XL) /DX

JH = (max(y,, y,, y.) — YL)/DY
Fori=1IL,IL+1,...,IH, do:

Forj=JL,JL +1,...,JH, do:

x=XL+ (i—1)DX

y=YL+ (j—1)DY

Solve x = b x, + b,x, + byx,
Y =0y, T byy, + byy,
1=b,+b,+ b,

to obtain b, b,, b,

L - LIfb,=0,i=1,2,3then S(i, j) = S,,.(x, y)

FIGURE 2
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In Figure 3a, we show the final interpolant based upon the curve network of
Figure 2. For comparison, in Figure 3b we include the interpolant which uses the

initial derivatives (Sx?, Sy°),i =1,...,N.
Our next example is comparable to one discussed by Lawson (cf. [7, Figure 7, p.

175]). The values z;, i = 1,...,n, are obtained from the function

EXP(-8[(x — 5)° + (y — .3)]).
The 26 data points and a contour plot of the interpolant are shown in Figure 4a. The

contours are at the values S(x, y) = .2, .4,.6 and .8. A plot of the interpolant using
the initial values for the derivatives is shown in Figure 4b.
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Our third example involves a nonconvex, multiply-connected domain and is
included mainly to point out the possibility of using such domains with the present
method. Further discussion on the problem of triangulating this type of domain and
an algorithm can be found in [8]. In Figure 5a we show the triangulation and the
final interpolant. The values z;, i = 1,..., N, are obtained from the same function as
used in the previous example. Figure 5b contains a plot of the interpolant using the
same data but over a triangulation of the convex hull.

The last example is based upon data provided by the United States Geological
Survey [6]. The ordinates represent elevations of a mostly subterranean formation of
granite called Hawk Rock which is located in the southeastern desert of Arizona. We
found this example particularly interesting because of the unique configuration of
the data. Due to the techniques of collection, this data consists of subsets which lie
on certain line segments. Figures 6a and 6b show these lines of data along with the
triangulation of it. Two views of the interpolant are shown in Figures 6¢ and 6d.
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ﬁAWK ROCK SEISMIC REFRACTION LOCATION MAP
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Crack 56

Crack 12

\Hawk 56

\\'.\
Hawk 3

FIGURE 6a
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Recently, Franke [5] has reported on the results of a project devoted to the
comparison of some 29 methods for interpolating scattered data. Included in this
report are the results of our implementation of the present method which is based
upon the max-min angle optimization of the triangulation of the convex hull, the
algorithm of this section for computing the minimum norm network and the
algorithm of this section for evaluating the interpolant on a rectangular grid. In
addition to certain assessments of the fitting characteristics of each of the methods,
Franke’s report includes storage requirements and timing results. The storage
requirements tabulated by Franke are given in terms of additional storage required
beyond that needed for the data (x;> ¥ 2;), i =1,...,N, and the output array of
evaluations. For the implementation of the present method, this amounts to ap-
proximately 32N. Franke’s timing results are based on the use of an IBM 360 /67.
We have run all of our examples on a UNIVAC 1100 /42. In Table 2 we give some
approximations of the running time (in seconds) required for the three steps of our
method. All programs mentioned have been written in FORTRAN.

TABLE 2
Minimum Evaluation
Norm 40 X 40 80 X 80
N Triangulation Network Grid Grid
25 .10 .88 .35 1.16
50 .35 2.14 .85 2.88
100 1.24 4.18 1.64 5.56
200 4.65 7.41 3.21 11.32
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MULTIVARIATE SMOOTHING AND
INTERPOLATING SPLINES*
GREGORY M. NIELSONf

Abstract. A theorem that characterizes spline functions that both smooth and interpolate is
given. A bivariate generalization is presented which permits interpolation and smoothing of informa-
tion which is not necessarily on a rectangular grid. A theorem which involves reproducing kernels for
Hilbert spaces unifies this theory.

1. Introduction. The subject of this report is the approximation of functions
given certain linear functional values. The approximating function ¢ is chosen
from a space of functions on the basis that ¢ is “‘smooth’ and that ¢ interpolates
or approximates a function relative to a set of linear functionals.

Both the concepts of smoothing and interpolation are combined into one
variational problem. The problem is used to characterize what we will call spline
functions. The problem and its solution include as special cases the work of
Reinsch [13], Schoenberg [16], Handscomb [§8], and Anselone and Laurent [3].

With the Taylor-type expansion with remainders given by Sard [15], we are
able to pose and solve a variational problem for bivariate functions. This charac-
terises bivariate spline functions and permits the interpolation and smoothing of
data for bivariate functions which do not necessarily lie on a rectangular grid.
This latter restriction is present for the bicubic splines of Ahlberg, Nilson and
Walsh [1], and de Boor [6]. Mansfield [10], [11] has previously constructed the
reproducing kernel for the Hilbert space T?%(«, ) which has Taylor expansions
similar to the Sard space B, (o, ). She has used this reproducing kernel to
characterize interpolating spline functions and optimal approximation of linear
functionals.

The approach that we take for both univariate and bivariate characterizations
can be generalized. A theorem involving reproducing kernels for Hilbert spaces
that unifies this theory is given in § 4.

2. Univariate smoothing and interpolating splines. We define the space of
functions H"[a, b] to be all functions f such that f~ ") is absolutely continuous on
[a,b] and f™ € L?[a, b]. By F"[a, b] we mean the space of linear functionals which
have the form :

n—1 pb
L= % | 1000,
j= a
where each 4/ is a function of bounded variation on [a, b].

THEOREM 1. Suppose {Lj}?’:1 < F™[a, b] and let real numbers Y,,i = 1,---, N,
be given. Choose 0 < k < N and let W be a symmetric k x k positive definite
matrix. If

@ {1t -, " L Lix — 03", -, Ly(x — t)3"" '} is a linearly indepen-

dent set and

(i) L{p) =0,i=1,---, N, impliesp = Oforallpe 2, _,,

* Received by the editors October 12, 1971, and in revised form August 2, 1972.
t Department of Mathematics, Arizona State University, Tempe, Arizona 85281.
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then the quantity

b
a(y) =f W) dr + Z Z wi[L{¥) — Y][Ly) — Y]
a i=1j=1
is minimized, subject to
L)=Y, yeH"ab], j=k+1,---,N,
uniquely by

m N
B0 = ¥ apf ™'+ T A~ 077,
j= i=

where the coefficients of ¢ are determined by

N
z Li(tj_l)li = Oa J= 1’ e, m,
i=1

i (2m — 1)!j=1 ijltj jls ) s Ky

Proof. We will not include the existence and uniqueness part of the proof here
since this theorem is a special case of Theorem 3 given in § 4. Sard [15, p. 13] has
shown that if f € H"[a, b] and L € F™[a, b] then

@  un- ZfW)((f@)+fLF%1L—PWU

J

0, z<£0.
Let [f,g] = [2f"™(1)g"™(1)dt and let Y e H™[a,b] such that L(y) =Y,
i=k+1,---, N. Then

oY) — (@) =Y — ¢, ¥ — M+§%; Ly — d)LfY — ¢)
(3) +ﬂw—¢m
+222m,¢¢mw—n

i=1j=1

where z 220,
(2)+ =

We will now show that the last two terms of (3) sum to zero:

w—¢m=[¢ ¢Zaﬂ+ZAL Vmw}
=;&w—¢uu—mww

={;/@w—¢>'3 W= oP@ Y 4 ( ”H

)

2m = 1))y

M=

= (—-1)"2m — 1)!

i

ALY — ).

1
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We have used (2), the first set of equations in (1), and the assumption that
L) =Y,i=k+1 ---, N. We now use (4) to obtain

W —¢,0] + Z Z Ly — ¢)[L{¢) - Y]

i=1j=1

k k
= _Zl Ly~ ¢)[(—1)"’(2m -4+ _Zl wiAL{(¢) — yj)],
which is zero by (1). Thus
k k
oW) —o(@) = — o, ¥ — 1+ 2 X wylh — ALY — ) 20,

i=1j=1

which implies that if ¢ exists, it does minimize ¢ subject to the interpolation
conditions.

The following example illustrates the combination of both smoothing and
interpolating possible by Theorem 1. For comparison, we have computed the
interpolating spline for the very same data.

Example 1. We choose m = 2, N = 6,k = 5, and

Ly(f) = f(O), Y, = 040,
Ly(f) = f(05 Y, =035,
Ly(f) = /(1. 0) Yy =024,

Ly(f) = f(L5 Y, =013,

Ls(f) = f(20 Ys = 0.00,

=f fdt, Yy=05.
0

Table 1 gives the coeflicients for one selection of weights, and Fig. 1 shows
the graphs of #, the interpolating spline, and ¢, the combined smoothing and
interpolating spline.

TABLE 1
Smoothing Interpolating
Weight Spline ¢ Spline n

wy, = 100 a, = 0.603 a, = 0.126 (1)

wy, = 50 a, = 0.295 a, = 0.630
Wy = 75 Ay = 0175 Ay = 0406 (1)
wea = 50 A, = 0.889(~1) Ay =0.111(2)
wss = 60 Ay = 0325 A3 = 0.956 (1)
wi=0,i#] iy =0.176 Ay =0.113(2)
As = 0.132 A5 = 0.200 (2)
A = 0.449 Ao = 0.200(2)
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Fi1G. 1

3. A case of bivariate smoothing and interpolating splines. Let R = {(x, y):
a<x=<bandc =y < d}and(x f)€ R. Let p and g be given nonnegative integers
and m = p + q. We define the space H, ,, which has properties similar to the
Sard spaces B, , [15, pp. 160, 172], to be all functions f of the form

(x —a) (y — By

f(X,y)=‘Z T Tfi’j
(y - .B)j x(x - S)m_j_l m—j,j
L L(m = s
) .
(x—a) Py —t"! im—i
L sm—i—p 0

X y(X—S)p_l(y_t)q—l iy
+~[L P =D (g i/ E0dsd,

where
S/ are constants, i+ j < m;
"9 e La,b], J<4;
fim-ie L?[c, d], i<p;
fPie L’[R].

We can conclude from the fundamental theorem of calculus for one- and
two- dimensional Lebesgue measure that

fifa,b)y=f", i+ j<m;
So-if8B) =" ae, j<gq;
f;’,m—i(a’ t) = fi,m—i a.c., i< D,

Jpa=fP1 ae;
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where '
fij=Di7°DiD{*f,  jo, = min(j,q).
With the bilinear form '

b
[f; g] = Z fm—j,j('s’ ﬁ)gm—j,j(s7 B)ds

j<qVYa
d
+ 2| fom—iot, 008im— i, ) dt
i<pdec

+ f ’ f f 5,08y o, 0 ds di

defined on H,, ,, we have a situation analagous to that of § 2.
We now wish to construct a function analogous to (x — t)3™~!/2m — 1)!.
This “pseudo-reproducing kernel function” must be a function K defined on
R x R such that:

(6a) for each fixed point (x, y) € R, K(s, t; x, y) € H, , as a function of (s, t);

(6b) f(x’ y) - [f(S, t), K(S» t; X, y)](s,t) € Hm— 1= {g:g(& t) = z Ci,jsi[i},

i+j<m
the null space of [ -,-]in H, ,
For a fixed (x, y) € R the function

. _ (t — ﬂ)J S(s — u)m—j—l (x — u)m—j—l (y — ﬂ)j
K(s,t,x,y)—j;q T oo 1)!((m = 1)!w(oc,u,x) 7 )du
(s—of ('t —v) i 1( — )i (y — oy"it
+.§p i! (m—z_l)l\ T (m_i_l)!l//(ﬁ,v,y)) du
(7 > B
[
-1 (@-D!
— p—1 q—1
.(();p_—u)l)'lﬂ( ux)(( 0)1)' l//(ﬁ,u,y)) du dv,
where
I, x=y<z,
l//(x,y,2)= _1, Z§y<x,

0 otherwise,
isin H, , as a function of (s, t) and

[f(s,0), K(S t5 %, Y))is, 0
=2 fm i, 5)[——14):!%0!, u, x)(y J_.! ﬁ)’jl du + dual

Z,), 0
—up! (y -
J f qu [x _ul) Yo, u, x)—(_:—l)—'_l//(ﬁ’ v, y)} du dv
ey 3 oA ’”f.,( ).

itj<m i!
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The function K of (7) was first constructed by Mansfield [10], [11]. She also
gives a somewhat simpler form of K by carrying out the integrations. Since each
of the integrals is of the same form, the formula

o(s —uf? (x — u)?
L k-1 Yo, u, S)Wlp(a, u, x) du

k=l — sy (x —a) 17
_ e R ik g *E

0, s<a=x,

g4, s, x)

I\

along with the fact that g4a, s, x) = g, x, s) and g"(—a, ~s, —x) = —gHa, s, X),
can be used to eliminate the integrals.

If the integrals of (7) are replaced by integrals over [a, b] and [c, d] with the use
of y, it iseasy to see that K(s, t; x, y) = K(x, y; s, t). This symmetry is not necessary ;
for example, in the case where («, f) = (a, c) the following function can be used :

(s —a) (x —a)(—yi" " (t — b Y (v — b)i(s — x)m=0=1
i i Qm—p =1 +Eq i Qm—j) =1
+ g¥(a, s, x)g%b, t, y).

)

i<p

As a choice of a set of linear functionals analogous to F™ we can take F, ,
which consists of all functionals L of the form

L) = KpJ;ff”(stdu”(s 0

+ Y f,j B) du(s)

i+j<mda
izp

+ X ﬁ,at)dﬂ"()

i+j<mdéc
jizq

where each u*/ is of bounded variation on its domain [15, p. 524].
For LeF,, and fe B, ,, Sard [15, p. 175] has proved that

Lf)= Y CfoB)

i+j<m
b
+ Z Sn—j, f(uy BYK™ (1) du
j<qVva
b . .
+ 2| Sim-1(o 0k (v) dv
i<p©va

b pd
+ f f S, o(ths VKPU(u, v) du dv,
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where
Cii— L[(x —“oo" (v ;!B)f]
and the kernel functions, which are of bounded variations, can be taken so that
km=ii(u) = L, :H%%w(a, w0 ;!ﬁ)j] ae, j<gq;
(8) kbm i) = Ly, :(x l_, 9 o Em — l)m ’ )1 ¥(B, v, y):| ae, i<p;
kP%u, v) = Ly, ,, _(x(p_—u)p)ll//(a u, X) (( )lq)'llp(ﬁ v, y)] a.e.

Since B, , = H, , = B, , we can apply the Sard kernel theorem to K(s, t;x, y) as
a function of (x, y) and obtain

Ly, y)(K(S £;x,)

—u)" ! (i
= Z = = i

2l o) e

s — oc) (t = oym ittt

( im—i
+ 2 i (m_i_l)ﬁ”(ﬁ’”’f)"‘ (v) do

s — (t —
9 p.q
) ff p—l)’ ocus)( 1)' l//(ﬂvt)k (u, v) du dv
(t - ﬁ)J (S - u)m—)—l m—j,j
=L L(m—j—l)!k ) du

s — ai l(t _ v)m—i—l
i<y 0! p(m—i—1)!
(s —uwp'(t—uv!
kp,q
f f = 1)' q— (u, v)du dv,
where the kernel functions kI are given by (8). From (9) and the fact that the
kernels are of bounded variation it is clear that L, ,,(K(s, t; x, )) is an element of

H,  asafunction of (s, t).
Using the Sard kernel theorem we can see that

[f(s, 1), Ly, K(s, t5x, y)](s, 1)

b
=Y | frues fu DK™ (u) du

ji<qVYa

d
+ Y| fimeiov) k") do

i<p©vc

b prd
b [ [ Ao 0P, 0)

ki-m=i(v) dv
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= L) = T ke Py | S5 L O]

i+j<m ]'

= L(x,y)[f(x» )’) - Z fi»f(% ﬂ)(x l_ a)l (y _ ‘B)J]

i+j<m ' ]’

L(x,y)([f(s’ t)a K(Sa t; X, y)](s,t))'

We now give a bivariate generalization of Theorem 1. Since this theorem is a
special case of Theorem 3 we will not include the proof.

THEOREM 2. Suppose {L;}\-, < K, , and let the real numbers Y;,i = 1,---, N,
be given. Choose 0 < k < N and let W be a k x k symmetric positive definite
matrix. If

(i) {Li,, [K(s,t5x,9)),i=1,---, N;s't,i + j < m}isalinearly independent

set and

() L(g)=0,i=1,---, N, impliesg = 0 for all pe I1,,_; where

l—Im—l = {p:p(s’ t) = z ai’jsitj},

i+j<m

then -

o) = ¥, l//]+Z Z wi(L{y) — Y)(L(¥) — Y)

i=1j=1
is uniquely minimized over H, ,; subject to
L{¢)=Y, j=k+1,---,N;
by
s, )= > as't + Z/ILnyst)

itj<m i=1

where the coefficients of ¢ are determined by the conditions

N
Y AL{x"y) =0, n+j<m,

4. General smoothing and interpolation splines. The previous two sections
motivate the following theorem which unifies this theory.

THEOREM 3.
(a) Let [-,-] be an inner product (not necessarily definite) defined on the linear

space of functions H with domain D.
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) Let {g;}", be a basis for N = {ge H:[g, g] = 0}.
( ) Let K be a function defined on D x D such that
(i) for each fixed y € D, K(x, y)€ H as a function of x;
(i) f(y) — [f(x), K(x, Y)]ixy € N
(d) Let F be a set of linear functionals defined on H such that
(i) L,)(K(x,y)]€ H as a function of x for all Le F;
) L (/9. K5 ko) = L9, LK, Wl o el LE F
Suppose {L;}Y-, <= F and let the real numbers Y;,i =1, ---, N, be given. Choose k
suchthat0 £ k < Nandlet Wheak x ks ymmetrlc positive definite matrix. If
(i) {Li,)(K(x,y)],i=1,---, N;gfx),i=1,---, m} is a linearly independent
set, and
(i) L{g) =0,i=1,---, N, implies g =0 for all ge N,

then

o) =[¥,¥] + Z Z wi(L{y) — Y)(L¥) - Y)

i=1j=1
is uniquely minimized over H, subject to
Lj(l//)_Yla l=k+1>;N>
by
m N
p(x) = Z a;g{(x) + Z AiLiy[K(x, y)],
i=1

i=1

where the coefficients of ¢ are determined by

N
Y. AL{g) =0, j=1,-,m,
i=1
k
(10) A=Y wi(Y, - L{$), i=1,---,k,
j=1
Li¢) =Y, j=k+1,---,N.

Proof. Minimal variation property:
Let € H such that L{¢) = Y;,i=k +1,---, N,

ko k
o) —a(@) =0y — ¢,y — ¢] + .Z .Z wyL(y — Q)L — ¢)
(11) + 2y — ¢, ¢]
+2 Z Z WijLi(W — @) (L¢) — Y)).

i=1j=1
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We will now show (as we did with Theorem 1) that the last two terms of (11) sum
to zero:

m N
W—-9¢,9l=[y — o, Z a;g; + Z ;LiLi(y)(K(xay))](x)

N

2 Al = &, Ligy(K(x, y)]s)

i=1

Mz
ﬁ'i

Ly — ¢) — Z

1
Mz

I
—_
I
—

Mx-

Ly — ¢),

1
—

where we have used z:"zl ;g; to denote an element of N. Now using (12) and the

second set of equations in (10), we obtain

k

v — ¢wJ+ZZ Ly — ¢)[L(¢) — Y]

i=1j=1
k
= Z Ly — ¢)[i + Z wi[L(¢ Yj:]J =0.
This implies that

k k
a(@) — o)=Y — ¢, ¥ — ]+ X 3 wyLiy — d)Ly — ¢) 2 0.
i=1j=1
Uniqueness and existence: Assume that ¢, and ¢, are both solutions (i.e.,
assume that the linear system (10) has two solutions). Then

0 = a(¢y) — a(d2)

Kk k
=[¢, — ¢5, 01 — 2] + Z Z WijLi(¢1 - ¢2)Lj(¢1 - ¢,).
i=1j=1
Therefore, ¢, — ¢, €N and L(¢p, — ¢,) =0, i=1,---, N, and consequently
¢, = ¢,. This implies that the system of equations (10) has a nonsingular co-
efficient matrix.
If we let the linear functionals «;, i = 1, - - -, m, be defined by

m

(13) fO) = [f(x), K(x, Yl = 2 2 )gd),

i=1
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then we can observe that

(14) ai(gj) = 5i,j and ai(y)([f(x)a K(X, y)](x)) = 09 la] = 1’ cee, M.

LEMMA 4. Assume (a), (b), and (c) of Theorem 3. Let H consist of the elements of
H with the inner product

(e =1[fgl+ Z o(g),

and assume H is a Hilbert space. Then the reproducing kernel for H is

K(x,y) = [K(t, ), K(t, )]y + 3 g{x)g:).

i=1
Proof. Using (14) we have that

(), KO, My = [F (%), ROx, Wiy + X ol Nt [R(x, )]

(15)
[f(X) (x y)](x) + Z z(f gl

i=1

We can now employ (14) to obtain

m

(16) K(x, y) = [K(t, ), K(t, x)](z) + Z “i(x)[K(xa »)]gdx).

i=1

Therefore,

(f(X), K(X, y))(x) = [f(X), X y ](x) Z f)gl(y

=/,

and so K has the reproducing property. From (16) it is clear that K(x, y) is an ele-
ment of H as a function of x.

COROLLARY 5. Assume H = (H,(-,-)) is a Hilbert space. Then Theorem 3
holds with F = H*.

Proof. We need only show that (d)(i) and (d)(ii) hold for Le H*. Since

m

L(y)[K(X, V)] = L(y)[K(xa - Z L(y)[“i(x)[K(X, y)gidx)

i=1

M =

+ gi(x)L(y)(gi(y)) eH

1

i
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it is clear that L,[K(x, y)] € H. Using (13) and Lemma 4 we have
L(y)([f(x)’ K(X, y)](x))

m

= L(f) — z o f)L(g:)

i=1
m

= (f(x), L(y)K(x’ Y))(x) - Z o f)L(g:)

= [f(x), L, K(x, )]z + Z ai(f)ai(x)L(y)K(xa y) — z ad f)L(g)
= [f(x), L(y)K(xa ,V)](x)
+ Z ai(f)L(y)o‘i(x)K(x> y) — Z ol f)L(gy)-

The third equality follows because L, K(x, y) — L,,K(x, y)€ N.
Since o, [K(t, y), K(t, X))y = 0 by (14), we have that

ai(x)(K(x’ y) = g(y)

and (d)(ii) follows.
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Scattered Data Interpolation:
Tests of Some Methods*

By Richard Franke

Abstract. This paper is concerned with the evaluation of methods for scattered data
interpolation and some of the results of the tests when applied to a number of methods. The
process involves evaluation of the methods in terms of timing, storage, accuracy, visual
pleasantness of the surface, and ease of implementation. To indicate the flavor of the type of
results obtained, we give a summary table and representative perspective plots of several
surfaces.

1.0. Introduction. The basic problem which is being addressed here is evaluation
of methods for obtaining a smooth (at least continuous first partial derivatives)
bivariate function, F(x, y), which takes on certain prescribed values, F(x,, ;) = fi,
k=1,..., N. The points (x,,y,) are not assumed to satisfy any particular
conditions as to spacing or density, hence the term “scattered.” It is usually
convenient to think of the values f, as arising from some underlying (not neces-
sarily known) function f(x, y), so that f, = f(x,, y,), k=1,..., N.

The problem of interpolation of scattered data in two or more independent
variables has been addressed by numerous authors, as can be seen by the bibliog-
raphy. Many of the basic ideas involved are discussed in two survey papers (both
over a wider class of approximations than we consider here) due to Schumaker [52]
and Barnhill [4]. A recent review of methods for contouring, which treats many of
the same ideas from that point of view, is given by Sabin [51]. Many ideas put forth
have not previously been explored computationally, or only to a limited extent.
Thus, the capabilities of some plausible ideas were unexplored. In addition, most of
the methods involve one or more ad hoc assumptions requiring a user to specify
parameters (one or more). Generally only cursory attention has been paid to the
appropriate choice of these parameters, and their overall effect on the interpolant
has usually not been determined.

Out of this situation arose a desire to attempt to answer a number of questions,
basically all related: Which of these many methods deserve further study and
development, and which should be discarded? Some methods require the user to
specify an ad hoc parameter, and we have investigated the possibility of using a
standard default value. The default value should give reasonably good results over
a number of different sets of data, and preferably the interpolant should be rather
stable with respect to changes in the parameter. Additionally, it is convenient for
the user if the parameter is related to something about the data which can be easily
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1980 Mathematics Subject Classification. Primary 65D05; Secondary 65D15.
* Supported in part by the Foundation Research Program at the Naval Postgraduate School.
© 1982 American Mathematical Society
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estimated. In many cases (perhaps all), subjective judgements must be made about
these matters, although some firm information can be obtained.

Some previous fairly extensive work had been done by McLain [41] which
inspired a somewhat similar study of another class of ideas by the current
investigator [16]. The initial thrust of the investigation was to compare a few
“local” methods to determine which seem to work reasonably well. As the investi-
gation proceeded, more ideas were supplied by colleagues and others so that in the
end, more than a few methods are tested and compared here, including “global”
methods. The total number of programs involved in this study is 32, some of which
are fairly minor variations of others.

The concept of a “global” method is easily understood. The interpolant is
dependent on all data points, and addition or deletion of a data point, or a change
of one of the coordinates of a data point, will propagate throughout the domain of
definition. The idea of a “local” method is not so clear. Typically one thinks of it
as meaning that addition or deletion of a point, or a change of one of the
coordinates of a data point, will affect the interpolant only at nearby points, that is,
the interpolant will be unchanged at distances greater than some given distance.
There are some difficulties here. If the data (the (x,, y;) points) are “random”, one
must inspect (in some way) all the data to determine which are “nearby”. Does this
mean there is no such thing as a “local” method? (Rosemary Chang first mentioned
this idea.) We have taken a somewhat more liberal view of “local” and take it to
mean that the interpolant involves only “nearby” points and one or more parame-
ters. We allow the parameters to have been globally determined as a matter of user
convenience, even though a (successful) argument can be made that then the
method 1s not local. Thus, we classify methods as local or global without regard to
how parameters are chosen or computed.

The use of global methods is not feasible for very large N since they often
involve the solution of a system of O(N) equations (often exactly N) and in any
case involve processing all points. When systems of equations must be solved, the
systems are often full and not necessarily well conditioned. While our primary aim
was to investigate local methods suitable for very large data sets (several hundred
points up to some millions, say), in many instances local methods involve the use of
global methods on smaller sets which are then “blended” together to obtain a
locally defined global interpolant. Thus it makes sense to to test global methods on
moderately sized sets of data. By the same token, it is not necessary to test local
methods on sets of 10,000 points (say) by virtue of the fact that they are local. If
very large sets of data were to be considered, it is clear that a different implementa-
tion approach might be necessary, one which would involve a larger amount of
preprocessing and perhaps additional storage.

This paper is essentially a condensed version of technical report [18]. The full
documentation consists of some 370 pages, nearly 300 pages being devoted to
comparative tables and perspective plots obtained by applying 29 algorithms for
solution of the scattered data interpolation problem. Each of the methods is
described there in some detail along with discussions of its performance in the tests.

1.1. Tested Characteristics of Methods. The characteristics on which various
methods are to be compared, and how they are to be weighted in the final analysis,
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are somewhat subjective. While no representation is made that the list is exhaustive
(or even close to it), nor that everyone will be in agreement on it, the following
items are the ones considered here. We give them and discuss them in order of
decreasing importance. In the presentation of information in the summary (tables
and perspective plots) each reader may weigh various aspects to suit his own needs.

Accuracy. Accuracy in reproducing a known surface is certainly one important
aspect of comparison. In the usual application no representation of the underlying
surface z = f(x, y) is known; however, if the method approximates a variety of
surface behavior faithfully, we expect it to give reasonable results in other in-
stances. Numbers can be put on the performance of a method tested in this fashion,
and we have used this idea extensively.

Visual Aspects. It has developed during the course of this project that the
appearance of the interpolant is very important. The most useful representation of
the surface is a dynamic one, where different viewing angles can easily be obtained.
This could be achieved by building models, as well. Neither of these capabilities is
available to the author, and in any case, wide distribution of such representations is
impossible. Perspective plots of 3-dimensional surfaces were available and have
been used extensively. The resolution and viewpoint of a perspective plot could
obscure the fact that a surface is bad, but it is doubtful any truly bad surface has
escaped detection.

Visual ratings are often closely related to the accuracy with which an interpolant
reproduces test surfaces. There seems to be a closer relationship when accuracy is
high since there is less chance for the interpolant to misbehave. At moderate
accuracies one interpolant may be visually pleasing while another with similar
accuracy is not.

The visual aspect is quite subjective, and ratings by different persons will give
somewhat different results, although probably not contradictory ones. While it is
felt that the visual aspect is quite important, exactly how this information is
integrated into the overall assessment of a method is also a subjective matter.

Sensitivity to Parameters. Many of the tested methods involve the choice of one
or more parameters. These choices have generally been converted to ones which
are related to mean distances to nearest neighbor, although precisely that idea is
never directly used. Here we are talking of nearest neighbor in the set of points
{(xx> i)} Sometimes the parameter takes the form of an anticipated number of
points in the region which defines a local interpolant.

Methods which involve parameters underwent informal testing for suitable
values of the parameters. For fixed sets of data, the parameter was varied to find a
suitable range for its value. Some methods were quite sensitive to the parameter
value. Some methods were apparently sensitive to the dependent-variable values, as
well as the (x;, ;) values. Thus, a parameter value giving good results for one
function might yield poor results for a different function sampled at the same
points. It is desirable that a method be stable with respect to perturbations in the
parameter and that its value not be highly dependent on the function sampled.
Such methods were found.

Timing. The computational effort required is generally not of great interest,
unless it is very high. In this respect, only one of the methods tested was downrated
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for this reason. Some methods are quite efficient in terms of time required for the
calculations. These methods have generally been found deficient in other cate-
gories, unfortunately. For methods which involve a preprocessing phase, distinct
from an evaluation (of the interpolant) phase, the two times for standard problems
are given separately. Execution times were taken from the multiprogramming
environment on the IBM 360/67 and as such may vary 10-20% with exactly the
same data. Thus, execution times must be viewed as a guide rather than as precise
measurements.

Storage Requirements. As with computational effort, storage requirements are not
crucial, unless they are very high. For very large problems this may be altered, of
course. We count storage requirements only in terms of additional arrays needed to
store data beyond the (x;, y;, f;) points. No account is taken of simple variables or
program length.

Ease of Implementation. Ease of implementation is of no great concern if one
obtains a working program. In other instances it may be of considerable impor-
tance. The judgement is again subjective. Further, it could be different depending
on the philosophy behind the implementation. The form of the implementation
could involve trade-offs between timing and storage and would doubtlessly alter
the ease of implementation.

Implementation of programs specifically for this project generally was done with
a lack of frills. Reasonable care was taken to assure that a grossly inefficient
algorithm was not coded, but no doubt it is possible to improve on most of them.
In particular, use of some preprocessing and additional storage was not used to
increase efficiency during the evaluation phase. For a general purpose program this
should probably be done. Some of the documented programs did use these devices.
Ease of implementation is generally meant to take into account the complexity of
the ideas involved in the method and the amount of code required.

1.2. The Testing Process. The initial tests performed on a few methods eventually
gave rise to a standard set of test problems and a set of supporting subprograms to
generate statistics from the tests and generate perspective plots of surfaces. Due to
the evolution of ideas as the study progressed, some aspects of the process are not
as simple as they might have been. This is particularly true of some of the test
functions, but this has no bearing on the validity of the tests.

To enable testing many different methods in a consistent manner, and with a
minimum of effort, a set of standard subprograms was developed which generate
the test cases, compute deviation statistics for known test surfaces, obtain timing
statistics, and generate and label perspective plots of the surfaces. With the current
set of supporting subprograms it is generally quite easy to test a new method which
is typically supplied as a subprogram (or several) which generates the values of the
interpolant on a grid of x-y points. Typically all that is required is to set certain
parameters, reserve any required workspace, and call the subroutine, all of which
can be done with a few statements added to the prototype driver program.

There were six different test functions selected. These exhibit a variety of
behavior, and, when sampled over three different x-y data sets of 100, 33, and 25
points, gave a total of 18 data sets. In addition to these, two sets of data were
obtained from the literature (from [2] and [13]). One of these [13] was scaled in one
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variable, which revealed something of the effects of scaling variables differently. A
fourth x-y-z data set was a cardinal function, giving a total of 22 different data
sets. Not all methods were tested on all sets of data; only those readily available
methods, or those which performed well in initial test, have complete test results
reported.

2.0. Descriptions of Tested Methods and Some Results. For description purposes
the methods are classed into six groups: (1) Inverse distance weighted methods, (2)
Rectangle based blending methods, (3) Triangle based blending methods, (4) Finite
element based methods, (5) Foley’s methods and (6) Nodal basis function methods.
While there is necessarily a blurring of distinctions across these group lines, they
constitute fairly distinct ideas and it is convenient to group them this way. In
addition to methods which fall into those groups, a variation of Maude’s method
[40] has been tested since [18] appeared. While it is somewhat similar to methods of
group (1), and while Maude’s method also led to the methods of group (2), it will
be discussed separately as group (7) Modified Maude methods.

2.1. Inverse Distance Weighted Methods. The original inverse distance weighted
interpolation method is due to Shepard [53]. All methods of this type which we
consider may be viewed as generalizations of Shepard’s method, or variations of
such generalizations. The basic Shepard’s method is

N

N
(1) Fx,y) = 3w/ 3wl ),

k=1

where w,(x, y) = d}, and typically u = 2, although other values may be used. Here
d, = ((x = ) + (¥ — »))"/% p may be replaced by y, and could possibly be
different for each k. Several authors have considered various aspects of Shepard’s
method [4], [5], [21], [52].

Shepard’s method is a global method, and the original paper suggested a scheme
for localizing it by piecing together a parabolic segment with ;% in such a way as
to obtain a w, which is zero outside some disk, say of given radius R, centered at
(%4> yi)» and which is still C'. A simpler and more natural scheme suggested by
Franke and Little [4, p. 112] is used in much of this work, that is,

@ W%, ) ={%} .

Shepard’s method has an undesirable property for general use in that a flat spot
occurs at each data point. Use of information about derivatives, either given or
generated from the data, was suggested by Shepard and resulted in an approxima-
tion of the form

( Fix,y) R
3 a a
b= S e dr (5) w0+ () 0w/ 2 s
k=1 X [k Y [k k=1
More generally, one may consider approximations of the form
N

N
@ F(x,y) = 3 wx )L f(x») / 3 ),

k=1
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where L, f is an approximation to f such that L, f(x,, y,) = f,. This is the basis for
several of our methods. In this context we refer to the L, f as nodal functions.

Another way in which Shepard’s method can be generalized is to view the
method as an inverse distance weighted least squares approximation to f(x, y) by a
constant. One can then generalize to an approximation taking the form

(5) F(x,y) = Flag ay, . . ., a,; x, ),
where qy, . . ., a, are parameters chosen by taking them to minimize (for a given

(x, y)) the expression

TM=

~ 2
[fk — Flag ay, ..., a,; xk’yk)] we(x, ).
1

(6)

This approach was taken by McLain [41] in evaluating a number of methods where
F was taken as a linear combination of low order monomials and w,(x, ) as d;? or
exp(-ad?)d;>. McLain also considered some approximations where f entered
nonlinearly. We have considered one of McLain’s methods and a variation of
another. All of the methods of this class may be derived as variations of the above
formula for F [19].

Some papers discussing theoretical aspects of the above generalizations of
Shepard’s method have appeared recently [34], [33]. During revision of this paper,
the details of two papers came to the attention of the author. Each gives, at an
earlier publication date, a method previously attributed to others. Crain and
Bhattacharyya [8] give the simplest version of Shepard’s method, while Pelto, et al.
[48], give the inverse distance weighted quadratic method credited to McLain.

The performance of methods in this group is very dependent on an appropriate
weight function, w,(x, y) in (4) or (6). w, = d;? is unacceptable since it allows too
much influence by far away points, even when, for example, the L, f(x, y) in (4) are
reasonably good local approximations. The use of polynomials of degree < 2 for
the L, f(x, y) is inadequate to describe the local behavior of the surface. McLain’s
quadratic version of (6), with w, = exp(—ad?)d?, performs well, but is extremely
time consuming. Best performance in the group is achieved by a version of (4)
using quadratic approximations for the L,f and w,, given by (2), for an appropriate
R. We have called this the Modified Quadratic Shepard’s Method. It is developed
from (6) in [19], and pertinent theoretical results are given in [34].

2.2. Rectangle Based Blending Methods. The basis for this class of methods is
discussed in [16] and was inspired by a short paper by Maude [40] which
generalized the idea of deficient quintic splines to several variables. Unfortunately,
the original interpolation function exhibits rather poor behavior and has not even
been included in our tests. The original idea was to represent the interpolation
function as

N

™) Flx,p) = 3 w620 y)/ 3 )

k=1
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where Q,(x, y) is the quadratic polynomial interpolating f(x, y) at (x;, yi) and the
five nearest neighbors to (x, y,) from the set {(x;, )}, and

d \’ 4
wil(x,y) = 1_(?;() (3_27;()’ % < Ro
O; dk > Rk’

where R, is the distance between (x,, y,) and its fifth closest neighbor. This idea
was generalized to include any wy(x, y) which have finite support (to make the
method local) so long as the Q,(x,y) interpolate f(x,y) at all (x;, ¥;) where
wi(x;, y;) # 0. Use of approximations Q,(x, y) in Hilbert spaces, particularly in
Sard spaces, was suggested and implemented [17]. One of the chief advantages of
this approach is that instead of taking w, with disks centered at the (x,y,) as
support regions, it is easy to use a smaller number of overlapping rectangles in such
a fashion that at most four terms in the sum are nonzero, and w,(x, y) = 1. Use of
rectangles also simplifies the problem of determining which terms are nonzero and
thus results in a faster algorithm.

N

The set of rectangles is chosen to attempt to make each rectangle contain a given
fixed number of points. Suppose the rectangles are defined by grid lines at x = %,
Xppooos X, 4 and y =Yg, Jy, ..., Vn+1- Then weight functions with support
[%i—1 %1l X [J;-1, ;41] = R,; are formed from piecewise Hermite polynomials,
local interpolation functions Q;; are constructed so that Q, (x, y,) = f, Whenever
(xxs Y&) € R,;, and then the overall approximation takes the form

(8) F(x,y) = 2 wij(x’.y)Qij(x’ »).

Any type of local interpolation function Q;; could be used. The author previously
suggested Sard type approximations [17]. These have some undesirable properties
in that they depend on factors other than relative position of (x,,y,) points. A
second implementation using “thin plate splines” (see Section 2.6) was also tested.
Neither of the methods performs as well as the author expected. It would seem that
the method should be nearly as good as the underlying local approximation,
however, this was not quite borne out by the tests, although the version using “thin
plate splines” performs well.

Recently, some work due to Jancaitus, Junkins, and coworkers [30]-[32] has
come to the investigator’s attention. This work involves the idea of weighted local
approximations in a similar fashion and was applied to the problem of terrain
modeling. In their case the local interpolation functions were replaced by least
squares approximations by polynomials and thus interpolation was not achieved.

2.3. Triangle Based Blending Methods. These methods are conceptually the same
as those given by Eq. (4), but a significant difference is that the weight functions
are based on a triangulation of the convex hull of the point set {(x,, y,)}. Several
such schemes have been proposed, e.g., [7], [19], [20], and [42]. One of those
considered here is the one described in [19].

Assume a triangulation of the convex hull, and suppose (x, y) € 7_", ik» Where Y—}jk
is the triangle with vertices (x;, y,), (x;, ¥;), and (x, ;). We then take

(9) F(X,y) = w,-(x,y)Q,-(x,y) + ij(x’ y)Qj(x’y) + wk(x’y)Qk(x’ _V),
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where the weight functions are finite element ‘“shape” functions satisfying
w,(x,, ¥,) = 6,, and the nodal functions Q, satisfy Q,.(x,,»,) = f, for m,n =
i, J, k. In all previously referenced methods the weight functions may be viewed as
nine-parameter cubic shape functions with a rational correction to obtain normal
derivatives equal to zero, and hence a C' approximation overall. There are many
ways to obtain such correction terms, all of which appear to lead to the possibility
of negative values being taken on by one of the weight functions if the triangle is
very obtuse. This is probably not serious, although one has no control over the
shape of the triangle in the sense that very obtuse angles cannot be avoided,
especially near the boundary of the convex hull. The weight functions used here are
obtained from a minimum norm problem [45]. Let b, b, b, be the barycentric
coordinates of (x,y) in Ty, and let /, [, /, be the lengths of the sides opposite
vertices i, j, and k, respectively. Then the weight function is given by

wi(x,y) = b/%(?’ —2b) + 6bibjbk[0‘kj + aki]’
with

_ bb(1+b)
% T = B)(1 - by

and the others are obtained by a cyclic permutation of the indices.

While the basic method is defined only on the convex hull of the point set, it is
easily extended to a globally defined function by the following idea. The exterior of
the convex hull is divided into semi-infinite rectangles and semi-infinite triangles
by constructing perpendiculars to the exterior edges of the convex hull at each
exterior vertex. The value of the interpolant at an exterior point is obtained from
the nodal function values at one (triangular area) or two (rectangular area) nearest
points.

The @, in (9) can be taken to be any function having the required property. As
with the inverse distance weighted methods, linear functions are inadequate. Use of
appropriate quadratic functions yields results similar to those obtained from (4) in
that case. Certain advantages accrue here. The evaluation phase is very fast since
only three terms appear in (9), and the algorithm for determination of which
triangle a point lies in is fast. Disadvantages are that a large amount of auxiliary
storage is required for the triangulation (incidentally the triangulation algorithm
itself is very fast), and long slim triangles sometimes yield surfaces which appear to
have discontinuities along these triangles because of very rapid changes in function
value across the narrow part.

lk2 + li2 _ ljZ
202 ’

2.4. Finite Element Based Methods. These methods are based on the concept of
using C! finite element functions on a triangulation of the convex hull of the point
set. This requires a scheme for estimating some derivatives (which derivatives
depends on the element used by the method) at the data points. Our test results
indicate that accurate estimates of the derivatives are very important and have a
pronounced effect on the visual aspects of the surface as well as the accuracy.
Three methods of this type, each using a different element, were tested. One was
tested with several variations in the way partial derivatives are estimated. An
additional scheme has been tested since [18] appeared, and we mention it here as
well.
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Akima’s method [2], [3] is readily available. It uses the C' 18 parameter quintic
finite element. Extrapolation outside the convex hull is provided. The element
requires estimates of first and second partial derivatives at the data points. In
standard form a certain average of slopes of planes through the data point and
each pair of several nearest neighbors is used to determine first derivative esti-
mates. Second derivatives are estimated by applying the process to the derived
data. Two variations of this scheme (by varying the weights in the average) were
tested, as well as a version which obtained the derivatives from a local quadratic
approximation. Performance of the method depends greatly on the estimates of the
derivatives. The latter version gives the best results but at a considerable time
penalty in the preprocessing phase. The published version is by far the fastest
algorithm tested here, but gives poor results in some instances due to poor
derivative estimates, generally, and sometimes due to long slim triangles in the
triangulation. The latter is unavoidable in triangle based methods and often occurs.
It cannot be avoided without abandoning the convex hull, or adding fictitious
points.

Since the appearance of [18], Akima has proposed a variation in the computation
of derivatives. Instead of using nearest neighbors in the usual sense, the neighbors
in the triangulation are used. This scheme generally gives poorer surfaces than the
original method, especially near the boundaries of the convex hull, where extra-
neous bumps often occur. This version is available in edition 8 of the IMSL library
as subroutine IQHSCV.

Lawson’s method [35] is similar in spirit to Akima’s except that the Clough-
Tocher element is used. First partial derivatives are required, and these are
obtained from a quadratic approximation. Results are generally better than for
Akima’s method, although execution times are greater. Lawson’s program does not
extrapolate outside the convex hull.

Nielson’s minimum norm network [46] uses a cubic element with a rational
correction to achieve a C' function. The element is the solution of a certain
minimum norm problem [45] and requires first partial derivatives in its discretized
form. These are obtained by assuming a cubic variation along each edge in the
triangulation and minimizing the integral (over all edges in the triangulation) of the
second derivative squared. This gives the best results in this class of methods. It is
somewhat slower than the other methods, but could probably be improved consid-
erably in the evaluation phase. The method does not provide extrapolation outside
the convex hull, although the investigator provided C? extrapolation for the tested
version. Nielson’s method is global as opposed to Akima’s and Lawson’s, which are
local. The system of equations for the partial derivatives is solved by an iterative
process which converges rapidly.

Since the appearance of [18], Little’s method [36] has been tested and performed
very well. It is based on the use of a cubic element with a rational correction term.
Partial derivatives are estimated using a weighted average of the slopes of planes
through neighboring points in the triangulation. One significant difference from
other schemes in this group usually results in better control over long slim triangles.
That difference is abandonment of the convex hull by extrapolating for a function
value at some added exterior points. These points are then added to the set, which
is retriangulated. This eliminates the usual edge effect, but, depending on the
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extrapolated function value, can distort the surface near the edge if it is not
representative of its behavior near the boundary of the convex hull.

Other finite elements could be used. One which might be appropriate is the
piecewise quadratic due to Powell and Sabin [49]. This element was designed for
contouring, hence the desirability of a quadratic. For general application the large
number of subtriangles involved would seem to be a detriment. The author has not
had access to a program based on this scheme, but it is likely it would perform on
about a par with others considered here.

2.5. Foley’s Methods. Foley’s methods [14], [15] involve several ideas. The use of
a generalized Newton type interpolant is involved in them prominently. Another
idea which is exploited successfully is that of using one interpolant to generate a
grid of points on which product type approximations can be constructed. The
product approximation will not, in general, interpolate the given data. Hence a
correction based on the original approximation is made to the error. This process is
termed a “delta sum” by Foley, written PAQ, defined by PAQ = P & QP, and
implemented as (PAQ)f = P(I — QP)f + QPf.

The idea has greater generality than considered by Foley, but the application of
it seems to be the appropriate one. He considers cases where the product type
approximation (taking the part of Q) is either the bivariate product Bernstein
polynomial or the bivariate product natural bicubic spline. The first interpolant
(taking the part of P) is taken as either the generalized Newton interpolant, or a
form of Shepard’s method. The delta sum idea is applied in iterated form for two
methods.

The generalized Newton interpolant takes the form

o Je = Tie—1(%0 i)
Ty(x,y) = aw,(x,y), wherea, =% k-7 Tk
N ) kgl i, * Wi(Xe> Vic)

and w,(x, y) has the property w(x;,»;) =0,i=1,2,..., k — 1. This function is
dependent on the order of the points, and so Foley’s scheme involves an ordering
process.

The best performance is provided by the iterated delta sum method using the
generalized Newton polynomial with natural bicubic splines. The method performs
reasonably well, but sometimes exhibits “polynomial-like” ripples in the surface,
although it generally gives quite smooth surfaces.

>

2.6. Global Basis Function Type Methods. These methods can be characterized by
the following idea. For each (x,,y,) simply choose some function G,(x, y), and
then determine coefficients 4, so that F(x,y) = 2, 4,G,(x,y) interpolates the
data. Schemes which work are not so simple in that appropriate choices of
functions G, are not particularly easy to make. Even if the functions G, have only
local support, the methods are global and further they require solution of a system
of N linear equations. In all instances we consider, the systems have a symmetric
coefficient matrix (G,(x;, »;)), but this need not be the case. Usually the G, are
really functions of the one variable d,. Numerous colleagues have suggested
(among others) B-splines, Gaussian distributions, and other basis functions which
seem to have an at best shaky mathematical justification. These schemes involve
parameters to be specified by the user. For a Gaussian distribution function it is
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the variance, while for rotated B-splines it is the radius at which the function
becomes zero. These two methods are quite sensitive to the parameter, and, while
good results are possible, the appropriate value of the parameter seems to depend
on the function value as well as the (x,,y,) points, which is an undesirable
characteristic. A potentially undesirable feature of many of these schemes is that
they usually have no polynomial precision, e.g., not even constant functions are
reproduced exactly. Based on practical experience, however, it is this author’s
opinion that incorporating polynomial precision does not, in itself, yield significant
improvement. This observation has also been made elsewhere [14].

In terms of fitting ability and visual smoothness, the most impressive method
included in the tests is the “multiquadric” method, due to Hardy [23]-[29]. In this
method the G,’s are taken to be the upper sheet of a hyperboloid of revolution,
G, = (d? + r})'/2, Here r is a parameter to be specified by the user. The method is
quite stable with respect to this parameter and yields consistently good results,
often giving the most accurate results of all tested methods. The surfaces are
usually pleasing and very smooth. Results nearly as good are obtained with the
“reciprocal multiquadric” method, G, = (d? + r?)~'/2. However, here the choice of
r is somewhat more crucial since small values of r will lead to a surface of peaks
and dips at each data point.

Two methods which have basis functions similar to the multiquadric method are
due to Duchon [9]-[12] and are also treated by Meinguet [43]-[44]. Unlike Hardy’s,
which as yet has no theoretical basis, these methods have an elegant theory in a
Hilbert space setting. In one case G, = dg, while in the other G, = d? log d,. The
latter minimizes the thin plate functional

2
oy 1 Ll 8% [F. 137 [)
fR(Ex— Y| Flae| |

in a certain Hilbert space and is termed a “thin plate spline”. In each case the
approximation contains a linear combination of functions in the kernel of the
functional (that is, a linear function), along with side conditions, the geometric
effect being to remove terms which grow faster than linear as one moves far away
from the data. The thin plate splines had previously been discovered by Harder
and Desmarais [22], where they are called surface splines. The two methods
generally perform in comparable fashion, but the thin plate spline leads to
coefficient matrices with smaller condition numbers, and hence was the more
extensively tested of the two. The thin plate splines generally give approximations
nearly as good as the multiquadric method, pleasant visually, and very smooth.
This method has no parameter and, like other methods tested in this class, has the
desirable properties of translation and rotation invariance.

It would seem that functions G, which diminish as one moves away from the
point (x,, y,) would yield better results than the ones which increase with distance.
The reasons for thinking this is that a large value far away means a basis function
has more influence far away than at the point with which it is associated. Also, the
coefficient matrix for the system giving the weights is full, with its largest elements
off the diagonal. Nonetheless, methods which performed the best have basis
functions which are unbounded.
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We have not directly tested any method based on the idea of “kriging”, or
“regionalized variables”, due to Matheron [38], [39] and discussed by numerous
others, e.g., [47], [1], [37], [50]. However, it appears that kriging methods are related
to global basis function methods, and indeed are identical to them under certain
conditions. The statistical assumptions and approach taken in Kriging make the
method appear harder, computationally, although this viewpoint allows estimation
of the goodness of fit. The assumptions made seem to this author to be related to
choice of a good parameter value in global basis function methods.

2.7. Modified Maude Methods. We briefly discussed Maude’s method [40] in
Section 2.2 and noted that it did not perform very well. This is primarily due to
poor behavior of interpolating quadratics in two variables. Vittitow [54] has
developed some modifications of the idea which attempt to alleviate this problem,
as well as to overcome the possibility of “holes” appearing in the domain due to
varying sparseness of the data.

Poor behavior of the local interpolation functions (the Q,’s in Section 2.2, Eq.
(7)) is improved by (1) reducing the number of interpolation points, and (2)
increasing the total number of points used to define the local interpolation
function. This is achieved by calculating a constrained (to interpolation at a
reduced number of points) least squares fit to a larger set of nearby points.
Quadratic, cubic, or quartic functions can be used.

Complete coverage of a specified domain is achieved by adaptively determining
the disks on which w,(x, y) (in Section 2.2, Eq. (7)) is nonzero. In the process, disks
are no longer centered at the data points and fewer than N are usually needed. The
actual number of interpolation points varies from disk to disk, but is no greater
than a specified number. The number of points included in the least squares
process (in addition to the interpolation points) is also specified by the user.

3.0. Summary. Numerous tables in [18] summarize the results of the study. In
particular, there are tables giving

—maximum, mean, and rms deviations of surfaces generated by data taken from
known functions;

—best performance in the accuracy tests among local methods, and overall;

—effect of varying the parameter, if any;

—times for preprocessing, interpolant evaluation, and total time;

—a summary, giving an overall “quick look” at the results.

The summary table is reproduced here as Table 1, including results for the three
subsequently tested programs. We briefly describe each column in the table.
Footnotes are referenced by small letters. Program number is a number assigned to
the program and used to identify it in plots and tables. Description is a brief pointer
to the person or ideas involved. Global/ Local tells whether the method depends
globally on the data (G) or locally (L). Type gives the subsections of article 2 into
which the method falls. Continuity indicates the highest order derivatives of the
interpolant which are all continuous. Precision refers to the highest degree poly-
nomial which is reproduced exactly by the interpolant. Storage refers to estimated
size of storage arrays required in addition to the given data. No account of scalar
variables or program size is included. Domain is the domain of definition of the
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interpolant. Sensitivity to parameters is a purely subjective score, based on informal
testing of the scheme. Included were whether some value of the parameter worked
well for a variety of surfaces for a given set of (x,y) points, and whether the
interpolant was stable with respect to changes in the parameter from that value.
Complexity simply reflects the investigator’s perception as to the complexity of
ideas involved and the ease of implementation into a computer program. Accuracy
is again subjective and is based on the relative amount of deviation one might
expect from the true surface for a given method. Of course, perusal of the
deviations tables will reveal that some methods do well on some surfaces and not
so well (relatively speaking) on others. Visual pleasantness is a subjective rating
based on perspective plots of the interpolant. Timing is relatively well defined. The
first letter represents the sum of the evaluation times for three cases of 100, 33, and
25 data points. Ranges for A, B, C, D, and F, respectively, are (0, 7], (7, 21],
(21, 30], (30, 50], and (50, o). The second letter represents the total time for 100
data points and 1089 evaluation points. Ranges are (0, 4], (4, 12], (12, 20], (20, 30],
and (30, o). The first 13 lines in the table give the results for the extensively tested
methods. The remaining lines give results for less extensively tested methods and
the three subsequently tested methods.

To give the flavor of the type of visual information included in the report, two
pages are reproduced here in Figures 1 and 2. Figure 1 gives the test surface in part
(a) and reconstructions of it by the multiquadric method for three different data
sets with 100, 33, and 25 points in parts (b), (c), and (d), respectively. Figure 2
shows surfaces generated by the rectangle based blending method due to the
author, using thin plate splines as the local approximations. Part (a) is a cardinal
function, part (b) was generated from Akima’s data, and parts (c¢) and (d) were
generated from Ferguson’s data. As a general rule, the best global methods seem to
result in surfaces which are visually more pleasant than those obtained from local
methods, as though localizing the surface loses something, which, while small, is
still significant in that respect. Poor behavior near edges of the data set is more
prevalent for local methods. For data sets of up to 100-200 points, global methods
are feasible and should be considered. Nielson’s minimum norm network can
probably be used on somewhat larger sets of data since the sparse system of
equations is solved by iteration, while other global methods generally require
solution of a full system of N or more equations. Choice of a method for a large
number of points is to a certain extent a personal matter, but the previously
mentioned Modified Quadratic Shepard’s Method performs well, requires mod-
erate storage and computation time, and is relatively easy to implement. It is also
easily extended to more independent variables. The triangle based programs, of
which Akima’s is the most readily available, require considerable machinery and
storage for the triangulation, but in the end they are quite fast (Akima’s being by
far the fastest of all tested methods). These methods are extremely difficult (if not
impossible) to extend to more than two independent variables and have other
previously mentioned potential defects.

Despite the number of ideas explored and programs written or obtained from
authors, and tested, there are still some which were not investigated. In addition to
the two methods from the CAGD group at Utah, which were recently obtained,
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there are still more ideas which have arisen there. Many of these are based on
triangulations, which the investigator feels are more suited to the design problem
(where long slim triangles can be avoided) rather than the interpolation problem.
Another idea which was not tested has its genesis in Briggs [6], and is available
commercially [55]. The user’s manual contains some impressive material, but no
tests of the software have been conducted. There are no doubt more ideas worthy
of investigation appearing in the literature.
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Hardy’s multiquadric method
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FIGURE 2
Franke’s local thin plate splines

In terms of the data considered here, it was for the most part rather nice data,
even though some effort was made to include some data with varying densities.
Real data exists which is very sparse in certain regions or lies in clumps. Some
methods will not work in a reasonable fashion for this type of data, although we
have not tried to determine which methods will and which will not. Methods based
on quadratic approximations will likely misbehave for such data. In addition, local
methods based on distance weighting may have holes in the domain of definition
when density varies greatly or when data appears in clumps. Some additional work
is necessary to see if there are suitable local methods for such data.
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Scattered Data Modeling

Gregory M. Nielson
Arizona State University

By comparing a variety of
methods, this article
provides the basis for
selecting or customizing a
method for modeling
scattered 3D data.
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Figure 1. Mineral concentrations from well-log data.

This article explains modeling scattered data. Particularly
interesting is the case where the independent data is 3D
and the dependent data is a simple scalar. We can represent
samples of this type of data by (x;, y;, zz F)).i=1,... . N
where P; = (x;, y,, z;) represents the independent data vari-
ables and F; is the dependent data variable. This type of data

arises often in scientific studies. Examples include

1. Measurements of temperature at various locations in a
furnace.
2. Mineral concentrations known at various depths of scat-
tered bore hole locations (see Figure 1).
3. Density measurements at various locations inside a hu-
man body.
4. Economic performance levels known at various times, in-
terest rates, and unemployment levels.
. Pressure values computed or measured at various points
on the surface of a wing (see Figure 2).
6. Precipitation measurements at various weather stations.
7. Electroencephalogram (EEG) measurements from elec-
trodes attached to a scalp (see Figure 3).

W

To analyze or visualize the relationships implied by the
data, we can obtain a mathematical modeling function, F(x, y,
z) such that F(x;, y;, z;) matches or approximates F;. In this ar-
ticle, I discuss methods that lead to “smooth” approximations,
F(x, y, z), that have at least continuous first-order derivatives
(that is, they are c' continuous). While all the examples men-
tioned above have data samples with the same representation,
there are fundamental differences between them. In one case

60 0272-17-16/93/0100-0060$03.00 © 1993 IEEE

the domain is a 3D region, and in other cases the domain is
restricted to a 2D region of a 3D space. We call the first volu-
meiric scattered data and the second, surface-on-surface or
manifold scattered data. Examples 1, 2, 3, and 4 are of the
first type, while 5, 6, and 7 are of the second type. I separate
this discussion of methods for modeling these two types of
data, taking up the case of volumetric scattered data first. [
should mention that other authors also use the phrases “ran-
dom,” “irregular,” “unstructured,” and “arbitrarily located”
to refer to scattered data.

Volumetric scattered data

The methods described here, although not exhaustive, are
intended to be representative of all trivariate scattered data
interpolation methods. The first method starts with the basic
Shepard’s method, an inverse distanced weighted approxima-
tion that is easy to describe and implement. We can write it in
the form

where |IP — P/l represents the distance from P to P, While
simple, this basic method has some shortcomings that elimi-
nate it from practical application. Its main deficiency is that it
does not reproduce any of the local shape properties implied

TEEE Computer Graphics & Applications
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Figure 2. Hypersurface projection map of modeled scattered data
representing pressure measurements taken over the surface of a wing.

by the data because it typically has local extrema at the data
sites. Figure 4 shows an example in the bivariate case.

In the case of bivariate data, Franke and I developed a mod-
ification that eliminates the deficiencies of the basic Shepard’s
method. We call this the modified quadratic Shepard’s method
(MQS). Primarily, we modified the weight function IIP — P/l to
localize the overall approximation and replaced F; with a suit-
able local approximation Q,(x, y). This method has the general

Data courtesy of NASA, image courtesy of D. Lane

form
5 Qi(P)
o(P)= N‘p—l”’)
where

L (Rl
Wer R |P-P|

for some constant R,,. Here the subscript + denotes the trun-
cated power function, hence the weight is zero at distances
greater than R,, from the data point. We take the Q(P) to be
quadratic polynomials, obtained by a weighted least-squares
fit and constrained to take on the value F; at P;. The weights
in the least-squares process are of the same form as the
weight functions of the interpolant, but with R,, replaced by
another value, R,. The ideas of this bivariate MQS method
extend directly to the trivariate case. A formal description of
the method consists of first selecting N, and N, to define

Data courtesy of the Brain Physics Group of Tulane University

1 (Re-|P-nl), DN, \‘ii*‘“‘\‘
P ) s
pi(P) R|P-P| 2V N “\“',:.,
— A
nP) R|P-P] qu?JN W
where

D =max ;; IP;— Pjl

Center: Figure 3. Choropleth graph of modeled EEG data.
Bottom: Figure 4. Bivariate Shepard’s method. (Derived from Wixom
and Gordonl.)
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Figure 5. The three steps of the MNN method in the case of
bivariate scattered data.

and the default values of N, and N, are 54 and 27, respec-
tively. Next, we solve the following least-squares problem:

. N
min - 1
o Y ————|fi +aa i —x)F (i - vi)
aj=2.....10 5 H?(styk,zk)[
izk

a4 (z; = 2 ) Hags(x; —x)? +a6(y; -y
a4 (2~ ) Fagg (X, = x, )i = i)

+a (0 = )(Z = ) F (Vi = vz _Zk)_fi]Z

to define

Qu(x,y.2) = fi + Aa(X-X) + aa(y-y)) + agy(z-z) + 3k5(x'xk)2
+ (YY) +ag(zz) + s (X% ) (Y-Yx)
+ agg(xxp)(z-2) + 2 o(y-yi)(z-z). k=1.....N

which completes the definition of the final interpolant. Q(P).
Note that the function is locally determined, the influence of
any point not extending further than a distance R,, + R, from
each data point. Assuming somewhat uniform data density.
the constant values for R, and R, are appropriate. If the data
density is not reasonably uniform, then we might want to let
the radii R,, and R, depend on i.

The next method is a straightforward generalization to vol-
umetric data of the distance function approach to natural cu-
bic splines. The form of the modeling function is

V(P):ic,HP—RW +a+bx+cy+dz
i=1

We obtain the unknown coefficients from the following sys-
tem of equations, which represent the interpolation require-
ments and constraints analogous to end conditions:

1P £

3 c F

(LR R N el I e
CN | = Fy

1P| @ 0

b 0

1 1 100}, 0
Pl P P,0 0 Jd 0

We call this the volume spline method. To implement this
method, we need a routine to solve a linear system of equa-
tions. As long as the points P, i=1..... N are distinct, the
coefficient matrix is nonsingular and we can solve the system.
But this is a theoretical result; in the practical sense, there are
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limits to the value of N we can use because of the condition-
ing of the coefficient matrix. Even in the case of fairly uni-
formly distributed points, the condition number can swamp
single-precision calculations for data sets of size N = 300 to
500. So, unless we take some other measures, this method is
limited to fairly moderate sized data sets.

In many ways the next method, the multiquadric method, is
similar to the volume splines of the previous paragraph. Both
methods fall in the category of radial basis function methods.
(For more discussion on both of these topics, see the works by
Franke and Nielson® and Nielson and others.d) The general
form of the multiquadric modeling function is

N I - T
H(P)=Y.c|R* +|P-P|}
i=1

The interpolation requirements lead to the system of equa-
tions

) ¢y F
(Jrap-rr ] -
cy Fy
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The user must provide the parameter
R2. In the case of bivariate data, Carl-
son and Fole:y5 have studied the selec-
tion of R”.

The next method is considerably
more complicated to describe than the
previous ones. It is a generalization of
the minimum norm network (MNN)
method® for interpolating scattered bi-
variate data. I will briefly describe this
bivariate method, then indicate how
we can extend it to the case of volu-
metric data. There are three steps:

1. Decompose the convex hull of the
points P; = (x;, y;) into a collection
of triangles.

2. Compute an interpolating curve
network defined over the edges,
which has certain minimization
properties.

3. Fill in the curve network to complete the definition of
the modeling function by the use of a c' triangular inter-
polant.

Each of these three steps requires some explanation. A tri-
angulation of the convex hull of a set of points P; = (x;, y;), i =
1, ..., N consists of a list of triple indices, (i, j, k) € N,. Each
triple (i, j, k) represents the triangle T with vertices P, F, F;.
Assume that no two triangles intersect and that the union of
all triangles is the convex hull. There are many possible trian-
gulations of the convex hull. Usually we prefer some type of
optimal triangulation, which avoids long skinny triangles. A
popular choice is the max-min triangulation, which selects the
triangulation with the minimum angle as large as possible.
(Schumaker provides more discussion on lriamgulations.7
Nielson and Tvedt® cover the details of how to obtain an anal-
ogous decomposition into tetrahedra for volumetric data.)

We now take up the second step of this method. In the bi-
variate MNN, a network is defined over the collection of all
edges. This network is characterized in a manner similar to
the minimum norm characterization of standard, cubic inter-
polating splines. Recall that a cubic spline is the unique mini-
mizer of

b 2
J[F ”(x)] dx

subject to the interpolation requirements.
In the case of the MNN, the quantity
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Figure 6. The face-vertex method of interpolation in tetrahedra: color coded-planar slices of the
test function (upper left), the transfinite interpolant (upper right), the interpolant to transfinite
data on edges (lower left), and the interpolant to discrete data (lower right).

2

o(F)=Y, j

HeN, e )

is minimized. Here, ds;; represents the element of arc length
on the line segment ¢; and N, = { ij or ji (but not both) : V; to
V;is an edge of the triangulation}. It turns out that the solu-
tlon is a piecewise cubic network determined by solving a
sparse system of linear equations of size 2N x 2N.

Figure 5 shows the three steps of the MNN method in the
case of bivariate scattered data.

These ideas extend to volumetric data. We minimize a quan-
tity similar to o(F) except that now N, is the collection of all
edges of the triangular faces of the tetrahedral decomposition of
the convex hull, and the linear system we must solve is 3N x 3N.
Once we have computed the curve network we can move to the
third step, filling in the model with a ' tetrahedral interpolant.
We define an interpolant on each tetrahedron that will match
given position and derivative information on all edges. The
method we use is a 3D generalization of the side-vertex mtcr-
polant. Called the face-vertex method, it is described clsewhere.”
Figure 6 shows an example of this method where the test func-
tion was sampled at 125 randomly placed positions. This leads to
683 tetrahedra. The derivatives are taken from the test function
in all cases.

We now move to the discussion of the last method, called
localized volume splines. As mentioned earlier, there are defi-
nite limits to the size of the data sets for volume splines. Of-
ten the problems in scattered volume data exceed these limits.
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To make a particular method usable and apply it to very large
data sets, we can localize it. This requires “localizing” func-
tions. which are smooth and have a small region of support.
We can easily understand the basic ideas by considering the
univariate case illustrated in Figure 7. The functions w, are
nonzero only on two intervals and have the property that
Tw(x) = 1 for any x in the domain. We compute local scat-
tered data interpolants Fy so that Fy(x;) = F; for all data points
x; in the support (non-zero region) of wy. From this. we can
see that

R(x)= zwk (x) Fi (x)

has the property that R(x;) = F; for all x; in the union of the
support of the wy, which serves as the domain of the approxi-

Figure 7. Localizing functions illustrated in the univariate case.

mation. In general, we can use any method to obtain the local
interpolants Fy, but for this particular method we used the
volume splines mentioned above. We can easily construct the
localizing function wy, with piecewise cubics (bicubics or tricu-
bics). (More details on this method are discussed elsewhere.”)

Comparisons

To demonstrate the performance of these various methods,
I include some results from an empirical study I did with
Tvedt’ We considered the methodology of comparing meth-
ods of trivariate scattered data. In part of our work we gener-
alized Franke’s previous work on bivariate scattered data
imerpolation10 to trivariate interpolation. We used test func-
tions and data sets. We used a test function F(x, y, z) to gen-
erate the dependent data and to serve as a base for evaluating
method’s performance. Given an independent data set, (x;, ¥;.
z).i=1.....Nand a test function F(x. y, 7), we used a par-
ticular method of scattered data interpolation to produce an
approximation A(x, y, z). which we then compared to F(x, y,
z). Comparisons consist of numerical statistics and subjective
assessments based upon the analysis of the “graphs” of F and
A. Figure 8 shows data set configurations.

We chose six data sets to represent the entire gamut of data
sets. We selected three to be uniformly and randomly placed
in the unit cube domain: one small, one moderate, and one
large. Referred to as R125, R200, and R1000, these data sets
contain 125 points, 200 points, and 1.000 points respectively.
We chose the remaining three data sets to represent certain
types of data likely to occur in real-world situations. The data
set L200 consists of samples taken from a given number of
vertical lines that were randomly perturbed. The data set

-

Figure 8. Data set configurations.
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Table 1. Root mean square error for data sets versus

test functions for local volume spline.

F F, Fy F, Fy F¢
R125 | 0.026 | 0.015 | 0.011 | 0.001 | 0.006 | 0.002
R200 | 0.013 | 0.012 | 0.008 | 0.001 | 0.003 | 0.002
R1000 | 0.001 | 0.003 | 0.001 | 0.0001 | 0.0003 | 0.0005
L200 | 0.023 | 0.012 | 0.006 | 0.002 V(;()l 3 ]0.001
P200 | 0.022 | 0.013 | 0.007 | 0.001 | 0.003 | 0.001
C200 | 0.025 | 0.015 | 0.016 | 0.002 | 0.040 | 0.001

P200 consists of scattered samples taken from horizontal
planes that were randomly perturbed. This type of sampling is
analogous to samples taken from slices of an object. Cluster
sampling has many analogies to real-world sampling. It is a set
of densely sampled areas with large gaps where no samples
are taken. We can think of it as a collection of random sam-
ples. This data set, which has 200 points, is denoted by C200.

The test functions used are extensions to three dimensions
of the the test functions Franke'’ used:

Fi(x,.2)=0775. exp[_ (9x—-2)2 +(9y-2)* +(92—2)2}

4

+0.75 - exp| — Ox+1)” _ ©Oy+1) _(9z+1)
49 10 10

+0.5- expl:— Ox=7)° +(9y-3)* +(9z-5)’ }

4
—02- exp[—(9x—4)2 —9y-7)? —(92—5)2]

Fy(x,y,2)={tanh(9z - 9x-9y) +1}/9
Fy(x,y.2) = [(1 25+ cos(5.4 y))cos(6z)/{6 +6(3x - 1)2}

Fy(x,y,2)= exp{—%[(x—O.S)z +(y—05)° +(z—0.5)2]}/3

Fi(x.y.2)= (exp{~§4l-[(x ~0.5)2 +(y—0.5) +(z—0.5)2]}/3

Fy(x.9.2) = \/64 —81[(x-0.5)2 +(y-05)? +(z~0.5)2] 19-0.5

The approximate ranges of these functions over the domain
C = {(x, y, 2) : 0=x<1, 0<y<l, 0<¢<1 } are Fy: [-0.1, 1.1}, Fy:
[0.0,0.22], F5: [-0.37,0.37 |, F4: [0.007, 0.33], F5: [0.0, 0.32], F:
[-0.3,0.39]
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Table 2. Root mean square error for method versus
test function for data set R200.
F, F, Fy F, F; Fe
Q | 0.0237 | 0.0134 | 0.0127 | 0.0033 | 0.0089 | 0.0012
V | 0.0120 | 0.0014 | 0.0068 | 0.0006 | 0.0020 | 0.0015
H | 0.0109 | 0.0126 | 0.0042 | 0.0003 | 0.0007 | 0.0018
N | 0.0190 | 0.0121 | 0.0128 | 0.0019 | 0.0045 | 0.0030
R | 0.0131 | 0.0117 | 0.0078 | 0.0008 | 0.0026 | 0.0017
7 Table 3. Root mean square error for data set
versus method for test function F|.
R125 | R200 | R1000 | 1200 | P200 C200

Q | 0.0293 | 0.0237 | 0.0150 | 0.0328 | 0.0332 | 0.0454
V 6,0265 0.0120 - 0.0237 | 0.0206 | 0.0268
Hi 707,()27718 0.0109 - 6.6177 0.0135 | 0.0349
N | 0.0327 | 0.0190 | 0.0040 | 0.0346 | 0.0257 | 0.0429
R | 0.0259 | 0.0131 00014 0.0235 | 0.0217 | 0.0257

The root mean square error is defined by

SS90 g k) )]
N;'N,'N, N,'N,"N,

RMS =] ===
(N; +D(N; +1)(N, +1)

where F represents the test function and A represents one of
the scattered data fitting methods being studied. The results
given in Tables 1, 2, and 3 use the resolution values for this
root mean square error of N; = N; = N; = 20.

Q — modified quadratic Shepard

V — volume splines

H — multiquadric

N — volume minimum norm network
R — local volume splines

While numerical error statistics are useful for comparing
scattered data interpolants, they do not allow subjective visual
evaluation of the results. In addition, error statistics do not
convey much information about the local behavior of an ap-
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Figure 10. The C' discontinuity at an antipodal point of the geodesic
function raised to the third power.

proximation; they only provide an overall error estimate. A
major component of Tvedt’s and my study is Slice Viewer, an
interactive program for visually evaluating the performance
of various methods. The program lets the user interactively
change the method, data set, or test function. In this way, the
user can browse around to gain insight into the overall perfor-
mance of a method and compare it to other methods. We
wrote Slice Viewer with the idea that the application domain
was not static. Users can add new methods, data sets, or test
functions and delete old ones. A typical screen image appears
in Figure 9.

Slice Viewer lets the user view slices of the volume with the
x, y, or z value held constant. Across the bottom of the screen
are 20 small slices showing the function values of the actual,
approximated, and difference functions. At the top of the
screen are three enlarged slices chosen by the user from the
array below. The user points at slices, then an enlarged ver-
sion appears at the top of the screen. In between the large and
small slices, a color map shows the mapping of color values to
function values. At the right side of each row of small slices a
range ([lower, upper]) indicates the numeric values of the
lower and upper bounds of the color map. The user can pick
which slice to enlarge by pointing a small slice with the mouse
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Figure 9. Typical screen image of Slice Viewer.

and pressing a button. The user can show or hide the convex
hull, load a new actual function, load a new approximation
function, load a new color map, change the joint color map-
ping of the actual and approximated functions, or change the
color mapping of the difference function.

I have used Slice Viewer extensively and found it valuable
for learning about the performance of volumetric scattered
data interpolants. To convey some sense of the experience,
include my own comments and also those of Richard Franke,
who has spent considerable time using the program.

Modified quadratic Shepard method

The modified quadratic Shepard method is an extension lo
volume data of a well known and effective bivariate method.”
It usually reproduces the qualitative features of the test func-
tion quite well. Near the boundaries it is sometimes performs
poorly. It is only C'. We can apply it to very large data sets,
and it operates reasonably fast. In general, implementing this
method takes more effort than most. The user must provide
the parameters N, and N,, or accept default values.

Volume splines

The volume splines method is a direct generalization to vol-
umetric data of the univariate cubic interpolating spline when
represented with distance functions. In most cases it gives re-
sults similar to the multiquadric method, but sometimes no-
ticeably poorer. The implementation requires only a routine
for solving a linear system of equallons The method repro-
duces linear functions and is C.In general, and without mod-
ifications, the method is limited to data sets smaller than N =
300 to 500.

Multiquadric method

As in the bivariate case, the multiquadric method gener-
ally reproduces the qualitative features of the test function
quite well. The implementation consists of solving a linear
system of equations. The conditioning of the coefficient ma-
trix limits the size of the data set used. Typically, data sets of
300 to 500 or more points will yield condition numbers that
will swamp single-precision accuracy. The user must provide
the single parameter R’

Volume MNN method

This method is a volumetric generalization of an efficient
and popular bivariate method.® The generalization is not as
straightforward as we would hope, and the method proves
more difficult than most others to implement. On the positive
side, it is a global method that we can apply to extremely
large data sets because the sparsity of the equations that we
must solve lets us use some effective iterative methods. If the
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tetrahedral decomposition is affine invariant, then the method
will also be affine invariant. As implemented here, the
method has no parameters that the user must provide. Its
overall qualitative performance is very good.

Local volume splines

We can use this excellent method for very large data sets.
Localization sometimes deteriorates the scheme when com-
pared to the global method. On the R1000 data set with £, it
works very well. On the hypersphere Fy it seems to be on a
par with the multiquadric method. The user must provide the
values that partition the domain or accept uniform spaced de-
fault values. This can be a problem in that a subdomain might
not have enough points to determine a volume spline. A ro-
bust implementation would recognize this situation and take
appropriate evasive action. In general, the implementation is
a little more complex than multiquadrics or volume splines,
but overall quite easy to use.

Surface-on-surface

We now take up the case where the domain itself is a sur-
face in 3D space. Space constraints limit mc to a sampling of
material in this subarea. Also, I limit the discussion to the
case where the domain is a sphere. The sphere is not only one
of the simplest manifold domains, but it is also important in
some applications because the earth is approximated by a
sphere. This is not as restrictive as it might seem, since many
of the ideas for a general manifold domain have their origins
in spherical methods. Also, a general approach called the do-
main mapping technique often lets us extend a method de-
fined on a sphere to a general manifold domain.""

We begin with distance-based methods. A natural general-
ization of the distance function Ix — x;i to the domain of a
sphere— r(P, P;)—represents the distance from P to P; as
measured on the sphere. This distance is the length of the
shortest path on the sphere between P and P;. In general. we
call the shortest path on a surface between two points the
geodesic curve. We take the length to be the geodesic dis-

Table 4. Root mean square errors for threc methods of
modeling data from a spherical domain.
(The values for this table were provided by H. Wolters.)

Fl F2 F3 F4 FS F6
SS | 0034 | 0244 | 0.106 | 0.077 | 0.038 | 0.045
- I
SM | 0.406 | 0.116 | 0261 | 0.045 | 0.781 % 0.147
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tance between two points on a surface. For the sphere, a sim-
ple formula computes the geodesic distance: r(P, P)) = cos’'
(P. P)), where (P, P;) is the dot product. With this in mind, it
seems that one natural choice for basic functions would be
[r(P. P,)]B, analogous to lx — )c,vl3 used for cubic splines, but a
problem arises that requires some modification.

This problem has to do with the continuity of the first
derivative of these functions. We can understand this better if
we look at a cross section as shown in Figure 10. I took the
point p; to be (1, 0) and graphed [r(P, P,-)]3 as a radial func-
tion. We can see problems at the antipodal point to p;. From
both the top and bottom the function is increasing in distance
from the origin. Thus, clearly only the function (and not its
higher order derivatives) is continuous. If continuity beyond
the function itself is not a problem, then we can use these ba-
sis functions without modification. But if we need Cl, then we
must make some adjustments. One possibility is to “round
off” the backside with a piecewise definition

b py |05 (PR (P.P)20
p(PF)= H(cos’l(P.P,-)) (P,P)<0

where H(n/2) = n/2, H(n) = . H'(n/2) =1 . H’(n) = 0. One
possible choice is

H(s)=7t745+§s2 -—47s3
s b

Table 4 shows some root mean square errors for two meth-
ods based on this “rounded off” distance function. The first
method, sphere splines, has the general form

SS(P)zic,p%P.P,)

i=1

The sccond method, spherical multiquadrics, has the form

N —_—
SM(P):ZC,\/;erZ(P.P,-)

i=1

The domain points are 74 points scattered on the surface of
the sphere and the value of R = 1.0. Choosing a good value of
R is a research question currently under investigation.

For small data sets. I have found the sphere spline to work
quite well. Figure 11 shows the results of modeling electroen-
cephalogram (EEG) data measured at 32 locations over the
surface of the scalp. Each image corresponds to measure-
ments taken at fixed time steps during a subject’s auditory
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Figure 11. Modelling of EEG data measured at 32 locations and 6
time intervals.

Figure 12. The Venezia criteria for bivariate scattered data,

evoked response. Observe that electrical activity propagates
through the brain. Experience shows that we can understand
this propagation much better when the data is animated
through time.

As with their counterparts, the volume splines and multi-
quadrics discussed above, these distance-based manifold
methods do not work with large data sets. Usually, condition-
ing problems set in with values of N at about 300. To circum-
vent this problem, we could consider a least-squares type of
approximation. This requires solution of the minimization
problem

min

¢ Y(F)-F)

where, for example,

N
F(Pj) = ZCiPS(f)j’Qi)
i=1

But how do we select the 9,2 In the case of bivariate scat-
tered data, Franke and McMahon used the “Venezia crite-
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0.028085

0.010489

Figure 14. The spherical spline method applied to data obtained from
the test function Fy. The test function is evaluated at 452 “uniformly”
distributed points shown in the upper center image, and the knots for
the modeling function are the vertices of the Dirichlet tessellation in
the lower center image (for the case M =50 only). The RMS errors
are denoted by R=XXXX.

ENVIRONMENTAL DATA

Data courtesy of R. Franke

Figure 15. Data measurements taken at 628 weather locations dis-

tributed over the earth are fitted with the spherical spline method us-
ing 50 knots determined by the Venezia criterion. Two views of the
model appear in the left and right images.
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rion,” best explained by referring to Figure 12. This criterion
characterizes the Q; (represented by solid dots) by requiring
them to be the centroids of all points 7t (represented by open
dots) lying in the associated Dirichlet region. The Dirichlet
region for a point Qy is the set of points closer to QO than any
other Q;, j#k. These regions are bounded by the perpendicu-
lar bisectors of the Q. Dierks and 1" extended this concept
to the case of volumetric scattered data. The extension to the
spherical domain is straightforward. Simply replace the no-
tion of distance with geodesic distance measured on the sur-
face of the sphere. An example appears in Figure 13. Dierks
and T tested and compared these methods. Figure 14 shows
typical results. We also applied these methods to “real” data
sets, and Figure 15 shows some results where we used the
spherical spline method.

The next method we discuss for a spherical domain is an
extension of the MNN method mentioned above. Here I give
only a brief description. More details appear elsewhere.”

The first step requires decomposition of the sphere into a
collection of spherical triangles consisting of edges that are
geodesic arcs. We can accomplish this by using the triangula-
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Left: Figure 16. The network step of the spherical MNN method.
Lower Left: Figure 17. Spherical side-vertex triangular interpolant
used to fill in the network.

Below: Figure 18. The spherical minimum norm network method ap-
plied to data from the function F(x, y, Z) = sin (x) sin (y) sin (2).

tion that is dual to the Dirichlet tessellation of the sphere. We
extend the Dirichlet tessellation naturally to the sphere by us-
ing the notion of geodesic distance. Similarly, the ideas of the
interpolating curve network extend quite naturally to the
spherical case. Over each geodesic arc of the triangulation,
the model is a cubic polynomial of the argument consisting of
geodesic distance. A similar characterization to that of the
original MNN method yields a similar system of linear equa-
tions, which we can solve to obtain the first-order derivatives
of the model at each data site. See Figure 16 for an example
of a network.

Next we fill in the network with a spherical version of the
side-vertex interpolant, which uses univariate Hermite inter-
polation along rays emanating from a vertex and joining to
the opposing edge. See Figure 17.

Figure 18 shows the results of applying this method to the
test function F(x, y, z) = sin (x) sin (y) sin (z). We use only 56
“uniformly spaced” points, but the fit is quite good. For larger
(approximately 500) data sets, the fit is indistinguishable from
the test function. This is one of the advantages of this method;
we can use it for very large data data sets. Even though we
must solve a large (2N x 2N) linear system of equations, it is
sparse, and iterative methods work well.

Conclusions

1 discussed methods for modeling scattered data emphasiz-
ing two types of data: volumetric and spherical. In general,
there is no single best method for all applications. Each of the

69



Computer-Aided Geometric Design

methods has pros and cons, and some are more important
than others depending on the application. I have tried to pro-
vide information to aid in selecting a type of method or to
form the basis for customizing a method for a particular appli-
cation. d
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Abstract

In this paper we present a new method for the modeling of
freehand collected three-dimensional ultrasound data. The model
is piece-wise linear and based upon progressive tetrahedral
domains created by a subdivision scheme which splits a
tetrahedron on its longest edge and guarantees a valid
tetrahedrization. Least squares error is used to characterize the
model and an effective iterative technique is used to compute the
values of the model at the vertices of the tetrahedral grid. Since
the subdivision strategy is adaptive, the complexity of the model
conforms to the complexity of the data leading to an extremely
efficient and highly compressed volume model. The model is
evaluated in real time using piece-wise linear interpolation, and
gives a medical professional the chance to see images which
would not be possible using conventional ultrasound techniques.

1. Introduction and Background

Two dimensional ultrasound imaging has been used for over
30 years in medicine. It has the advantages of being inexpensive,
non-intrusive, real-time and safe. In conventional 2-D ultrasound
echography a clinician uses a hand held probe to acquire a series
of grayscale images, known as B-scans. These B-scans are viewed
on a CRT as they are being acquired, and may be saved to media
for further investigation. In order to get a three-dimensional feel
for the patient’s interior, the clinician must move the scanner
around the area of interest while viewing the monitor. By training
and experience the operator is able to mentally construct a 3-D
model of the region being scanned, and can concentrate his
scanning accordingly. Since the 1970’s, there have been attempts
to construct ultrasound systems that can give actual three-
dimensional volumes [4, 9]. There are two major approaches for
this. One is to construct an actual mechanical device that will
acquire all the B-scans into a known volume. The other approach
is to allow the clinician to freely probe the patient with a
traditional ultrasound machine, while recording each B-scan’s
position and orientation in space. In this approach, known as
freehand 3-D ultrasound, the position and orientation information
may be attained by any number of means. There have been
systems developed which use mechanical arms, acoustic trackers,
image to image registration, and electromagnetic trackers. See [4,
9] for surveys of the history of three-dimensional ultrasound.
Whichever system is used for freechand 3-D ultrasound, the result
of a scanning session is a series of two-dimensional B-scans,
along with their corresponding position and orientation (POSE)
information. Figure 1 shows a freehand system that can be
inexpensively assembled from readily available hardware and
software.
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In this paper we only consider freehand 3-D ultrasound. Each
B-scan acquired during a scanning session may be thought of as a
collection of grayscale intensity values located in space. In order
to model these scans many researchers have imposed a regular
rectilinear grid around them, and then filled in individual voxel
values from the ultrasound scan information [1,17,13]. One
problem with these methods is that one must be able to choose an
appropriate voxel size to fit the data. If the voxels are too large
then much of the data acquired from the scans is ignored.
However, if too small of a size is used then there will be many
empty voxels. Since the scanned data will not always fall exactly
on a voxel, some method of interpolation must be used in order to
assign intensities to each voxel. Various methods used include
nearest neighbor interpolation [1] and distance weighted
interpolation [13]. To avoid the problem of fitting the B-scan data
to a regular grid, Prager et al. [15] developed a system that can
produce arbitrary 2-D slices from the B-scans independent of any
voxels. Because this method is based upon the intersections of an
arbitrary plane with the B-scans it will fail when there are no such
intersections. A plane halfway between two parallel B-scans
would then show up as empty.

In this paper we present a new method for the modeling of
freehand 3-D ultrasound scanning data. We approach the problem
as a trivariate scattered data approximation problem. See [10] and
[12]. The domain is an arbitrary rectilinear box, which is broken
down into a tetrahedral grid. A function approximating the B-scan
data is constructed over this mesh. An approximated intensity
value can be calculated at any location in the volume by means of
linear interpolation within the desired point’s enclosing
tetrahedron. An iterative process is used to calculate the values at
the vertices making up the tetrahedral grid. This method has the
advantage that no a priori knowledge is needed about voxel
resolution. Standard volume visualization methods can be used to
view the model [9,8], such as ray casting, isosurface extraction,
and arbitrary slice plane extraction. The method is adaptive, based
upon error tolerance criteria set by the user. This allows
hierarchical and multiresolution models to be constructed. Also,
the adaptivity property can help to guide the clinician to scan
more in regions where more data may be needed.

2. Progressive Tetrahedral Domains

At all times the domain must be a valid tetrahedrization. A
tetrahedrization is valid if the union of all tetrahedra is the domain
of interest and any two tetrahedra only intersect at a vertex, edge,
face or not at all [11]. For this method the initial domain is
represented as a unit cube consisting of the six tetrahedra resulting
from adding an edge from the origin (0, 0, 0) to its opposite corner


mailto:Tomrox|nielson@asu.edu

(1, 1, 1), and adding additional diagonal edges across each of the
cube’s six faces (See Figure 2).

j
|
i

b | Stradxs

Ultrasound probe

Figure 1. Collecting free-hand ultrasound data. In our lab, we
use an Ascension Flock of Birds electromagnetic tracker to get
position and orientation for each of the B-scans. We use the
Stradx software provided by Cambridge University [14]
running on an SGI O2 to simultaneously sample the tracker
and to collect an image from the video signal of conventional
ultrasound scanning device.
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Figure 2. The unit cube initially subdivided into six congruent
tetrahedra.

There have been various methods developed for subdividing
simplicial grids [16, 7, 2, 3]. Grosso, et al [5] used a common
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splitting technique known as red-green [2, 3]. In this paper we
have used a technique based on bisecting a tetrahedron along its
longest edge [16, 7]. The longest edge split method was developed
by Rivara [16]. Maubach [7] has adapted the longest edge split
method for the special case of the initial tetrahedral grid described
above. This is the subdivision method which we use (See Figure
3).

A

Figure 3. A tetrahedron is to be split along its longest edge at
the point AD, halfway between vertices A and D.

The following terminology will be used. Two tetrahdera are
neighbors if they share a common face. A split neighbor of a
tetrahedron ¢ is a neighbor that shares #’s longest edge. Note that
there can be at most two split neighbors for any tetrahedron in a
proper tetrahedrization. Two tetrahedra are compatibly divisible if
they are mutually split neighbors, and if their common edge is the
longest edge for both tetrahedra. Every tetrahedron belongs to a
generation, where the generation is an integer referring to the
tetrahedron’s level of subdivision. Each of the six original
tetrahedra making up the initial mesh belongs to generation 0.
When a tetrahedron of generation # is split, it will produce two
tetrahedra each belonging to generation n+I. The tetrahedron to
be split is known as the parent, and the two resulting tetrahedra
are called its daughters. The two daughters resulting from one
parent are twins. Two tetrahedra are congruent if one of them can
be made to exactly cover the other after any combination of the
following affine transformations are performed: uniform-scaling,
translation, rotation. A congruency class is a set of tetrahedra that
are all mutually congruent.

Using the initial subdivision into six congruent tetrahedra
described above, and with the longest edge splitting method, the
following properties must hold [7]:

= All tetrahedra of a single generation belong to the same
congruency class.

= No matter how many subdivisions are performed, all
tetrahedra will belong to one of only three congruency
classes.

=  These three congruency classes are cyclic. Initially the

tetrahedra of generation 0 belong to congruency class 0,

those of generation / belong to congruency class / and those

of generation 2 belong to congruency class 2. Then those of



generation (0+x) belong to congruency class 0, those of
generation (/+x) belong to congruency class 7, and those of
generation (2+x) belong to congruency class 2. See Figure 5.

So when a tetrahedron is split, it is bisected into two equal-
volume tetrahedra, each of which is congruent to its twin. In order
to avoid cracks within the mesh a refinement step must be taken
after each tetrahedral bisection. The cracking results when there is
a violation of the triangulation criteria stated above for a proper
tetrahedrization. A tetrahedron might intersect more than one
other tetrahedron across a single face or single edge (See Figure 4
). This will give discontinuities when the function is evaluated
across these tetrahedra. To prevent this from occurring Maubach
devised a recursive refinement process.

A B

Figure 4. The cracking problem. The tetrahedron T, cp
consisting of vertices A,B,C,D has been bisected into the two
tetrahedra T, ppac and Tcppac When the edge A,C is split at
AC. The tetrahedron T, i cp has not been split. This results in
Tarcp intersecting with two distinct tetrahedra across the
face made up of vertices A,C,D, violating a valid-
tetrahedrization criterion.

Here is pseudo-code for a routine called Refine adapted from
[7], which works on a single tetrahedron ¢, and uses the procedure
Bisect(#), which is the simple bisection of ¢ along its longest edge
as shown above.

Refine(r)
BEGIN
WHILE A split neighbor n; of ¢ is not compatibly divisible
DO
Refine(n))
END
Bisect(?)
FOR Each split neighbor n, of ¢
DO
Bisect(n;)
END
END
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This process will terminate, giving a finite number of additional
bisections. In addition, the split neighbors of # must be of the same
generation of ¢, or one lower [7].

Figure 5. A single tetrahedron is bisected three times. Four
generations of tetrahedra are shown, with the eight tetrahedra
in the final generation being congruent to the original
tetrahedron.

3. Calculation of Vertex Values

The intensity values of the vertices making up the
tetrahedrization may be calculated at any time by using a global
least square error approximation.

Let

M = number of B-scan data points,

N = number of vertices in mesh,

1; = unknown intensity at vertex v;,

d;= (x;, y}, zj) = B-scan pixel location,

S(v;) = collection of tetrahedra having v; as one of their
vertices,

¢@; = is the piece-wise linear, basis function
such that ¢,(v)) = ;= (1, if i=/; 0 if i#))
F(d;) = B-scan intensity value at d;.

Then the function to be minimized over all vertex intensities /;, is

SI% (4 ¢idy)-F(d)F



The normal equations that characterize the optimal solution are

AI=b

where A is an N x N Gram matrix, with elements

Aij = Zk@(dk) ¢j(dk)

And b is an N x 1 vector with elements

b;=2p(dy) F(dy)

and I = ([1, Iz, ..
intensities.

., Iy) is the N x 1 vector of unknown vertex

The location of any three dimensional point with respect to a
given tetrahedron may be represented in barycentric coordinates
[11]. In barycentric form the 3-D Cartesian point d; is represented
as a linear combination of the four vertices making up any
tetrahedron.

_plyT o Tyl BTyl 4 T T
d,=b/vi'+b,vy +b,) vy’ +b,v/,and

Loph LT pT o=
by +b,+b+b] =1

T; T; T; T; .
where V", V,", V3", V," are the four vertices of tetrahedronTi ,
T, - . . .
and the bvi" ,1 € {1,2,3,4} , are barycentric coordinates of point

d; corresponding to V; with respect to T « - If any of the barycentric

coordinates are negative then the point does not lie within the
tetrahedron.
We may use a slightly modified version of barycentric

coordinates as a substitute for the tent function ¢ that was
defined in Cartesian coordinates above. Let

BT (p) = bvf if pisinside 7,
K 0 otherwise

Using this definition we now have for the matrix elements above:

A,

L]

M
D B)(d, )B, (d,),and

k=1,
Te(S(v)NS(v;))

b= 3 BU(d)F,)

k=1,
T)e(S(v)NS(v;))

Often, in typical applications, there may be
approximately a million vertices making up a tetrahedrization.
That means the dimensions of the matrix might be on the order of
106 by 1076. Therefore it is impractical to try to solve this
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system of equations using direct matrix inverse methods. Instead
we use a modified version of the Gauss-Seidel iterative method to
solve for the vertex values [6].

Although the matrix 4 might be very large it will be very sparse.
The matrix itself never has to be stored. Instead all values may be
calculated on an as needed basis, and all information needed to
calculate the elements of 4 and B are stored within the mesh’s
data structure. By keeping a list with each vertex containing
pointers to the tetrahedron which contain the vertex, and storing a
list of pointers to the data point structures within each tetrahedron,
all needed elements may be quickly calculated.

4. The Algorithm

The unit cube is initially subdivided into six congruent and
equal sized tetrahedra by adding an edge from the corner at the
origin of the cube, (0, 0, 0) to its far opposite corner at (1, 1, 1),
plus diagonal edges across each of the cube’s faces [Figure 2]. All
B-scan values are then added to this cube. In order to place the
three-dimensional position values from the ultrasound B-scans
into a unit cube simple affine transformations are needed. This
just involves uniform scaling and transformation of the sensor’s
position readings, so that all desired B-scan positions will fall
within the unit cube. As each B-scan value is encountered it will
be added to one of the six tetrahedra making up the cube. At this
point its Cartesian coordinates with respect to the cube will be
converted to barycentric coordinates with respect to its enclosing
tetrahedron. After adding all the B-scan image values each
tetrahedron will contain a list of structures, where the structure
contains the four barycentric coordinate values of the data points
and the corresponding intensity value. The modeling process is
now ready to begin.

Any position within the mesh may be evaluated by simple
interpolation, using barycentric coordinates with respect to the
tetrahedron enclosing the position point. The approximated value
for a point p within tetrahedron 7" having barycentric coordinates
b], bg, b3, b4 is

4
I(p)= zbili‘
i=1

The mesh subdivision process is adaptive. This means
we only want to split those tetrahedra that need to be split in order
to satisfy some tolerance criteria. To decide upon the tetrahedra to
be subdivided we do an initial solve of the least squares system,
using the Gauss-Seidel method described above. The tetrahedra
are then sorted according to their mean square error values, where
the mean square error is calculated as

Ny

> ((d))~F(d))’
mse, =<2 ,
i DT

i

Where DT_ is the number of data points within

tetrahedron 7, and / (d j) is the interpolated value at d IT



In order to avoid excessively solving the least squares system
we have found that marking the worst five percent of the
tetrahedra to be split works well. These tetrahedra are each
bisected, the data points from the parent tetrahedron are added to
the proper daughter tetrahedron, then the least squares solution is
again calculated. If the global error is within a prescribed
tolerance then the process is complete, and the model is done.
Otherwise the process is repeated.

After each set of tetrahedral subdivisions is performed a
global root mean square error is calculated. If this error is less
than a prescribed tolerance than the model is done.

Where N. r is the number of tetrahedra in the mesh, and D is
the number of B-scan data points in the mesh.

If the given global rms error tolerance is set too low, the
subdivisions might never produce a model within the tolerance
bound. To prevent this an upper bound on the number of
tetrahedra produced should be given. Also, a limit on the
smallness of tetrahedra is given, not allowing tetrahedra of more
than a prescribed maximum generation to be subdivided. This
minimum size of tetrahedra should be set according to the actual
resolution achievable by the scanning device. Since the
tetrahedron refinement process will only subdivide tetrahedra of
the same or lower generation we do not have to worry about
inadvertently splitting tetrahedra which do not satisfy the
maximum generation bound during the refinement process.

The following is a pseudo-code description of the
algorithm:

Initialize:
e  sect tol = user-defined global rms error tolerance
e  set tetLim = user-defined maximum number of tetrahedra
allowed in mesh
e  set genLim = user-defined maximum generation allowed
for a tetrahedron
e uniformly subdivide unit cube into 6 equal-volume,
congruent tetrahedra
e add all B-scan data points and intensities to their
respective tetrahedra within the mesh. Store position as
barycentric coordinates
e  solve least squares system for vertex intensity values
calculate grms = calculated global rms error for model

e done = false
e  while (done == false)
e if (grms < tol) OR (number of tetrahedra > tetLim)
e done=true
e clse
e sort tetrahedra by mean
descending order
e split the first five percent of sorted tetrahedra
which satisfy:
tetrahedron’s generation < genLim
tetrahedron contains at least 2 data points
e if (no tetrahedra can be split in above step)
e done=true

square error in
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e celse
e solve least squares
intensity values
e calculate grms

system for vertex

When a parent tetrahedron is split into its twin daughter
tetrahedra its data points must be correctly assigned to these
children, and the new barycentric coordinates calculated. Due to
the fact that a tetrahedron is always bisected across its longest
edge into two equal-volume, congruent tetrahedra this is a simple
process. Figure 6 illustrates how this process works. We only need
to compare the two barycentric coordinates corresponding to the
vertices on the longest edge, boby. If by> by the data point will
belong to the daughter tetrahedron coming from the b, side of the
parent tetrahedron. Otherwise it will belong to the other child
tetrahedron. To update the barycentric coordinates within the new
tetrahedra, we only need to perform one subtraction and one
multiplication. See Figure 6 for an illustration of this.

P=b FA +bFB+b FCQ +b FD,
bA > bn
P=(b -b JFA + b FE]+b FC +2b FAD.

s D
Figure 6. The calculation of new barycentric coordinates for a
point P in tetrahedra T, g cp after bisection. If b, > by P will
belong to tetrahedron T,pcap and will have the new
barycentric coordinates (b, — bp), bg, bc, 2bp. Otherwise it

will belong to Tpcpap and have the barycentric coordinates
(bD - bA)e bC9 b39 2bA-

If a vertex has no support, meaning that no data points are
contained within any of the tetrahedra sharing that vertex, then
during the Gauss-Seidel solution phase there will occur a divide
by zero situation. To avoid this we exclude all such vertices from
the iterative solution process. This condition may occur when the
B-scan data points are not distributed densely enough. We do not
choose tetrahedra with fewer than two data points to be split.
However, during the refinement process this condition may not be
enforced, resulting in occasional unsupported vertices. Also, the
volume being scanned does not need to cover the entire unit cube
after transformation. During the subdivision process these vertices
will not contribute to the solution, and will have no value. In order
to have a complete model something must be done. These
unsupported vertices could be given intensity values based on a
weighted average of the nearest supported vertices. Alternatively,
their values could be set by performing another global
interpolation method using the supported vertices. We decided to
take another approach here. Since ultrasound is used for medical
diagnostic purposes it might be dangerous to set these intensity
values when there is little actual data around them. So these
vertices are marked as “bad”. By coloring them red within the unit
cube a clinician doing the ultrasound scanning will know to
collect more data in those areas, and a new fit can be calculated.



When visualizing the data as arbitrary planes those parts that have
no support can be blacked out. These measures will help prevent
unwanted artifacts from showing up during the viewing phase.

5. Results

We now present some results of our methods applied to
actual data. We choose to base our examples presented here on a
data set provided by Robert Rohling because this data set is
typical of freehand ultrasound data. A similar data set is available
at [14]. The data set used here consists of 462 B-scan images
being generated, each of size 84 by 102. (The original data was
335 by 408. We shrunk the image sizes by using a mean filter in
because of memory constraints.) Using the position and
orientation information from the six degrees of freedom tracker,
each grayscale intensity value from the scan images was added to
the domain unit cube. Models were then computed using various
global rms error tolerances. Figure 7 demonstrates the adaptive
nature of the subdivision process, where the grid is finer where the
data is present. In figure 8 five of the original B-scans are shown
next to the images extracted from the various models at the exact
same positions in space. Notice that the modeling process has
smoothed out the noisiness of the original B-scans, acting as a
low-pass filter.

Next we show images which result from taking an arbitrary
two-dimensional slice through the model. These images do not
need to correspond to any of the original B-scans, but are the
result of evaluating the model by interpolating within the
tetrahedra. These are images that a medical professional could not
have seen without using 3-D modeling methods. In figure 9 one
can plainly see a cut away view of the carotid artery, which would
not have been possible with normal 2-D ultrasound echography.
From these images it is apparent that 3-D ultrasound could
become a very powerful tool in medical diagnostics.
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Figure 7. The top figure shows a sampling of the actual B-
scans within the domain cube. The bottom figure shows the
tetrahedral grid after subdividing. There are 26,552
tetrahedra, with 4,861 vertices.




Figure 8. On the left are five actual B-scan images. Next to
each is the corresponding image from the model. The rms
error is 10.83. The grid contains 252,222 tetrahedra, with
40,578 vertices.
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Figure 9. The top image shows the orientation of a slice in
relation to the original B-scan images (for clarity only one in
four B-scan outlines is shown). On the bottom the slice image
is shown. This illustrates the ability to interrogate the data
(model) as desired. The original B-scans are collected
approximately perpendicular to the carotid artery while the
slice here shows an approximate lateral view.

6. Conclusion

Three dimensional ultrasound echography is poised to
become a common diagnostic tool within the medical community.
Freehand methods used to collect the data from existing
ultrasound machinery could provide an inexpensive, non-
obtrusive means of collecting this data. We have presented a
unique way to model this data, using tetrahedral grids. This
method has the advantage over other methods of being adaptive to
the given data. Therefore no prior knowledge of voxel size is
needed, and there is no wasted memory needed to save or
transport the 3-D model.

We have presented this modeling method as a way to model
freehand three dimensional ultrasound data. However there is no
reason that the same method could not be used on other three




dimensional scattered data problems. Some possible applications
are seismic, oceanographic or weather data. We have not given
any performance data on the present ultrasound application as our
implementation is being continuously improved with the target of
real-time rates on currently available PC’s. .
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1 Introduction

This paper is about triangulations and tetrahedrizations.

The original and main

motivation was to provide some information about tetrahedra and tetrahedrizations only,
but it was quickly realized that many of these topics are easier to describe and understand
with some background on their two dimensional analogs. Therefore, it was decided to
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also include material on triangulations. While much of the material exists elsewhere in
the literature, much is new and appears here for the first time. The intended purpose for
this paper is to serve as a survey/tutorial in the area of data modeling and visualization.
As data modeling and visualization becomes more sophisticated in its application
domains and begins to deal with data sets which are more complex than Cartesian grids,
there will be the need for tools to deal with these data sets. We feel that the tools and
techniques covered here are very basic and will prove to be useful in a variety of contexts
in data visualization.

And now some comments about the organization of this paper.  While
tetrahedrizations are the goal, researchers have dealt with triangulations much longer
than tetrahedrizations and so triangulations and related matters are much better
understood. The next section is a survey of triangulations and related matters of interest
in modeling and visualization. The following section is on tetrahedrizations and we
attempt to follow the same flow of information as in the section on triangulations as best
possible. We use the phrase "as best possible" because some aspects of triangulations do
not generalize to tetrahedrization and some facts known about triangulations and
triangular domains are yet to be known about tetrahedrizations and tetrahedral domains.
On the other hand there are topics of interest to tetrahedrization which have no 2D
counterpart of interest. For example, visibility sorting for tetrahedrizations. The outline
of this paper is very simple. In Section 2 we go through a list of topics on triangulations
and triangular domains and then in Section 3 we repeat these topics with reference to
tetrahedrizations and tetrahedral domains.

2 Triangulations
2.1 Basics

2.1.1 Definitions, Data Structures, and Formulas for Triangulations

In order to avoid any possible confusion and problems latter, it is usually best to be a
little precise and formal about the definition of a triangulation. = We start with a
collection of points in the plane, P = { pi = (xi, yi), i =1, . . ., N} and a domain of
interest, D, which contains all of the points of P. We assume that the boundary of D is a
simple (does not intersect itself), closed polygon. Often D is the convex hull of P, but in
general, it need not be convex. In fact the boundary does not have to be a single polygon
so that the domain is not even simply connected. (Connected means that there is path
joining any two points and simply connected means that the compliment is connected.)
Roughly speaking, a triangulation is a decomposition of D into a collection of triangles
which are formed from vertices of P. Since we are eventually interested in defining
functions over D in a piecewise manner over each triangle, we must require that the
triangles do not overlap so as not to have any ambiguities. Thus we require the collection
of triangles of the triangulation to be mutually exclusive and collectively exhaustive. In
order to continue this formalism to a precise definition, we need some additional
notation. A single triangle with vertices pj, pj and px is denoted by Tijjx and the list of

triples which represents the triangulation is denoted by I;. A triangle Tjjk is a closed 2D



point set that includes its three edges which comprise it boundary. The interior of Tjj,
denoted by Int(Tjjk) is open and does not include the boundary. The edge joining p; and

pj is denoted by ejj and Ne = {ij : ijk in I for some k} is used to refer to the collection of
all edges. Formally, the definition of a triangulation requires:

1) No triangle Tjjk , ijk € It is degenerate. That is, if ijk € I then pj, pj and pk are not
collinear.

i) The interior of any two triangles do not intersect. That is if ijk € Iy and afy €
then Int(Tjjk) N Int(Tepy) = ¢ .

ii1) The boundary of two triangles can only intersect at a common edge.

iv) The union of the all triangles is the domain D = Uijk < 1t Tijk -

Examples of valid triangulations are shown in Figure 2.1.1 and Figure 2.1.2. Note
that the example of Figure 2.1.1 is not convex and that of 2.1.2 is not simply connected.
Even though the diagrams of Figure 2.1.3 and Figure 2.1.4 look alright, the actual
triangulation given by the corresponding I{'s do not represent valid triangulations. In the
case of Figure 2.1.3 the triangle T4¢5 is degenerate. Even if this triangle is eliminated,
what remains is not a valid triangulation because condition iii) would then be violated
since edge e4¢ contains ps. This example would become a valid triangulation if the point
ps were to be moved slightly to the right so as not to be on the edge e46. The
information of Figure 2.1.4 is not a valid triangulation because condition ii) is violated.

It
Pd ok
35 2
5 1 2
4 5 3
6 1 5
4 6 5
6 7 1
8 6 4
7 6 8

Figure 2.1.1. A triangulation of a non convex domain
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Figure 2.1.2. A triangulation of a domain which is not simply connected.
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Figure 2.1.3. Not a valid Triangulation.
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Figure 2.1.4. Not a valid triangulation.

We now want to make some assertions about the possibility of triangulating a domain
containing a collection of data points that is bounded by a simple, closed polygon. First
we note that in the case the domain contains no interior data points it is always possible
to form a triangulation. Just for the sake of interest, we mention two ways that this can
be accomplished. The first way is based upon the fact that every simple closed polygon
with more that three vertices can be split into two polygons. This leads to an algorithm
which recursively splits each subpolygon until only triangles are left. The following
argument which guarantees that each simple closed polygon has a diagonal has been
discussed in [16]. A diagonal is an edge between two vertices that lies inside the polygon
and does not intersect the polygon except at the endpoints.

Splitting a polygon: Let b be the vertex with minimum x-coordinate and ab and bc be its
two incident edges. If ac is not cut by the polygon, then ac is a diagonal. Otherwise
there must be at least one polygon vertex inside Tape. Let d be the vertex inside abc
furthest from the line through a and c. Now edge bd cannot be cut by the polygon, since
any edge intersecting bd must have one endpoint further from line ac.



N

Figure 2.1.5. Any polygon with more than three vertices can be split.

The second approach leads to an iterative algorithm. We first give a definition. A
vertex, pj, of a simple, closed polygon is called protruding provided the following
conditions hold:

1) The interior angle ®;, between the edges, pi-1p; and pipj+1 is less than or equal
to m. (Cyclic notation is used here so that pn+1 = p1)

ii) The triangle Tj.1 j j+1 contains no other vertices of the polygon than p;_1, pj or
Pi+1-

iii) The interior of Tj.1 j j+1 is contained in the interior of D.

It is an easy matter to prove that every simple, closed polygon has at least one protruding
vertex. (The proof is left to the reader. Some people call them ears and so there must be
two of them!). We can triangulate the polygon bounded domain by successively
removing protruding vertices. This approach to triangulating the region bounded by a
simple closed polygon is called the "boundary stripping algorithm." It is easy to
implement, but in a theoretical sense, it is not competitive with other algorithms (see, for
example, the papers of Narkhede & Manocha [175] and Fournier & Montuno [94] among
others.).

Once the boundary of D has been triangulated, it is relatively simple matter to build a
triangulation including the interior points. This can be done by simply inserting them
sequentially in a manner which we now describe:



Insertion of an interior point: If the point to be inserted, p, lies in the interior of the
triangle Tapc, we replace Tape with the three triangles: Tapp, Tocp, Teap. If p lies on an
edge shared by Tape and Tpag, then replace the two triangles Tape and Typag with the four
triangles Thep, Tdbp, Tpcas Tpad-

Figure 2.1.6. Insertion of an interior point.

It is also possible to generalize the insertion idea to include an edge. Once we are armed
with this capability, we know that we can triangulate any polygon bounded domain:
simple connected or multiply connected (i.e. with holes).

Insertion of an interior edge: Assume that the one endpoint, p, lies in the triangle Tap
and that the other endpoint, q, lies in the triangle Txy;. Collect all of the triangles from
Tabc to Txyz which are intersected by edge pq and form a region R with polygon
boundary D. We can split D with polygon apqw, where a is the vertex of Typc not on the
edge common with the other triangles whose union is R and w is the analogous vertex of
Txyz. Now we know that each of these two domains can be triangulated. The union of
these two triangulation, which each contain the edge pq, can replace the previous
triangulation of D.



Figure 2.1.7. Insertion of an interior edge.

In addition to I, which represents the triangulation, it is often worthwhile to generate
and maintain some auxiliary information about the neighbors of each triangle. This
information is useful for traversal algorithms and evaluation algorithms which have a
searching component that determines the particular triangle containing a point where a
function defined piecewise over the triangulation is to be evaluated. One very common
and particularly useful data structure is that which is illustrated in Figure 2.1.8. The first
three columns contain the data of I; with the additional constraint that the reading from
left to right (cyclically), the vertices of each triangle are traversed in a clockwise order.
The next three columns contain the indices of the triangles which are neighbors to this
triangle. The character ¢ indicates that the triangle has an edge that is part of the
boundary of D. The entries of these three columns are also in a special order. The forth
column contains the index of the triangle which shares the common edge with vertex
indices specified in the second and third column. Similar relationships hold for the 5th
and 6th columns. The information represented by this data structure is called a
"triangular grid". The neighborhood information contained in the last three columns does
not contain any "new" information over that of I, but it is often (and this depends of
course on the application) the case that it is useful data which is worth generating a
priori.



Triangles Neighbors
Pi  Pj  Pr | N Ny N
3 4 6 2 4 7
4 5 6 3 1 8
6 5 7 ) 4 2
3 6 7 3 5 1
2 3 7 4 9 6
2 1 3 7 5 ¢
1 4 3 1 6 8
1 5 4 2 7 )
2 7 8 ) ) 5

Figure 2.1.8. An example that defines a triangular grid structure.

Another data structure for representing a triangulation which is useful for some
applications is illustrated by the example shown in Figure 2.1.9 which represents the
same triangulation as that of Figure 2.1.8. Here, for each vertex a list of all vertices
which are joined by an edge of the triangulation is given. This list is given in counter
clockwise order around each vertex. This is called the data point contiguity list. We
mention this particular data structure because of its convenience for dealing with the
optimal Delaunay triangulation discussed in the next section. Also, it is very useful for
computing the parameters of the Minimum Norm Network method [179] which is one of

the most effective C! interpolation methods for scattered data.

Vertex

0O W KW~

Joining Vertices
2,3,4,5
8,7,3,1
1,2,7,6,4
3,6,5,1
1,4,6,7
3,7,5,4
6,3,2,8,5

2,7

-

Figure 2.1.9. The data that defines the data point contiguity list.

Even though there are a number of possible triangulations for any given domain D,
the number of triangles is fixed once the boundary has been specified. More precisely, if
Np represents the number of vertices on the boundary and Nj the number of interior

vertices so that N = Ny, + Nj, then the following formulas hold:

Nt=2N;+ Np -2



and
Ne =3N; + 2Ny - 3,

where N is the total number of triangles and N is the total number of edges. The

importance of these formulas (not so much what the values in the formulas are, but more
the fact that some fixed formula holds) will show up in the next section. If we let M;

represent the number of points joining to p; then it is easy to see that

N
2 M
=l B (Nb +3)
" NitNy 27N

which is approximately 6. For a sphere (or any domain homeomorphic to a sphere) we
have no boundary points and so N = Nj and the analogous formulas are

N¢=2(N-1), Ne =3(N-1), M=6Error!).
2.1.2 Some Special Triangulations

One of the simplest triangulations results from splitting the rectangles of a Cartesian
grid. A Cartesian grid involves two monotonically increasing sequences, xj,1=1,...,n
andyj,j=1,...,m. The grid points have coordinates (xj, yj) and these points mark out
a cellular decomposition of the domain consisting of rectangles. See Figure 2.1.10.
Forming an edge with one of the diagonals of these rectangular cells leads to a
triangulation of the domain. In Figure 2.1.11 is shown a triangulation where a consistent
choice for the diagonal is made. In Figure 2.1.12 is shown a triangulation with mixed
choices for the diagonals. In some applications where dependent ordinate values are
known, it is possible to base the choice of the diagonal upon some criteria such as
minimum jump in normal vector (see Section 2.4 ) or whether or not the diagonal vertices
are separated on connected based upon the hyperbolic contours at the mean value (see the
asymptotic decider criteria discussed in [186]). In general for this type of triangulation
which results from a Cartesian grid, it is not necessary to maintain the triangular grid
structure (see Figure 2.1.8) as this information can be directly inferred from the natural

10



labeling of pjj = (xj, yj). Only the information which indicates which diagonal is selected
needs to be made available.

Ym

Yi+1 7]

Y
Yia

Y2
Y1

Figure 2.1.10. Cartesian Grid.

JSSD A

X1 X, X i1 Xj X i+1 Xn

Figure 2.1.11. Triangulation from Cartesian grid with uniform diagonal choice.

1 (Xl ay_])

X1 X, X i1 Xj X i+1 Xn

Figure 2.1.12. Triangulation from Cartesian grid with mixed diagonals.
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We now want to discuss some special triangulations which result from curvilinear
grids. A curvilinear grid is specified with two "geometry arrays" (xjj, yij), 1= 1,..., M; ]
=1,...,N. A cell Cjj consists of the quadrilateral with the boundary delineated by (xjj,
vij) to (Xi+1j, Yi+1j) to (Xij, yij) back to (xij, yij)- It is assumed that these four points form a
simple (non intersecting) polygon so that the quadrilateral is actually well-defined. This
condition obviously puts some geometric constraints on the values of the geometry arrays
that specify a curvilinear grid.

Figure 2.1.13. An example of a curvilinear grid.

An example of a curvilinear grid is shown in Figure 2.1.13. In this case the cell C73
degenerates to a triangle because (Xg3, Yg3) and (Xg4, Yg4) are the same point and the
cell Cg3 degenerates to an edge because, in addition, (X93, Y93) and (X94, Yo4) are the
same point. The cells C33, C43, Cs53, Cg3 and C73 have been removed from the domain
creating the hole in the interior.

The domain (the union of all of its cells) can be triangulated by simply triangulating
each of the cells by choosing a diagonal to an edge of the triangulation. An example
related to the grid of Figure 2.1.13 is shown in Figure 2.1.14. Here we have modified the
grid by moving the point (x72, y72) a little. This serves to point out that if the cell is not
convex, then there may be only one choice for the diagonal.

12



Figure 2.1.14. Triangulation resulting from curvilinear grid.

We now discuss some special triangulations obtained by subdividing an existing
triangulation. We briefly mention a couple of possibilities. The first is based upon
inserting an additional point into the interior of an existing triangle and thereby forming
three new triangles. This 1is illustrated in Figure 2.1.15. This particular type of
subdivision is sometimes referred to as the Clough-Tocher split because of its association
with a very well known finite element shape function defined over a triangular domain.

Another way to subdivide an existing triangulation is to insert a new point on an
existing edge and split the two triangles (unless the edge is on the boundary) which share
this edge. If all edges are split simultaneously we obtain yet another triangulation where
each previous triangle is replaced by four new ones. Two different ways for forming
triangles from these points is shown in Figure 2.1.16 and Figure 2.1.17 respectively.
These types of subdivision are particularly interesting due to the nested properties of
function spaces which are defined in a piecewise manner over the embedded
subdivisions. This can lead to wavelets and their related multiresolution analysis. For
the efficient application of these triangulations, it is important to have a method of
labeling the triangles which allows an efficient algorithm for finding the labels of all
neighbors of a triangle. The labeling scheme illustrated in Figure 2.1.17 has these
properties. We call it the divide and flip scheme and have found it to be very useful for
implementations. It is related to the spherical quadtrees discussed by Fekete [85].

Figure 2.1.15. Subdivision by inserting a new point that is interior to an existing triangle.
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O

Figure 2.1.16. Nested subdivision triangulation.

AN

NGZAY,
N0

Figure 2.1.17. The divide and flip labeling scheme for a nested subdivision triangulations.
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Figure 2.1.18. A triangulation obtained by splitting each edge of an existing triangulation
and forming triangles as indicated in Figure 2.1.17.

2.2 Optimal Triangulations

2.2.1 Types and Characterizations

I

skinny triangle with
a very small angle

skinny triangle with
a very large angle

Figure 2.2.1. Examples of poorly shaped triangles

There are many possible triangulations of a given, polygon bounded domain D. For
some applications (but not all) it is desirable to avoid poorly shaped triangles. These are
triangles with very large angles or ones with very small angles. This give rise to two
types of optimal triangulations which have been discussed quite widely: the MaxMin and
MinMax. Both of these optimal triangulations have a similar method of characterization.
Associated with each triangulation there is a vector with N¢ entries representing either the
largest or smallest angle of each triangle. The entries of each vector are ordered and then
a lexicographic ordering of the vectors is used to impose an ordering on the set of all
triangulations. In the case of the MinMax criterion, A;j is the largest angle of a triangle
and the entries of each vector, Ay, are ordered so that

A= (A1, A2, ..., An), AjZ Aj, 1 <]
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The smallest of these vectors based on their lexicographic ordering associates with the
optimal triangulation. In the case of the MaxMin criteria, aj, is the smallest angle and the

entries of each vector are ordered the other way so that
at=(ay, a2, ..., any), aj < aj, 1 <.

The largest of these vectors represents the optimal triangulation in the MaxMin sense. In
Figure 2.2.2, six data points are shown which have a total of ten possible triangulations
which are shown in Figure 2.2.3. The associated vectors for MinMax criterion are

Ao =(2.84,2.36,1.99, 1.77, 1.57)
At =(2.98,2.84,1.99,1.91, 1.57)
Aty =(2.98,2.42,1.91, 1.88,1.57)
Az =(2.84,2.36,2.32,1.99, 1.40)
Arq =(2.42,2.36,1.88,1.77, 1.57)
Ars =(2.98,2.42,1.95,1.91, 1.27)
Are =(2.42,2.36,2.32,1.88, 1.40)
Ar7 =(2.42,2.36,2.32,1.50, 1.50)
Arg =(2.42,2.36,1.95, 1.74, 1.50)
A9 =(2.42,2.36,1.95,1.77, 1.27)

which we rearrange into decreasing order to obtain

At =(2.98,2.84,1.99,1.91, 1.57)
Ars =(2.98,2.42,1.95,191, 1.27)
Aty =(2.98,2.42,1.91, 1.88, 1.57)
A3z =(2.84,2.36,2.32,1.99, 1.40)
Ao =(2.84,2.36,1.99, 1.77, 1.57)
Are =(2.42,2.36,2.32,1.88, 1.40)
Ar7 =(2.42,2.36,2.32,1.50, 1.50)
A9 =(2.42,2.36,1.95,1.77,1.27)
Arg =(2.42,2.36,1.95,1.74, 1.50)
A4 =(2.42,2.36,1.88,1.77,1.57)

which implies the following ordering
TYU<TI<TY<TTI<TE<TO<T3<T2<7T5<T]

and so t4 is the optimal triangulation in MinMax sense. On the other hand, the
associated vectors for MaxMin criteria sorted in increasing order are

ar; =(0.02, 0.04, 0.35, 0.46, 0.50)
arp =(0.02,0.11, 0.42, 0.46, 0.50)
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ars =(0.02,0.11, 0.50, 0.58, 0.88)
ar3 =(0.04, 0.14, 0.35, 0.37, 0.66)
ato =(0.04, 0.14, 0.35, 0.46, 0.62)
ate =(0.11, 0.14, 0.37, 0.42, 0.66)
ar7 =(0.11, 0.14, 0.37, 0.46, 0.70)
at4 =(0.11, 0.14, 0.42, 0.46, 0.62)
arg =(0.11, 0.14, 0.57, 0.58, 0.70)
ar9 =(0.11, 0.14, 0.58, 0.62, 0.88)

which results in the following ordering
TI<T<T5<TI<T<T6<T7<T4<1T8<719
and so 79 is the optimal triangulation in the case of the MaxMin criterion.

(.50,.90)

® (.50,.80)

(:20,.50) (.85,.40)1

t(.40,.20) (.70,.15)

Figure 2.2.2. Six data points.
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Figure 2.2.3. Ten triangulations of six data points.

In the case where D is the convex hull of the points of P, there is an important
relationship between the MaxMin triangulation and the Dirichlet tessellation. The
Dirichlet tessellation is a partition of the plane into regions Rj, i = 1, . . ., N called
Thiessen regions. The Thiessen region Ry consists of all points in the plane whose
closest point among p;, 1 =1, ..., nis px. A Dirichlet tessellation is usually illustrated
by drawing the boundaries of the Thiessen regions. The collection of these edges is
sometimes referred to as the Voronoi diagram ( see [252]) An example is shown in the
left image of Figure 2.2.6. In the right image of Figure 2.2.6 is shown the MaxMin
triangulation which is also called the Delaunay triangulation. It is dual to the Dirichlet
tessellation in that the edges of this optimal triangulation join vertices which share a
common Thiessen region boundary. We have included the great circles in the left image
of this figure so as to point out another important property of the Dirichlet tessellation
and its companion Delaunay triangulation. By definition, the edges of the Thiessen
regions meet at triads (possibly more than three edges meet in some special,
neutral/cyclic cases) which are equally distant to three points. These three points will
form a triangle of the optimal triangulation and the great circle will not contain any other
data points.

We can be a little more formal about this properties if we introduce some notation.
Recall that It = { (i(m), j(m), k(m)), m = 1, ... ., Nt} so that the three data points pj(m),
Pj(m)> Pk(m) Will be the vertices of a triangle of the triangulation. We assume that the
neighbor information of the triangular grid is given by three arrays ij(m), jk(m), and
ki(m), m =1, ..., N¢. Let Vi be the point which is equidistant from pj(m), pj(m) and
Pk(m) and Cy = { p : [Ip - Vil| £ [V - Pa@m)ll; @ =1, J or k} be the circumcircle (disk) for
this triangle which has Vi, as it center. The Delaunay triangulation is characterized by
the fact that Cp, does not contain any other data points p;, i =1, .. ., N other than pjm),
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Pj(m) and pkm). The points Vi, are the vertices of the Voronoi diagram. In order to draw
the Voronoi diagram we simply start with some Vy, and draw the edges to the three
points that are joined to it; namely Vijm), Vikm) and Viim). If anyone of ij(m), jk(m) or
ki(m) is zero (say ij(m), indicating the edge joining pj(m) and pj(m) is on the boundary of
the convex hull) then we draw the ray emanating from Vy, in the direction perpendicular
to the appropriate edge (which is pjm)pjm) if 1j(m)=0, pjm)Pk(m) if jk(m) = 0 and
Pk(m)Pi(m) if ki(m) = 0). If we go through the list of triangles and draw three edges for
each Vi, we will actually be drawing each edge (not each ray) twice. We can avoid this
duplication by (for example) testing whether or not m > ij(m), m > jk(m), m > ki(m)
before we draw the corresponding edge.

Pim) = Pkiijm))

= Pidjm))

Figure 2.2.4. Drawing the Dirichlet tessellation from the triangular grid structure.

Because of this relationship between the Dirichlet tessellation and the optimal
MaxMin triangulation, we can extend the idea of MaxMin or Delaunay triangulation to
any domain where we can compute the distance between two points. The sphere
provides an interesting and useful example. Here the distance between two points p and
q is easily computed as cos-!(peq) so the Dirichlet tessellation is also easy to compute.
An example is shown in the right images of Figure 2.2.5. The left image depicts the
triangulation which is dual to this tessellation.
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Figure 2.2.5. Spherical triangulation and tessellation

Figure 2.2.6. The Dirichlet tessellation and its dual triangulation.

There have been many other criteria for characterizing optimal triangulations that
have been studied and discussed in the literature. Some turn out to be equivalent to those
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we have mentioned here and some only appear to be similar and so one needs to be rather
careful. Even though the terminology can be similar, the criterion of minimizing the
maximum angle is not the same as the MinMax criterion we have described here. It is
easily the case the two quite different triangulations with different vectors A¢ (as defined
above) could have the same maximum angle and could both be a triangulation which
minimizes the maximum angle. The example of Figure 2.2.2 has this property. Each of
the triangulations t¢, 17, 79, T and 14 have a maximum angle of 2.42 which turns out
to be a minimum and so any one of these triangulations would satisfy the criterion of
minimizing the maximum angle, while only 14 satisfies MinMax criterion described

here. Overall, the topic of optimal triangulations can be rather technical and one has to
be careful when comparing results found in the literature.

2.2.2 Algorithms for Delaunay Triangulations

In this section we discuss some ideas and techniques leading to algorithms for
computing the Delaunay triangulation of a set of points in the plane. In general, this is a
very rich and full area of research and here we can only provide a glimpse. The literature
is very abundant with both practical and theoretical papers on this subject. There is not a
single "best" algorithm. The choice depends upon the particular application and the tools
and resources available. It is a good strategy to be armed with a collection of ideas, tools
and techniques so that an effective algorithm can be custom designed for the application
at hand. Our approach for the material for this section is based upon a discussion of the
ideas behind a few number of selected algorithms. Our selection is based upon potential
usefulness of the ideas and also what would be representative. In addition, we
particularly interested in those ideas which extend most easily to three dimensions. But,
just for the sake of interest, we have included the description of one 2D algorithm which
does not extend at all to 3D!
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@ DataPoint P [ = Boundary of Convex Hull

O Vertex Vm —— Voronoi Diagram

Theissen Region @ Circumscribing Circle (Dsk)

Figure 2.2.7. Notation and terminology for Delaunay triangulation and Dirichlet
tessellation.

The Swapping Algorithm of Lawson [139]: The basic operation of this algorithm
consists of swapping the diagonal of a convex quadrilateral. Lawson [138] showed that
any triangulation of the convex hull can be obtained from any other triangulation by a
sequence of these operations. (Later this property was established for nonconvex
domains by Dyn and Goren [66].) Furthermore, Lawson proved that if the choice of the
diagonal is made on the basis of the MaxMin criterion for the quadrilateral only,
eventually the global optimal triangulation will be obtained. In other words, for this
criterion, a local optimum is a global optimum. A typical implementation of this type of
algorithm would insert new points (say in sorted x-order) in the interior of an existing
triangulation or connect to all points on the boundary which are visible from the new
point. This new triangulation is then optimized by testing and possibly swapping the
diagonals of convex quadrilaterals. It is interesting to note that this type of algorithm
will not necessarily produces the MinMax because for this criterion, a local extreme is
not necessarily a global optimum. The example of Figure 2.2.2 of the previous section
illustrates this. Based upon the MinMax criterion, 14 is optimal and tg is a local

minimum. Locally optimal swaps of diagonals from tg would never lead to t4. The
algorithm could easily get trapped in a local extreme at tg. The ideas of simulated

annealing can be used to develop algorithms which can escape from these local extrema.
See Schumaker [225] for example.
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The Algorithm of Green & Sibson [107]: This algorithm depends heavily upon a
particular data structure used to store the Delaunay triangulation (or Dirichlet
tessellation). For each object (a Dirichlet tile or window boundary constraint) is recorded
in a "contiguity list" consisting of all objects with which it is contiguous. This data
structure is very similar to the contiguity list structure we described in Figure 2.1.9 but it
also includes some window boundary constraints. New points are inserted sequentially.
We quote directly from [107] as to how this done.

The contiguity list for the new point is then built up in reverse (that is,
clockwise) order and subsequently standardised. We begin by finding
where the perpendicular bisector of the line joining the new point to its
nearest neighbour meets the edge of the nearest neighbour's tile, clockwise
round the new point. Identifying the edge where this happens gives the
next object contiguous with the new point and this is in fact the first to go
onto its contiguity list. The new perpendicular bisector is then constructed
and its incidence on the edge of this new tile is examined to obtain the
subsequent contiguous object: successive objects are added to the
contiguity list in this way until the list is completed by the addition of the
nearest neighbour. Whilst this being done old contiguity lists are being
modified: the new point is inserted in each and any contiguities strictly
between the entry and exit points of the perpendicular bisector are deleted,
the anticlockwise-cyclic arrangement of the lists making both this and the
determination (sic) of the exit very easy.

This insertion algorithm requires the computation of the nearest existing data point to
the data point that is to be inserted. The authors discuss an algorithm which takes
advantage of the tessellation computed so far. In the authors words: "Simply start at an
arbitrary point and "walk" from neighbour to neighbour, always approaching the new
point, until the point nearest to it is found."

Figure 2.2.8. An aid to the Green and Sibson algorithm.

The algorithm of Bowyer [21]: Bowyer described an algorithm for inserting a new
point (lying in the convex hull) into an existing Delaunay triangulation. An example
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given by Bower and which we include in Figure 2.2.9 serves to define this data structure.
(A careful examination of this data shows that it is the same as the triangular grid
structure of Figure 2.1.8). In the terminology of Bowyer, the forming points for a vertex
are simply the vertices of the triangle which has this particular vertex as the center of its
circumcircle. Since each triangle gives rise to a vertex, giving a list of indices of the
forming points for each vertex (as Bowyer does) is equivalent to giving a list of indices
of the data points which comprise each triangle of triangulation. Except for change in
ordering, the neighboring vertices is exactly the same as the indices of the triangle
neighbors as given in the triangular grid data structure.

Vertex Forming points Neighboring vertices

1 2 3 1 2 3
Vi Pg Py Ps V4 ) Vs
\'%) Py P4 P3 V3 ) \%i
V3 P> P3 P4 Vo Va Vs
V4 P> Ps Py Vi V3 )
A\ P P3 Py V3 ) )
Ve Pg Pg P4 V7 Vi )
\%i P Pg P4 Ve \%) )

Figure 2.2.9. Illustrating the algorithm of Bower[21].

In order to insert a new point (Q in Figure 2.2.9) within the current convex hull of the
data points, Bowyer [21] gives the following algorithm:

1. Identify a vertex currently in the structure that will be deleted by the new point
(say V4). Such a vertex is any that is nearer to the new point than to its forming

points
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2. Perform a tree search through the vertex structure starting at the deleted vertex
looking for others that will be deleted. In this case the list will be: {V4, V3, Vs}

3. The points contiguous to Q are all the points forming the deleted vertices: {P>,
Ps, P4, P3, P7}

4. An old contiguity between a pair of those point will be removed ( P, - P4 say)
if all its vertices {V4, V3} are in the list of deleted vertices.

5. In this case the new point has five new vertices associated with it: {W, W,
W3, W4, W5}, Compute their forming points and neighbouring vertices. The
forming points for each will be the point Q and two of the points contiguous to Q.
Each line in the tessellation has two points around it (the line V3 - V3, for
example, is formed by P3 and P4). The forming points of the new vertices and
their neighbouring vertices may be found by considering vertices pointed to by
members of the deleted vertex list that are not themselves deleted, and finding the
righs of points around them. Thus W5 points outwards to V, from Q and is
formed by {P3, P4, Q}.

6. The final step is to copy some of the new vertices, over writing the entries of
those deleted to save space.

The Algorithm of Watson [254]: This algorithm relies on the property of a
Delaunay triangulation that a triple of data point indices (i, j, k) will be in I; provided the
circumcircle of pj, pj, and pk contains no other data points. As with the other algorithms,
this algorithm is based upon inserting a new point into an already existing Delaunay
triangulation. The general philosophy of Watson's approach is described by the
following two steps:

1. Find all triangles whose circumcircle contains the point to be inserted.

2. For each of these triangles, form three new triangles from the point to be
inserted and the three edges of this triangle and test to see if any of these three
new triangles contain any other data points. If not, then add this new triangle to

the triangulation.

More details for this general approach are given in the flow diagram of Figure 2.2.10
which is based upon the flow diagram of [254].
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Get Next Point

Do for all current
n-simplices

Is new point within
this circumsphere?

yes

Do for each face of
old n-simplex

Calculate new
circumsphere

Do for all current
data points

Is this old point within
new circumsphere?

yes

Reject the new
n-simplex

Figure 2.2.10. Flow Diagram for Watson's Algorithm.

Watson [254] describes a number of features and details to make the basic algorithm
efficient and eventually discusses a particular implementation which he says has an
expected running time which is observed to not increase more that N3/2,

The embedding/lifting approach: Algorithms of this type are based upon a very
interesting relationship that exists between the three dimensional convex hull of the lifted
points (i, Vi, Xi2 + yi2) and the Delaunay triangulation. Faces on the convex hull are
designated as being either in the upper or lower part. The lower part consists of faces
which are supported by a plane that separates the point set from (0, 0, -00). The
Delaunay triangulation is obtained directly form the projection onto the x-y plane of the
lower part of the convex hull. See [27] and [68]. An algorithm for computing the convex
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hull which is based on an initial sort followed by a recursive divide-and-conquer
approach has been described by Preparata and Hong [202]. This algorithm is also
covered in [68] and [203] Theoretically the algorithm is optimal time O(n log(n)), but
Day [49] reports that empirical data implies a worst-case complexity of O(N2) The paper
of Day [49] covers many of the details and special case issues of practical interest for
implementation which are often brushed over in more theoretical papers.

Divide and Conquer Algorithms: The general structure of this type of algorithm is
to divide the data set into subsets A and B, solve the problem for A and solve the problem
for B and merge the results into a solution for A U B. See Figure 2.2.11. Divide and
conquer algorithms can lead to theoretically optimal algorithms, but often fail to be
competitive in practical usage. The merging portion is often the most troublesome in
trying to maintain bounds on the running times and complexity of the algorithm.

Figure 2.2.11. Divide and Conquer Algorithms

2.3 Visibility Sorting og Triangulations

This is an example of an area that is interesting in 3D but not in 2D. It is possible to
make a definition of a visibility sort for a triangulation which is completely analogous to
that of a tetrahedrization, but there does not appear to be any application or use for such a
property. We defer further discussion on visibility sorting to Section 3.3.

2.4 Data Dependent Triangulations

The topic of data dependent triangulations arises within the context of determining a
modeling function F(x, y) for the data (F;; xj, yi), 1= 1, ..., N. A relatively simple
approach to defining a modeling function is to first form a triangulation of the convex
hull of the independent data (xj, yj),i=1, ..., N and then define F to be piecewise linear
over this triangulation. This will yield a CO (continuous) function which interpolates the
data; that is, F(xj, yi) = F;, i=1, ..., N. We denote this function by Fr(x,y). Any
triangulation of the independent data (xj, yj), 1= 1, . .., N will suffice for this approach.
While we are well aware of the many desirable properties of the Delaunay triangulation,
it might very well be the case that some other triangulation whose choice would depend
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upon the values F;, i = 1, ., . ., N would lead to some desirable properties for the
modeling function F. This is the basic idea of data dependent triangulation. Of course,
there are potentially many ways to accomplish this, but we choose for this discussion
here to briefly describe the criteria called "nearly C1" as proposed in [67]. An ordering is
imposed on the collection of all possible triangulations of the convex hull in the
following manner. First a local cost function for each edge e;j =1, ..., Nje = N¢ - Np is
defined and denoted by S(FT, e;). (We will shortly describe the four examples of local
cost functions covered in [67]). If T and T' are two triangulations, then

T<T
provided the vector
(s(F1, 1), s(F1, €2), ., -, ., S(FT, en;e))
is lexicographically less than or equal to
(s(F, e1), s(Fr, €2), -, ., ., S(FT, eNje))-

It is assumed that the components of these vectors are arranged in nonincreasing order.
The goal is then to find the optimal data dependent triangulation which is defined by
having the smallest associated vector under this lexicographical ordering. Since there are
only a finite (albeit possibly very large) number of possible triangulations, we know that
a global minimum exists even though it may not be unique and it may not be so easy to
compute. The algorithm used in [67] is similar to the swapping algorithm of Lawson
(which we have described above in Section 2.2) in that an initial triangulation is obtained
and then an internal edge of a convex quadrilateral is considered. If T' < T, where T' is
the same triangulation as T except the diagonal of the convex quadrilateral has been
switched, then this switch is made and other edges are considered for potential swapping.
Since each swap moves strictly lower in the lexicographic ordering, we are guaranteed
that this algorithm will eventually converge after a finite number of steps. This means
that swapping any edge would not move to a smaller triangulation. This limit
triangulation may not be the global minimum, it is only guaranteed to be a local
minimum and steps to find the global minimum must do more than swap diagonals which
improve (with respect to the ordering) the triangulation.

p

(X,
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Figure 2.4.1. Notation for local cost function definitions.

We now describe the four local edge cost functions used in [67]. Let Py =ajx + by
+ ¢1 and Py = apx + by + ¢5 be the two planes defined over the two triangles of a convex
quadrilateral.

1) The angle between normals: The local cost function is taken as the acute angle
between N1 and Ny which are the respective normals for Py and P».

s(Fr, €) = cos-1(A)
where

ajax+bibstl

A= 2 2 2 2
\/(a1+b1+1)(a2+b2+1)

i1) The jump in normal derivative: This cost function is the difference between the
derivative of P; and P,. This derivative is taken in the direction perpendicular to the

edge dividing the two triangles.
s(FT, €) = [nx(aj-a2) - ny(b1-bs)]

where (nx, ny) is a unit vector perpendicular to the edge e.

iii) The deviations from linear polynomials: The cost functions measures the error
between P and P;, evaluated at the other point of the quadrilateral.

S(FT, €) =/(P1(xi, i) - Fi)2 + (P2(xk, Yk) - Fi)?

iv) The distance from planes: This cost functions measures the distance between the
planes P1 and P2 and the corresponding vertex of the quadrilateral.

s(F, ) = \/ (P1(x;,yi)-Fi)? . (Pa(xk.yk)-Fi)2

2 2 2 2

Some typical results are given in [67] which confirm the expectation that using the
optimal data dependent triangulation improves the overall fitting properties of Fr over
that of the Delaunay triangulation, which, by the way, is used as the initial triangulation
for the swapping algorithm. It is observed that long thin triangles tend to appear where
the data seems to indicate a function that is increasing (or decreasing) relatively rapidly
in a certain direction. The use of the data dependent triangulation generally gives an
overall reduction in errors when certain test functions are used to generate the data.
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As we have mentioned, the local swapping algorithm used in [67] can only find a
local minimum. In order to move more closely to the globally optimal data dependent
triangulation, Schumaker [225] and Quak and Schumaker [204], [205], [206] have
involved the tools of simulated annealing. More details on this are contained in Section
3.6 on data dependent tetrahedrizations. We include here the results of one example
described by Schumaker. The data consists of

(Fij; xi, ¥j); Xi,yj=0.0,0.2,0.4,0.6,0.8, 1.0,
where
F(x,y) = (y - x2)+.

Three triangulations are shown in Figure 2.4.2. The first is the Delaunay triangulation of
the independent data. The next is the triangulation which results from the local swapping
algorithm of [67] using the local cost function of "angle between normals". The last is
the triangulation after simulated annealing has been applied. The associated vectors for
each of these triangulations is given in Figure 2.4.4.

Figure 2.4.2. Examples of data dependent triangulations.
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Figure 2.4.3. The graphs of Schumaker's example. See [225].
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Angles between normals for Delaunay triangulation:

55.077 48.155 44.684 39.801 39.588 38.378 37.734 35.445 33.992

33.786 33.561 33.162 30.470 28.898 28.287 27.284 27.284 26.003

23.633 21.958 20.814 17.886 16.066 15.942 15.642 11.310 10.302
9.661 7.294 7.294 7.294 6.843 0.649 0.649 0.459 0.458
0.458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000

Angles between normals for locally optimal triangulation

35.993 30.590 26.070 23.610 21.813 21.558 16.563 16.521 15.793

12.810 11.929 11.310 10.646 10.261 9.622 8.844 8.707 8.321
8.076 8.047 5.794 5.563 3.777 0.649 0.649 0.459 0.459
0.458 0.458 0.458 0.448 0.020 0.020 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000

Angles between normals for annealed triangulation

26.070 22.929 22.113 20.049 17.257 16.563 16.521 13.031 12.505

11.929 10.389 10.270 10.261 8.954 8.321 7.844 5.962 5.794
5.256 1.652 1.480 1.025 0.649 0.648 0.459 0.458 0.458
0.448 0.447 0.020 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000

Figure 2.4.4. Angles for the data dependent triangulation.
2.5 Affine Invariant Triangulations

The desirable properties of the Delaunay triangulation have been previously
discussed.  Unfortunately, this optimal triangulation is not invariant under affine
transformations and this means that methods for analyzing and visualizing data that use
this particular triangulation can be affected by the choice of units used to measure the
data. This could be considered an undesirable property. In this section we describe a
relatively new method for characterizing and computing an optimal triangulation which
is invariant under affine transformations. Before we proceed with the discussion of these
techniques, we wish to motivate further the desirability of affine invariance.

As we have mentioned earlier, one of the main purposes for triangulations and
tetrahedrizations is their use in defining functions in a piecewise manner over the domain
of a data set. It would be undesirable if the happenstance of the choice of units used to
measure the data were to affect the definition of a data modeling function. But this does
happen with the Delaunay triangulation. The example of Figure 2.5.1 points this out.
This data represents the independent data and the dependent data is not given as it not
important in this context. The data is the same in both the left and right graphs of Figure
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2.5.1; the only difference is that in the left graph we have used years and £ (pounds,
British monetary unit, equal (approximately and assumed here to be exactly equal ) to
two US dollars) and in the right graph we have used months and dollars. If we use the
units of years and £ then we can see that the three vertices (lyr, 1£), (0.5yr, 3£), (2yr, 2£)
will mark out a triangle to be included in the list of triangles for the Delaunay
triangulation. But on the other hand if we use months and $ we can see that the
circumcircle defined by these same three vertices (12mon, 2$), (6mon, 6$), (24mon, 49)
contains the data point (6mon, 4$). Therefore, these three vertices will not comprise a
triangle of the Delaunay triangulation if these units are used. This simple example points
out the possible affects of the choice of the units of measurement. The choice of the units
of measurement is the same as a change in scale, X <— ax and y «<— by. Uniform scale
changes of the type x <— ax, y < ay will not affect the Delaunay triangulation.

7

6 +
5 5
4 $ 4
£3 + 3
2 -+ + 2
1 1

1 2 3 4 5 10 20 30 40 50

years months

Figure 2.5.1. Two different units used to measure the same data lead to two different
Delaunay triangulations.

We now discuss how to avoid this problem. It would be possible to simply normalize
all data ranges to one unit by scaling by the range. But this approach would mean that
rotations of the data could have an effect on the Delaunay triangulation meaning the final
data model would be affected by rotations of the data. In other words, the placement and
alignment of the axes for the measurement of the data would have an affect on the data
modeling function and subsequently on our analysis of the data and this we would like to
have the opportunity to avoid. It would, in general, be useful to have a characterization
(and subsequent algorithms) for an optimal triangulation which is not affected by affine
transformation. An affine transformation is a map of the form

(x,y) = A(x,y) +¢

where A is a 2 x 2 matrix and ¢ is two-dimensional point. Affine transformations include
not only scale changes and rotations, but also, translations, reflections and shearing
transformations. The approach to such an optimal triangulation covered here is through
the duality that exists between the conventional Delaunay triangulation and the Dirichlet
tessellation.  As we previously described the characterization of the Delaunay
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triangulation (as a MaxMin triangulation), it was heavily dependent upon angles and
angles are affected by scaling transformations and so it should be no surprise that the
Delaunay triangulation is also affected by scaling transformations. But the definition of
the Dirichlet tessellation uses only distance and we know that the Delaunday
triangulation is dual to (a direct result of) the Dirichlet tessellation. The approach here is
to use a method of measuring distance which is invariant under affine transformations.
The Dirichlet tessellation based upon this new method of measuring distance will have a
dual which will serve as our optimal triangulation. Rather than use the standard

Euclidean norm [|(x,y)||2 =\/x2 + y2 we propose the use of the following norm

> -Y,
¥y -0 Ty ) U

e, )|l = (e, y 2.,5.1)
-2, > y
2 2 2 2
>y - Ty - )
where
N N
Z(Xi - 1x)? D Xi
2 =l =1
Zy = N ) Hx = N
N N
D (yi - by)? Sy
2 =l =
2y = N ’ Hy = N
N
D (xi - )(yi - y)
i=1
2y = N
and
v Xy M, X, T M, Xy —H,
yl_/uy y2_luy yN_lLly

We have used the subscript of V on the norm to explicitly indicate that this method of
measuring distance is dependent upon the data set. Change the data set and you change
how you measure distance but the distance between any two data points will remain
constant.. This norm and its use within the context of scattered data modeling was first
described in [181]. This norm has the property that it is invariant under affine
transformations. More precisely,
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IP-Qllv = [IT(P) - T(Q)llT(v)

for any two points P = (X, y) and Q = (u, v) and any affine transformation

e[ o)

Here, T(V) (used as a subscript in (2.5.2)) is the transformed data

X, — X, — Xy —
T(V): T 1 /ux T 2 lux T N /ux
i~ H, Yo~ H, Yn T H,

(2.5.2)

Figure 2.5.2 illustrates the properties of this new method of measuring distance. Each
of the data sets shown in this figure are affine images of each other. Starting in the upper
left and moving in a clockwise direction, the transformations are: counter clockwise
rotation of 44 degrees; a scaling in x by a factor of 2; a scaling in y by a factor of 0.4.
The four ellipses in each figure represent points which are 1/4, 1/2, 3/4 and 1 unit(s) from
their center point as measured with the affine invariant norm. In Figure 2.5.3 we show
the Dirichlet tessellation of these four affinely related data sets and in Figure 2.5.4 we
show the corresponding dual triangulation and as one can see the triangulation is

unchanged by these transformations.
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Figure 2.5.2. Affine transformations of a data set and points equally distant (affine
invariant norm) from a point.
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Figure 2.5.3. The Dirichlet tessellation (affine invariant norm) of affine transformations
of a given data set.
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Figure 2.5.4. The triangulation dual to the Dirichlet tessellation (affine invariant norm) of
a given data set and some affine transformations.

As a comparison, we have also included the Delaunay triangulation based upon the
standard Euclidean norm in Figure 2.5.5. And as we indicated earlier, we can see that
triangulation results are affected by the transformations. Not all triangles are changed,
but some are.
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Figure 2.5.5. The Delaunay triangulation of a data set and some affine transformations.

And now some practical information on how to incorporate this feature in to an
algorithm for computing triangulations. If you already have an procedure for computing
an optimal triangulation, then it is possible to modify it slightly to achieve the results we
have described in this section. Say for example that the procedure is based upon
Lawson's algorithm and there is a subprocedure which decides whether or not to switch
the diagonal of a quadrilateral formed from two triangles. It might be that this procedure
is based solely on Euclidean distance. That is, the center and radius of the circumcircle
of three points is determined and the distance to the center from the fourth point is
computed so as to make this decision. In order to modify this subprocedure, we only
need to replace the use of the Euclidean norm with the affine invariant norm described
here. The equations for computing circumscribing circles (ellipses) for a quadratic norm
in general are given in [182]. If, on the other hand, the procedure you are already using
is known to be rotation invariant, then there is even an easier way to affect the results of
the affine invariant triangulation. This is based upon the factorization of the matrix
which defines the affine invariant norm. We denote this matrix by A(V) so that we have

e = | ]

y
The matrix A(V) can be factored (Cholesky) into
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AV)= (l” 0 j[l” l”j =LV )L)

121 122 0 122

Here the notation L(V)* denotes the transpose of L(V).

Using this factorization, we have that
[ 3) = G 0) =| 7 | = e )
y

which means measuring distances with the affine invariant norm is the same as
measuring distance in the standard Euclidean but with the points transformed by
multiplying by L(V). This means that we can achieve the result of the optimal affine
invariant triangulation by computing the standard Delaunay triangulation on the
transformed data

(Xi, Yi) = (xi, y)L(V)

In summary, we need only compute

a1 a,.a,, —a’
li1=4a, , by =—F—, b= |[+=2—2
\ait

5, S 5,
where aj1 = ) 2,3212 ) Zanda22= 2.2 5
szy—(zxy) szy_(zxy) ZXZy'(ny)

and apply any rotation invariant triangulation algorithm to the transformed data
Xi=1l1xi +lyi
Yi = laoyi, i=1,...,N.

2.6 Interpolation in triangles

We now take up the topic of interpolating into (or over) a single triangular domain.
The interpolants we describe here form the basic building blocks for constructing the
global interpolants which have piecewise definitions over the individual triangles of a
triangulation. The domain here is a single triangle, T = Tjjk with vertices Vj, Vj and Vi,
and the data consists of values given on the boundary of the triangular domain. We need
to differentiate between two types of boundary data. If the data consists of function and
certain derivative values specified only at the vertices (or possibly other points such as
midpoints), then we call this discrete data. 1f, on the other hand, the data is provided on
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the entire boundary of the triangle, we refer to this type of data as transfinite data. The
importance of an interpolant which will match transfinite data is that it serves as a
prototype for developing a large variety of discrete interpolants. This is accomplished
through the process of discretization where the data required for a transfinite interpolant
is provided by means of using some interpolation scheme only on the boundary, discrete
data. For example, given only data values at the vertices, we can use linear interpolation
along an edge to produce the transfinite data required by the transfinite interpolant.

There is a second concept which is rather important for interpolants defined over
triangles and this has to do with the degree of continuity of the global interpolant. Often,
we require that the global interpolant at least be continuous. We call such an interpolant
a CO interpolant. If the global interpolant has continuous first order derivatives, we say it
is a C! interpolant. A CO interpolant for a single triangle is one which interpolates to
boundary data consisting of only position values, either at the vertices (and midpoints)
only or on the entire boundary. A C! interpolant for a single triangle is one which will
interpolate to first order derivative data specified on the boundary. But this must be done
in a manner so as to guarantee C! continuity across the boundary edges. So, if the cross
boundary derivative varies quadratically along an edge, then the data on this edge must
be sufficient to uniquely determine this derivative so that on an adjoining triangle we will
have exactly the same cross boundary derivative. For this reason, it is common for C!
interpolants to have linearly varying cross boundary derivatives which are determined by
their values at the two endpoint vertices.

Combining the two concepts of discrete and transfinite data and CO and C! data leads
to four types of triangular interpolants as indicated in Figure 2.6.1 This general area of
interpolation in triangles is fairly rich and well developed and we urge the really
interested reader to follow the citations into the literature after taking a look of the
sampling we have chosen to include here. Figure 2.6.1 serves as an outline for the
remainder of this section. We first cover CO, discrete interpolants, then a sampling of
three CO, transfinite interpolants. This is followed by the description of a C!, discrete
interpolants. We have chosen to include a discretized version of the minimum norm
triangular interpolant (see [178]). Another rather popular Cl, discrete interpolant is the
Clough/Tocher interpolant often mentioned in conjunction with the finite element
method. Much has been written about this interpolant in the past and so we do not
include it here. This section is concluded with a description of a C!, transfinite
interpolant called the side-vertex interpolant [177]. It is one of the easiest to describe and
the most versatile to use. It also generalizes rather nicely to a tetrahedral domain.

Discrete Transfinite

C0 Section 2.6.1 Section 2.6.2

c! | Section 2.6.3 Section 2.6.4

Figure 2.6.1. Outline of Section 2.6
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2.6.1 CY, Discrete Interpolation in Triangles

The lowest degree polynomial, CO discrete interpolant is linear and it is unique.
Given the data F(Vj), F(V;) and F(Vy), the coefficients of the linear function

F(x,y)=a+bx +cy
which interpolates this data can be found by solving the linear system of equations
a+bx; + cy; = F(Vj)
a + bx; + cyj = F(Vj)
a + bxg + cyk = F(Vy).
Another path to this basic linear interpolant is via barycentric coordinates. Given a point

V = (x, y), barycentric coordinates, bj, bj and b of this point relative to the triangle Tijk
are defined by the relationships

{XJ =b;V;+ ijj + b Vi
y

1=0b;+ bj + bk .
The linear interpolant now takes the form
F(x,y) = F(V) = biF(Vj) + bjF(Vj) + bkF(Vy) .

There are several alternative ways of defining or determining the barycentric
coordinates of a point. For example,

_Ai

A Ax
. A _ A
bi="7 b=

where Aj, Ajand Ag represent the areas of the subtriangle shown in Figure 2.6.2 and A is
the area of Tjjk. Also,

X-Xk Xj-Xk X-Xj Xj-Xk X-Xj X{-X;
b lykyind L yviviev y-yi iy
U XXk XXk I XXk XXk | XkXj XX
YisYk Yi-Yk Yi-Yk Yi-Yk Yk-Yj Yi-Yi
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Y
Figure 2.6.2. Areas leading to barycentric coordinates.

Given the values at the three vertices and the three midpoints of a triangle, there is a
unique quadratic which interpolates this data,

Qxy)= F(Vibi(b; - bj - bi) + F(Mji)4bjbi
+ F(Vj)bj(b; - bj - bi) + F(Mik)4bibk
+ F(Vigbi(bk - bj - bj) + F(M;;)4bib;
where Mjk = (Vj + Vi)/2, Mik = (Vi + Vi)/2 and Mj; = (Vi + Vj)/2.

A common way to specify a cubic along an edge is to use the Hermite form which
involves the first order directional derivatives along the edges

F'ki(Vi) = (xk - x)Fx(Vi) + (yk - yi)Fy(Vi)

which are further illustrated in Figure 2.6.3.
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Figure 2.6.3. The notation for the six directional derivatives.
The six directional derivative at the three vertices along with F(Vj), F(V;) and F(V)

do not uniquely determine a cubic since the bivariate cubics are of dimension 10. The
interpolant

2 2 2
C(x,y)=  F(Vib;(3-2bj) + F'ki(Vi)b; bk + F'ji(Vi)b; b;
2 , 2 , 2
+ F(Vj)b; (3-2bj) + Fijj(Vib; bi + Fi(Vjb; bk
2 , 2 , 2
+ F(Viobi(3-2bk) + Flik(Vi)by bi + Fjk(Vi)by bj
+ wbibjbk

will match this function and derivative data for any value of w. This remaining degree of
freedom represented by w can be absorbed by a variety of conditions. For example, it
can additionally be required that the interpolant match some predescribed value at the
centroid. Another common choice is

w = 2[F(Vi) + F(V;j) + F(Vi)]

1
+7 [F%i(Vi) + Fji(Vi) + Fjj(Vj) + F'j(Vj) + Fix(Vi) + Flik(Vi)]
which guarantees quadratic precision and is a result of discretization of a number of
transfinite interpolants (see [189]). Quadratic precision means that whenever the data

comes from a bivariate quadratic function the interpolant will become this very same
quadratic polynomial.

2.6.2 CY, Transfinite Interpolation in Triangles
In this section, we only give a sampling of three interpolants which will interpolate to

arbitrary function values on the boundary of a triangular domain, Tjjx. More information
on this general topic can be found in [189].
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Figure 2.6.4. The side-vertex interpolant notation.

The Side-Vertex Interpolant: The side-vertex interpolant is built from three basic
interpolants which are defined by linear interpolation along line segments joining a
vertex and the opposing side. See Figure 2.6.4 In terms of barycentric coordinates, we
have

Aj[F] =biF(Vi) + (1-bi)F(Si),
Aj[F] = bjF(Vj) + (1-bjF(S;),
Ak[F] = bkF (Vi) + (1-bg)F(Sk)
b;Vi+bi Vi b;Vi+bk Vi b;Vitb;V;
o2t KRR T KX it SR Wt A . .
where S; = bib Sj = bitbe Sk = bith Each of these interpolants will
interpolate to arbitrary function values on one edge of the triangular domain. In order to
obtain an interpolant which matches arbitrary values on the entire boundary of Tijk, we
form the Boolean sum of these three interpolants
A[F] = Ai®A®A([F] = Aj[F]+ Aj[F] + Ak[F]
- AAF]] - AJ[AWF]] - AA(F]] + Ai[A{AL[F]]]
= (1-b)F(S;) + (1-bpF(S;) + (1-bi)F(Sk)

- biF(Vi) - biF(V;) - bkF(Vi)
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Figure 2.6.5. The evaluation points (ttencil) for side-side interpolant.

The Side-Side Interpolant: The side-side interpolant is based upon the basic
operation of linear interpolation along edges which are parallel to the edges of Tijk.
There are three of this interpolants,

biF(biVi+(1-bj) Vi) + biF(b;Vit+(1-bj)Vj)

Pi[F] = bk +bj

— biF(bjVi+(1-bj)Vi) + biF(b;Vi+(1-bj) Vi)
ikl = b; + bk

biF (b Vi+(1-bi) Vi) + bjF(bx Vi+(1-bk) Vj)
b; + bj

Py[F] =

Unlike the basic interpolants of the side-vertex interpolant, these interpolants do not
commute and so their triple Boolean sum is not well defined. However, it is possible to
form the average of all double Boolean sums (each of which interpolate to the entire
boundary) to arrive at the following affine invariant interpolant

. biF(biVit(1-bi) Vi) + biF(biVit(1-b) Vi)
Q*IF] = b,

biF(b;Vi+(1-bj)Vj) + bk F(b;Vi+(1-bj) Vi)
+
b; + by

biF (b Vit+(1-by) Vi) + biF(bx Vi+(1-bi) V)
+
b; + bj

- biF(Vj) - bjF(Vj) - bk F(Vi).
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Figure 2.6.6. The stencil of the C* interpolant.

The C* Interpolant: The third transfinite, CO, interpolant which we describe utilizes

the stencil illustrated in Figure 2.6.6.

bib; bk bk
CHFIbibpbil = —5 o F(bi +73)Vit (b +3)V))
(bit75)(bj +7)
bibyk b b
b b F(bi+3)Vit bt 3)Vio
(bi+73)(bk +73)

biby b; b;
5 5 F((oj +3)Vj+ bk +3)Vi)
(bj72)(bk +73)

3bibibk
B (bj+2bk)(bk+2bj)
3bibibk
~ (o 2b) (b 2bp) T Vi)
3b;biby
g | et SER
" (o 2by)(by+26) T VK

F(Vj)

which can be written in the form
C*[F](bi,bj,bx} = biF(Vi) + bjF(Vj) + bxF(Vi)
b b
+ Wi { F(Qi) - (bi + 5 )F(Vi) - (b + 3 )F(V)) }
b bj
+ Wj { F(Qj) - (bi + 3 )F(Vi) - (bx +73 )F(Vy) }

b; b;
+ Wi { F(Qj) - (bj +2))E(V)) - (bk + 73 )F(Vi) }
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where

B 4biby B 4b;by B 4bib;
Wi = 2b;+by)(2bictby) * Vi = (2bitby)(2bictby) * VK T (2bitbi)(2bytby) °

bj bj
Qi =(bj+7)Vj+ (b + 7 )Vk
bj bj
Qj=(bi +73 )Vi+ (bg +7 Vi,

bk bk
Q=i +75 Vit (bj+3)V; .

In this form of C* we can see that it consist of linear interpolation plus a correction term.
It can easily be verified that C* is precise for all quadratic functions. That is, if fis a
quadratic, bivariate polynomial, then C*[f] ={.

The NTW Interpolant: This may be the simplest of all triangular Coons patches. The
weights are simple linear functions as are the stencil points.

kak + (l'bk)Vi

N

iVi + (l'b:)Vk
O

Vi

NTWIF(bibj,br)= bilF(bjVH(1-b)V ) +F(biVi(1-bi) Vi)-F(V7)]
+ b[F(b:iVit(1-b)V)+E(biV it (1-Di) V))-F(V))]

+ bilF(bVA(1-b)V )+ F(biViH(1-b) Vi)-F(Vi)]
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2.6.3 C1, Discrete Interpolation in Triangles

A commonly used 9-parameter, C! interpolant, is

2
CA[FI(x,y) = Z:{F(Vi)[bi (3-2bj)+6wbj(byoy; + bjotji)]
(1j k) Ul
2
+ Fi(Vlb; birwhi(3bya; +b; - by)]

2
+ F'ji(Vi)[bi bj+Wbi(3bj(xik + bk - bj)]} ,

where

F'(V) = xie-xi)Fx (Vi) + (yk-y) Fy(Vi) »

Fi(Vi) = xj-x0)Fx(Vi) + (yj-y)Fy(Vi) ,

bibiby
W = 2 I = i”Jk b .)k7i b k7i)‘ b
bibj+bibk+bjbk { (1j,K), G.k.1), (k,ij) §
and
e lleikl|? + lleikl [ - [leijl|>
Y 2leixl[?

We use |[lejjl| to denote the length of edge ejj. This 9-parameter, C! interpolant is a

discretized version of a transfinite, C1, triangular interpolant which is described in [178].
The derivatives which are in a direction perpendicular to an edge vary linear along an
edge. This guarantees that when two of these interpolants share a common edge the two
surface patches will join with continuous first order derivatives. It is possible to
discrectize the same transfinite interpolant and use an additional three parameters
consisting of cross boundary derivatives at the midpoints of the three edges. This leads
to an interpolant that has all first order derivatives varying quadratically along the edges.
For a comparison of the CA interpolant to the Clough/Tocher interpolant within the

context of triangle based scattered data models, see Franke and Nielson [97].

2.6.4 C1, Transfinite Interpolation in Triangles
In this section, we extend the problem of interpolating to transfinite data on the

boundary to include also the requirement that the interpolant match user specified
transfinite derivative data on the boundary. These types of interpolants can be used to
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construct surfaces over triangulated domains which are Cl; that is, functions which have
continuous first order partial derivatives. One of the most versatile and easily described

C!, transfinite interpolants is the C!, side-vertex interpolant [177].

A

Figure 2.6.7. The data for C! interpolants position and derivative boundary values.

Earlier, we saw that the basic building blocks of the C9, side-vertex interpolant
consisted of linear interpolation along lines joining a vertex and its opposing side. In
order to extend these ideas to C! data, we make use of the univariate cubic, Hermite
interpolation applied along rays emanating from a vertex and joining to the opposing
edge. See Figure 2.6.4. Cubic Hermite interpolation will match position and derivatives
at the two ends of the interval. We assume that position and derivative information is
available on the entire boundary of a triangle Tjjk.

Si[F1(p) = bi2(3-2by)F(Vj) + b2(bi-DF'(V))
+ (1-b))2(2bi+1)E(S;) + bi(1-b;)2F'(S;)

where F'(Vj) = (X_Xi)FX(Vil)j'éz"Yi)Fy(Vi) and

F(S) (X'Xi)Fx(Sil)ifi}"Yi)Fy(Si) '

Si[F] has the property that it interpolates to the boundary data provided by F at V; and on
the entire opposing edge ekj. It also matches first order derivatives on this edge and at
Vi. It does not necessarily interpolate F or its derivatives on the other two edges. In
order to have an interpolant for the entire boundary of the triangular domain, we could try
to construct one using the ideas of Boolean sums as was done earlier for the CY, side-
vertex interpolant. Even though the interpolants S;, Sj and Sy commute so that their
Boolean sums are well defined, this approach does not work (see [177]) and so the use of
convex combination techniques has been suggested. This leads to the interpolant
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2,2 2.2 2.2

2.2 2.2 2.2
bibj +bjbj, + bi by,

S[F] =

which has the property that it matches F and its first order derivatives on the entire
boundary of the triangular domain. In the case where the boundary information has been
discretized with cubically varying (Hermite) position values and linearly varying cross
boundary derivatives, it is possible to obtain a final interpolant with simpler weights in
the convex combination. Namely,

byb; + byby + biby '

S[F] =

3 Tetrahedrizations

In this section we follow the outline of the previous section as best possible. Since
the dimension is one less and since bivariate problems have been considered for a much
longer period of time, the development in the 3D domain is not as rich as the 2D domain
and so we can not exactly parallel the previous section, but most everything generalizes
or leads to something interesting and often useful.

3.1 Basics

3.1.1 Definitions, Data Structures and Formulas for Tetrahedrizations

Our definition of a tetrahedrization follows very closely to that given for a
triangulation at the beginning of Section 2.1. We start with a collection of points p; = (x;,
Vi, zi), 1 =1, ..., N which we assume are not collectively coplanar. We denote this
collection of point by P. A tetrahedrization consists of a list of 4-tuples which we denote
by I;. Each 4-tuple, ijkl € I denotes a single tetrahedron with the four vertices p;, pj, pk
and p;. The following conditions must hold:

i) No tetrahedron Tijk] , ijkl € It is degenerate. That is, if ijkl € I; then p;, pj,
pk and pj are not coplanar.

i1) The interior of any two tetrahedral do not intersect. That is if ijkl € I; and
afyd € It then Int(Tijk1) N Int(Tepys) = ¢ -

ii1) The boundary of two tetrahedra can only intersect at a common triangular
face.

iv) The union of the all triangles is the domain D = Uijkl < 1t Tijkl -

We should point out that condition iii) must hold in the strictest sense and so
tetrahedra joining as shown in right side of Figure 3.1.1 are not allowed. The reason for
this condition (and all the others) is that same as before with the conditions of a
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triangulation and that is we eventually wish to be able to define CO functions in a
piecewise manner over the domain consisting of the union of all tetrahedra.

Figure 3.1.1. The configuration indicated by the diagram on the left is acceptable while
that on the right is not acceptable for a tetrahedrization. It is eliminated by condition iii)
above.

The triangular grid data structure for representing triangulations (illustrated in Figure
2.1.8) generalizes very nicely to a structure for representing tetrahedrizations. For
example, in Figure 3.1.2, we show a tetrahedrization of the cube into 5 tetrahedra.

Tetrahedra Neighbors
Pi | Pj | Pk | P Njk1 INikl INijl | Nijk
7 4 5 1 b b 5 o
7 1 3 2 o b 5 o
2 4 0 1 o b 5 o
72 6 4 ¢ o 5 b
2 4 7 1 1 2 3 4

Figure 3.1.2. An example which defines the tetrahedral grid data structure.

We saw earlier in the case of triangulations that once the boundary is specified, the
number of triangles comprising the triangulation was fixed and more over we had a
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simple approach to determining a formula for the number of triangles that existed in the
triangulation. This property allowed for the definition of the vectors of angles which lead
to the criterion for optimal triangulations and so was rather important. It would be nice if
everything extended to 3D in a straightforward manner. That is, we would like to say
that any polyhedron can be decomposed into tetrahedra and there is a fixed formula of the
following form N¢ = aNy, + bN;j + ¢ where as before, Ny and Nj are the number of vertices
on the boundary and interior, respectively. Unfortunately, this is not the case and in fact
the situation is much worse than that. We saw earlier that any polygon bounded region
can be triangulated using only the vertices of the polygon. This is one of the first areas
where matters differ significantly when going from 2D to 3D. It turns out that not every
polyhedron can be tetrahedrized. The example illustrated in Figure 3.1.3 is originally due
to Schoenhardt [221]. It can be visualized as a prism which has been twisted until each
face (a quadrilateral comprised of two triangles) has "buckled" inward. Any tetrahedron
we form from these vertices must include an edge which lies outside the domain of the
"twisted prism" and so it is clear that the object can not be tetrahedrized.

>
Figure 3.1.3. The twisted prism of Schoenhardt [221] which cannot be tetrahedrized.

One very basic operation does carry over in a straightforward manner from 2D to 3D
and this the process of inserting an additional vertex into the interior of an existing
tetrahedrization. If the new vertex p lies interior to an existing tetrahedron, say Taped,
then this tetrahedron is simply replaced with the four tetrahedron, Tapcp, Tabdp, Thedp
Tacdp adding a net increase of three tetrahedra. If the new vertex p lies on the common
triangular face of two tetrahedra, then these two tetrahedra are replaced with six new
tetrahedra Tapcp, Thedp, Tabdps Taecps Tecdp> Taedp resulting in a net increase of four new
tetrahedra. This latter aspect of the number of tetrahedra increasing which is different
here from the 2D case is that net increase in the number of tetrahedra depends on the
actual location of the interior point to be inserted. This observation points out that not
only can the number of ways that a data set is tetrahedrized vary, but even the number of
tetrahedra can vary. We will illustrate this further with some examples even without
interior points.
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Figure 3.1.4. Inserting a point interior to an existing tetrahedrization. On the left, the
new point is interior to a tetrahedron and on the right it is on a common face fo two
tetrahedra.

We have already seen (see Figure 3.1.2) the decomposition of a cube into five
tetrahedra. It is also possible to tetrahedrize the cube into six tetrahedra. This is
illustrated in Figure 3.1.5.

Tetrahedra Neighbors
Pi | Pj | Pi | P N INikl INijl | Niik
4 7 6 2 ¢ b 2 ¢
4 5 7 2 4 1 3 ¢
4 1 5 2 4 2 6 (0]
5 1 7 2 5 2 3 ¢
1 3 7 2 ¢ 4 ¢ ¢
4 1 2 0 ¢ o ¢ 3

Figure 3.1.5. A tetrahedrization of the cube into six tetrahedra.

It is interesting to note that from the exterior, the tetrahedrization of Figure 3.1.5
looks exactly the same a that of Figure 3.1.2 as all external edges are the same. Another
interesting connection between these two tetrahedrization of the cube is that one can be
obtained from the other by "swapping" operations similar to those used in the Lawson
algorithm for computing optimal triangulations. Previously, in the case of triangulations,
there was the possibility of two triangulations of a convex quadrilateral. The analogous
situation in 3D is the tetrahedrization of the region formed by five vertices when two
tetrahedra meet at a common triangular face. If the line segment joining the two vertices
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not on the common face intersect the interior of the common face then, analogous to the
convex quadrilateral case in 2D, there is the possibility of an alternate tetrahedrization.
But what is really different from the 2D case is that the number of tetrahedra changes
from two to three!. This is illustrated in Figure 3.1.6. This basic operation was applied
to the center and upper, back right tetrahedra of Figure 3.1.2 to arrive at the
tetrahedrization of Figure 3.1.5.

by

Figure 3.1.6. Two different tetrahedrizations of five points.

Another example worth noting in this context is the case where p; = (i, i2, i3),i=1, . .
. » N. The (Delaunay) tetrahedrization of the convex hull of this set of points consists of
the tetrahedra with vertices pj, pi+1, pj and pj+1 of which there are a total of ((N-2)(N-
1))/2 tetrahedra. Bern and Eppstein [ 16] point out that this example provides an upper
bound on the number of tetrahedra in a tetrahedrization of an N-vertex polyhedron and
that a lower bound is provided by the fact that any tetrahedrization of a simple
polyhedron has at least N-3 tetrahedra.

3.1.2 Some Special Tetrahedrizations

Following the pattern established in the earlier sections on triangulations, we first
discuss tetrahedrizations related to Cartesian grids followed by tetrahedrizations
associated with curvilinear grids. A 3D Cartesian grid involves three monotonically
increasing sequences, Xj, 1= 1,...,Nx,yj,j=1,...,Nyand zx, k=1,..., Nz The
grid points have coordinates (xj, yj, zx) and these points mark out a cellular
decomposition of the domain consisting of regular parallelepipeds. Each of these cells
can be tetrahedrized in a manner similar to that given for the cube in the previous section.
Probably the most popular, is the tetrahedrization involving five tetrahedra shown in
Figure 3.1.2. So as to not end up with a non tetrahedrization with problems similar to
those shown in the right side of Figure 3.1.1, it is necessary to "alternate" the
tetrahedrization from cell to the next so that adjoining cells have the same diagonal on
the common faces. This alternate tetrahedrization is not really different and is just a
rotation of its companion. It is shown in Figure 3.1.8. Another popular choice is the
tetrahedrization shown in the upper left corner of Figure 3.1.9. It has the advantage that
all of the tetrahedra are the same shape (up to mirror images). Actually, it turns out that
there are six different tetrahedrizations of a cube (parallelepiped). See Nielson [183].
We have previously shown pictures of two of them in Figure 3.1.2 and Figure 3.1.5. The
other four are shown in Figure 3.1.9.
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Figure 3.1.7. Three dimensional Cartesian grid.

Figure 3.1.8. The two alternating tetrahedrizations with five tetrahedra of the cell of a 3D
Cartesian grid. (One can be rotated to the other.)

Figure 3.1.9. Four different tetrahedrizations of the cube each with six tetrahedra.

All six tetrahedrizations of the cube are comprised of five primitive tetrahedra which
are shown in Figure 3.1.10. We use the names of OF, 1F, 2Fr, 2F1 and 3F for these
tetrahedra so as to indicate the number of exterior faces for each tetrahedra. There are
two different primitive tetrahedra with two exterior faces; one is a mirror image version
of the other and so it can not be rotated to the other. The tetrahedron OF has volume 1/3
and all the others have volume 1/6. During informal discussion we most often use the
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names 3F = "corner", 2Fr or 2F] = "right wedge" or "left wedge", 1F = "kite" and OF =

"equi" or "fatboy".

IF

2F1

Figure 3.1.10. The five primitive tetrahedra comprising the tetrahedrizations of the cube.

In a joining similar to that shown in Figure 3.1.6, three 1F tetrahedra can come
together to form the same exact shape formed by a OF and a 3F together. Also a 2F1 and
2Fr together form the same shape as a 1F and a 3F, but two 2Fr's or two 2Fl's can not
share a common face and remain inside a unit cube. There are four tetrahedrizations
(each comprised of three primitive tetrahedra) of the prism making up half of the cube.
They are 3F, 1F, 2Fl; 3F, 1F, 2Fr; 2Fr, 2F1, 2Fr, and 2F1, 2Fr, 2F1. In Figure 3.1.11 we
show the dual graphs of the six tetrahedrizations of the cube. A node is a primitive
tetrahedron and an arc is a common triangular face. As expected, in each case the
"names" add to twelve.
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Figure 3.1.11. The six tetrahedrizations of the cube shown as dual graphs. (These are the
only tetrahedrizations of the cube.)

Each of these six tetrahedrizations has its own unique and interesting properties. The
tetrahedrization of 3.1.2 and Figure 3.1.5 both "swap" diagonals on all three pairs of
opposing faces. The tetrahedrization shown in the lower right of Figure 3.1.9 swaps the
diagonals of two pair of opposing faces and the of the upper right swaps one pair. The
two tetrahedrizations on the left of Figure 3.1.9 do not swap any diagonals of any
opposing faces. The tetrahedrization of the upper left of Figure 3.1.9 can be realized with
three cuts of the entire cube. while the others cannot. This particular tetrahedrization also
has the unique property of being comprised only of 2F primitives whose faces are all
right triangles and they all (six) share the diagonal of the cube as a common edge. This
tetrahedrization has been discussed and used widely. It is call the CFK-triangulation of
the cube after Coxeter [47], Freudenthal [79] and Kuhn [137]. A replacement rule can be
used to generate this tetrahedrization. Using the labeling scheme of Figure 3.1.2, we start
with the four vertices Pri., 1 =0, 1, 2, 3 and replace each vertex Vj, other than V¢ and

V7, with Vi1 + Vj1 - Vj. Explicitly, this will successively generate the six tetrahedra:

PO,P1P3P7; POP2P3P75 POP2P6P7; POP4P6P7; Pop4Psp7; pop1psp7- The CFK triangulation
generalizes to n-dimensions as does the "replacement" algorithm for generating the
simplicial decomposition.

It is interesting to note that not all possible face triangulations are realized by the six
possible tetrahedrizations of the cube. In addition to the five different face triangulations
(note that two tetrahedrizations have the same face triangulations) which are realizable
there are three others which can not be realized. They are shown in Figure 3.1.12. In
order to determine these eight unique face triangulations, we start with the 64 = 26 face
triangulations and then grouped them into these eight equivalence classes by rotations.



/-

Figure 3.1.12. Face triangulations which are not consistent with any tetrahedrization of
the cube.

Theorem: It is impossible to tetrahedrize a cube and yield face triangulations as shown
in Figure 3.1.12.

Proof: We give only the proof for the case in the top, center as the others are similar. We
use the same labeling as shown in Figure 3.1.5. We start with the face 457. Only vertex
0 can be attached to the face 457 which gives the tetrahedron 0457. The internal face 047
must be shared by some other tetrahedron. Any vertex, however, cannot be joined to the
face of 457 without violating the conditions of the face triangulations and so this
completes the argument.

Earlier we discussed triangulations related to curvilinear grids. We now take up the
topic of tetrahedrization of 3D curvilinear grids. Analogous to the 2D situation, a 3D
curvilinear grid is specified by three geometry arrays Xijk, Vijk, Zijk, 1= 1, .. ., Nx;j=1,.
.., Ny;k=1,..., Nz In the 2D case a cell Cjj consisted of the quadrilateral with
vertices (Xij, ¥ij)» (Xi+1,j> Yi+1,j)» Xij+1> Yij+1)> (Xi+1,j+1, Yi+1,j+1), and the cells serve as a
decomposition of the domain.

x ... - L 7. A
i+1,j+1,k+1 i+1,j+1,k+1 i+1,j+1 k+1

ey 7 i
Figure 3.1.13. Single cell of a 3D curvilinear grid.
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In the 3D case, matters are not as straightforward as we might expect and there are
some areas where we need to be concerned. These have mainly to do with just exactly
what comprises a cell. In 3D the cell Cjjk has the eight vertices (Xabe, Yabes Zabe), @ = 1,
i+1, b =j, j+1, ¢ = k, k+1 but there is not always a consistent definition for the cell
boundaries. We mention briefly some possible choices. If the geometry arrays are
constrained so that each collection of four vertices of the six "faces" of the cells are
coplanar, then an obvious choice for the cell boundaries is this common planar
quadrilateral. In this case the cells are hexahedron and it is relatively easy to determine
whether or not an arbitrary point, (X, y, z) is in a particular cell or not. Often this
planarity condition does not hold and cell boundaries are taken to be the parametrically
defined (hyperbolic) surface obtained by substituting 0 or 1 for any of the parameter
value s, t, u in the following trilinear mapping:

Cijk(s,tu) = (1-8)(1-t)(1-u)P;;x + (1-s)(1-t)uPi j k+1
+ (1-8)t(1-u)Pj j+1 k + (1-S)tuPj j4+1 k+1
+s(1-t)(1-u)Pisq j k + S(1-)uPjs j k+1
+st(1-w)Pit j+1,k T StUPity j+1 k1

where

Pijk = Xijk Yijko Zijk)

Given a point (x,y,z) in the cell Cjjk, the value (s, t, u) which associates with it via the
trilinear mapping is called the corresponding computational coordinate. In fact, in order
to determine whether or not an arbitrary point is in this type of cell or not requires that we
solve the three nonlinear equations which represent this association. This can be a
considerable problem from a computational point of view. Most methods use some
heuristics to obtain an initial approximation for some type of Newton's method. Another
choice for the cell boundaries in the event the four vertices of a face are not coplanar is
choose them to be piecewise planar. That is, a diagonal edge is selected and boundary
between the two cells consists of the two triangles which result. Often the cell would be
further decomposed into tetrahedra thus leading to a an overall tetrahedrization of the
curvilinear grid. We should point out that not all choices for the diagonals can lead to a
tetrahedrization of the cell. In order to be specific about this, consider the cell illustrated
in Figure 3.1.14. This cell was created from a unit cube by cutting notches in the faces so
as to force the diagonal edges p2p7, p4p1, P3P5> P3P0, POP6,> PeP5 to be exterior to the cell.

If the depth of the notches is € then this results in the points p, = (0, €, 0), p; = (1-¢, 0, €),
p2 = (8, 1, 8)9 p3 = ( 15 1_8, 0)9 p4 = (87 07 1_8)5 pS = (15 85 1)9 p6 = ( 05 1_87 1) p7 = (1_87 15
1-€). Note that pg, p3, p4 and pj all lie in the plane x +z - 1 = 0 and pp, p7, po and ps are
in the plane x - z=0.
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Figure 3.1.14. A curvilinear grid cell (polyhedron) that can't be tetrahedrized.
Theorem: The polyhedron of Figure 3.1.14 can not be tetrahedrized.

Proof: Consider the triangle face with vertices pg, p4 and p7. In any tetrahedrization,
this face must be joined to some vertex to form a tetrahedron. By considering the
remaining five vertices ps, po, p2, p1 and p3 we find that the only p3 would not lead to a
tetrahedron with an edge which is outside the cell. If the tetrahedron pg, p4, p7 and p3 is
included in the list of tetrahedra, then the interior triangle face p3p4p7 must connect to
another vertex (besides pg) to form a tetrahedron. But a consideration of each of the
possible vertices ps, p1, p2 and po each lead to an edge which is exterior to the cell and
this concludes the argument.

We conclude this discussion on the tetrahedrization of the cells of a curvilinear grid
by pointing out that some hexahedra will decompose into seven tetrahedra. Consider the
cell of Figure 3.1.13 and let the six faces be planar, but assume that the four diagonal
points pijk, Pi+1,j+1,k+1> Pijk+1 and pi+1j+1k are not coplanar so that they will form a
tetrahedron. Remove this tetrahedron leaving two prisms with two planar quadrilateral
faces which can each be decomposed into three tetrahedra. We should point out that we
have observed cases where this decomposition was the Delaunay tetrahedrization.

In Section 2.1.3 we described two different approaches leading to nested subdivision
triangulations and pointed out their potential value in multiresolution approximations.
These both have analogs in 3D and these are shown in Figures 3.1.15 and 3.1.16
respectively. The first one is based upon recursive subdivision and the second one is
called "symmetric" subdivision and is related to the CFK-tetrahedrization of the cube
[170]. It is comprised of six 2Fr's and two 2FI's and is the same shape and twice the size
of one 2Fr.
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Figure 3.1.15. Nested tetrahedral subdivision analogous to that of Figure 2.1.16.

Figure 3.1.16. Symmetric nested tetrahedral subdivision.

It should be noted that if primitive tetrahedra of the shape shown in Figure 3.1.17 are
assembled as in Figure 3.1.16, then we obtain a composite tetrahedron which is twice the
size and exactly the same shape as the primitive tetrahedron. This particular
tetrahedrization of tetrahedra is related to the Delaunay tetrahedrization of the BCC
lattice which is the union of the lattices { (i,j,k) : 1, j and k are integers} and {(i+1/2, j+1/2,
k+1/2): 1, j and k are integers}. See also Senechal [229] for a discussion of tetrahedra that
can be decomposed into similar tetrahedra.
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0, a, a/2)

(a, a, 0)

(a, 0, 0/2)

>
Figure 3.1.17. A tetrahedron that can be tetrahedrized into eight tetrahedra each of which
are the same shape as the original yet half size.

3.2 Algorithms for Delaunay Tetrahedrizations

N

needle wedge sliver

Figure 3.2.1. Examples of poorly shaped tetrahedra.

Analogous to the examples of Figure 2.2.1, examples of poorly shaped tetrahedra are
shown in Figure 3.2.1. The sliver has small dihedral angles, but need not have any small
planar angles. Several measures of the quality of tetrahedrizations have been proposed.
See Baler [12] and Field [86]. For example the ratio of the inradius (radius of inscribed
sphere) and the circumradius. The problem here is there is no apparent way to order the
collection of all tetrahedrizations of a point set. The approach of lexicographically
ordering the associated vectors of angles as we described in Section 2.2 does not extend
to 3D because the number of tetrahedra in a tetrahedrization is not necessarily fixed.
Nevertheless, the Delaunay tetrahedrization of the convex hull which is dual to the
Dirichlet tessellation is well defined (in the absence of neutral cases where points lie on a
common sphere) and so the remainder of this section is devoted to a discussion of the
extension of the previously discussed 2D algorithms for computing the Delaunay
triangulations to the case of 3D tetrahedrizations.

Extension of Lawson's Algorithm (Incremental Flipping): It is possible to extend
this algorithm to 3D, but the extension is not as simple as one might expect. The first
major difference that one encounters is the character of the basic swapping step. In 2D
we take an edge and consider the quadrilateral formed by the two triangles which share
this edge. If the quadrilateral is convex we can swap the diagonal if this step moves us
closer to the optimal solution which can easily be determined by applying the circle

63



inclusion test. Two triangles are replaced by two other triangles. But the analogous steps
in 3D can lead to a situation where the two tetrahedra sharing a face can be replaced with
3 tetrahedra. See Figure 3.2.2 for an example.

NP Yo
- OB

Figure 3.2.2. Different cases of swapping for 3D version of Lawson's algorithm.

Joe [122] showed that if the points are inserted in a particular manner, then
incremental flipping will lead to the optimal Delaunay tetrahedrization. Edelsbrunner
and Shah have generalized these results [72]. Software based upon these ideas is
provided by the Software Development Group at the National Center for Supercomputing
Application is available at the WWW site:

http://www.ncsa.uiuc.edu/SDG/Brochure/Overview/ALVIS.overview.html.

Extensions of the algorithm of Green & Sibson: There does not seem to be an
apparent method of extending this type of algorithm to 3D. The algorithm is dependent
upon the "contiguity list" and here lies the difficulty to extend to 3D. We included this
algorithm in our selection of 2D algorithms so that this very point could be made. Some
concepts extend easily to 3D and others do not.

Bowyer's Algorithm for 3D: It is a straight forward exercise to extend Bowyer's 2D
algorithm to 3D. In fact, the original paper of Bowyer [21] describes the algorithm for
arbitrary dimensions. Bowyer also mentions that with some care, the algorithm can be
extended to other domains. In [164] there is a brief discussion of Bowyer's algorithm
along with some code.

Watson's Algorithm for 3D: The original description of Watson's algorithm applies
to arbitrary dimension. In the paper [254] results for 2, 3 and 4 dimension are reported.
Information on implementing this algorithms in 3D is given by Field in [86] and [87]. It
is also the basis for the 3D algorithms discussed in [29].

Embedding/Lifting Algorithms for 3D: Software for computing general dimension
convex hulls and Delaunay tetrahedrizations based on the relationship mentioned earlier
in Section 2.2 are provided by the Geometry Center, University of Minnesota at the
WWW site: http://freeabel.geom.umn.edu/software/download/qhull.html.
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3.3 Visibility Sorting of Tetrahedra

We first give a motivation for the definition and the need of a visibility sort. We use
the example of volume rendering which is a means of graphing (visualizing) a density
function (cloud) d(x,y,z) defined over a 3D domain (which is often a cube). A view point
V is selected along with a projection plane. A rectangular portion of the projection plane
is subdivided into a rectangular array of subrectangles which associate directly with the
pixels of an image to be generated. The RGB value for each pixel is defined by

D
D

D
- ] d(u)du
+ Fope '{

F(ij) = | 8(s)C(s) e_{ o g (3.3.1)

0

where the integral is taken along the ray emanating from the viewpoint and passing
through the center of the subrectangle associated with the pixel at location (i,j), Fo is the
background intensity and D is a distance along the ray sufficiently large so that the ray
completely passes through the domain of interest. The function C, also defined over the
same domain as 9, is called the color function and governs the color of light emanating
(by reflection say) from a point within the density cloud. In actual application the
integrals are approximated by numerical schemes based upon sampled values of the
integrand. The sample values are often obtained by some simple interpolation into the
cells covering the domain. And these cells are often a result of the positions where d has
been measured. If we let 0 =xg <x] <xp <e**<x,.1 <Xp=D be the distances from the

viewpoint to each sampled value along the ray then the upper Riemann sum
approximation to this integral is

n
n
Fy= Axid(x)Ci [Tt » (3.3.2)
Z j=itl
i=0

-Axi0(x;) .. . .
where Cj = C(xj), tj = ¢ " and Axj = x; - xi.1 . This discrete approximation can be

computed by the compositing process

F;=tFi.1 t 1, (3.3.3)

where I; = Ax;0(x;)C;.

Another way to view this compositing process is as a simple model of transparency
where an object of thickness Ax;j attenuates the incoming light intensity Fj.1 by the factor
t; and this object emits light of intensity I;. Algorithms which accumulate these values
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into a frame buffer (with each location holding the value for a pixel) can either be image
space oriented or object space oriented. Image space algorithms proceed along the lines
of our development here and accumulate all contributions for a pixel along a particular
ray. Object space algorithms compute exactly the same values but the calculations are
done in a different order. These algorithms sequential process each cell by accumulating
into the proper location of the frame buffer all contributions of a particular cell. Due to
the nature of the compositing process, it is mandatory that these accumulations be done
in the proper order. It is this latter approach which motivates the definition and need for
visibility sorting in this context.

Definition of Visibility Order: Let T and T' be tetrahedra of a tetrahedrization and
let V be the enter of perspective projection. If there is a ray emanating from V which
intersects T' before T, then T is said to precede T' and we write T < T".

The purpose of a visibility sort is find a linear ordering of all of the tetrahedra of a
tetrahedrization so that the ordering relation is never violated.

Definition of Visibility Ordering: A visibility ordering of a tetrahedrization is a
sequence, ni, ny, . . . , nT which has the property that whenever Ty; < Tnj then i <j.

The implication of the definition of visibility ordering for splatting or object space
traversal algorithms for volume rendering is that a tetrahedron T must be processed
(sampled and composited into the frame buffer) before T' whenever T < T'.

A couple of items should be noted at this point. The relation of visibility order is in
the strict mathematical sense not a partial ordering. A partial ordering is required to be 1)
transitive: X <y, y < z implies x< z; ii) antisymmetric: x <y and y < x implies x =y; and
i11) reflexive: x < x. It is entirely possible that a visibility order could not exist at all due
the presence of cycles as shown in Figure 3.3.1.

Figure 3.3.1. An example of three tetrahedra that can not be visibility ordered.

Knuth [136] has discussed in some detail (including MIX programs) the topological
sort algorithm as a means of "embedding a partial order in a linear order." A linear
ordering is a partial ordering where either x < y or y < x for all x, y. Even though this
does not strictly apply in the context of a general tetrahedrization, the basic ideas (mainly
due to the manner in which it is described) are very useful for developing visibility
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sorting algorithms for specific applications and so we include a description of the
topological sort algorithm here.

Topological Sort Algorithm: The topological sort algorithm as described by Knuth
[136] starts with a directed, acyclic graph (DAG). The DAG can be represented with a
diagram using nodes and arrows. See Figure 3.3.2. The nodes represent the elements of
the set to be ordered and an arrow from node x to node y represents the relation of the
partial ordering, x <y. The algorithm is simple. Any node that has no incoming arrow is
removed from the DAG (with all of it attached arrows) and placed in the linear ordering.
This process is repeated until the DAG is empty. It is easy to prove (left to the reader)
that if the DAG represents a partial ordering, a linear ordering will always be produced

by this algorithm.

’V

/

DAG

4

Ordering \ ./

Figure 3.3.2. An example of the topological sort algorithm.

Max [166] has discussed the application of the ideas of the topological sort algorithm
to the problem of producing a visibility sort for a cellular decomposition of a domain.
Max defines the order relation in the following way. The DAG contains an arrow for
each face common to two cells x and y. The arrow is directed from x to y if the
viewpoint is on the same side of the face as x meaning that y must be process before x.
Max mentions that the topological sorting algorithm will be successful "if every ray
through the data volume intersects it in a single sequence of adjacent cells." Of course, if
the cell complex contains cycles (see Figure 3.3.1), then a visibility sort is not possible.
Williams [257] discusses similar algorithms applied to a very general cellular
decomposition which may contain empty cavities.

We conclude this section with some rather interesting properties about the special
case of the Delaunay tetrahedrization of the convex hull of a collection of 3D points. The
power of a tetrahedra is defined as D2 - R2 where D is the distance to the viewpoint from
the center of the circumsphere of the tetrahedron and R is the radius of the
circumscribing sphere. A visibility sort can be accomplished by a simple sort based upon
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the power. This property is covered [69] and used by Max, Hanrahan, and Crawfis [167].
We caution the reader that this approach breaks down in the presence of neutral cases
where possibly several tetrahedra have the same power (as in the case of decomposing
the cube). One additional; interesting observation in this context is that a sort based upon
the power of the tetrahedra does not require the neighborhood information as is required
for the algorithms using the ideas of topological sorting. Another method which does not
use adjacency information is described by Stein, Becker and Max [240].

<J«— D >

Figure 3.3.3. Elements of the definition of the power of a tetrahedron.

3.4 Data Dependent Tetrahedrizations

Lee [148] has investigated the topic of data dependent tetrahedrizations. This work
generalizes from 2D to 3D the ideas and techniques of [67] and [225]. Similar to the
algorithms of [225], simulated annealing is used. The initial tetrahedrization is the
Delaunay tetrahedrization of the convex hull of the independent data site locations.
Local swapping of tetrahedra is performed based upon random values compared to an
annealing schedule and a cost function. This "randomness" of the simulated annealing
approach allows the algorithm to escape local extrema of the cost function. Local
swapping for 2D simply involves the choice of one or the other of the diagonals of a
quadrilateral. In 3D the situation is more complex. There are four cases which are
shown in Figure 3.2.2 which are the same as those used in the 3D version of Lawson's
algorithm. In the first case, three triangles are swapped for two. The second case is the
reverse of the first case and two tetrahedra are replaced by three tetrahedra. The third
case is where two triangles are on the boundary of the convex hull and the two tetrahedra
can be swapped for two other tetrahedra. In the last case four tetrahedra are swapped for
four other tetrahedra.

In Section 2.4, we described the cost function used by Dyn, Levin & Rippa [67].
Analogous to these cost functions for 2D, Lee [148] uses the following criterion for 3D:

Gradient Difference: Let T| and T be two tetrahedra with a common triangular face.
Let G be the gradient of the linear function which interpolates the data at the four
vertices of T and let G, be the similar gradient for the linear interpolant of T;. The
gradient difference is defined as ||G1 - G||.

Jump in Normal Direction Derivatives: Let L{(X,y,z) = ajx + byy + c1z + dj be the
linear function which interpolates to the data at the four vertices of Tq and let Ly(x,y,z) =
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asx + boy + ¢z + dj be the similar function for T;. Let N = (ny, ny, nz) be the normal
(normalized) of the common triangular face of Ty and T2. The Dy = ajnx + biny + ¢in,
is the directional derivative of L1 in the direction of N. D2 = apny + bony + cony is the
analogous value for Tr. The jump in normal direction criterion is D - Dy| = |(aj-a2)ng +

(b1-b2)ny + (c1-c2)nz)|.

Some example results reported by Lee [148] are repeated here in Figure 3.4.1. This
example involves a test function, F(x,y) = (Tanh(9y-9x-9z) + 1)/9, which provides the
dependent data. The piecewise linear interpolant over the tetrahedrization is compared to
the test function. The RMS errors based upon evaluations of the functions and this
approximation over a 20x20x20 Cartesian grid. The dependent data sit locations are
taken to be 1000 random points in the unit cube.

Method RMS Error
Delaunay .007475
Difference in Gradient .005445
Jump in Normal Derivative .004361

Figure 3.4.1. Errors for the piecewise linear interpolant using different tetrahedrizations.

In Figure 3.4.2 are shown some graphs which can be considered as 3D analogs of the
graphs shown in Figure 2.4.2 of Section 2.4. Similar to the 2D case the data dependent
tetrahedrization involves some badly shaped tetrahedra. This is the cost of having an
optimal (or nearly optimal) piecewise linear approximation.
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Figure 3.4.2. Data dependent tetrahedrization compared to the Delaunay tetrahedrization.
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3.5 Affine Invariant Tetrahedrizations

In this section we extend the results of Section 2.5 on affine invariant triangulations
to that of affine invariant tetrahedrizations. Prior to discussing the characterization and
computation of this type of tetrahedrization, we make some comments about the need for
such a tetrahedrization over and above those reasons for the 2D case. It appears that as
the dimension of the independent data increases, our need to be concerned about lack of
affine invariance also increases.

One source of 3D independent data is the case of time varying 2D data. In some
cases the data measurement locations might stay fixed over time and some cases they
may vary over time. For example, if we have a vector field which is known (say by
means of a numerical simulation) at the locations of a 2D curvilinear grid (xjj, yij), 1= 1, .

.., Nx;j=1,...,Ny. As time proceeds, the vector field varies, but the dependent data
site locations stay fixed. So in this case, we have data which can be represented as (Vijk;
Xij, ¥ij tk), 1= 1, ..., Nx,j=1,...,Ny,k=1,..., N¢. Ifthe definition of a modeling

function F(x, y,t), designed to interpolate the data, F(xjj, yij, tk) = Fijk, is based upon a
tetrahedrization of the 3D independent data (xjj, yij, tk), then this model will not
necessarily be affine invariant and the units used to measure and represent the physical
coordinates and time could have an affect on the modeling function F(x, y, t) and
subsequently an affect on the visualization and analysis. The same problem could also
occur for time varying vector field over a curvilinear grid which also varies over time.
That is, data of the type (Fijk; Xijk, Yijk tk), 1= 1,...,Nx,j=1,...,Ny,k=1,..., N¢.
In general, any tetrahedrization of the independent data of (Fjjk, Xi, ¥j, zk) where the
choice of the units of measurement used for the independent data could lead to a non-
uniform scaling could have the problem of being dependent on the choice of the units
used. If each of the variables use the same units then there will be no problems of this
type because a scale transformation of the form x < ax, y <— ay, z <— az where the scale
change is uniform for each variable will not affect the tetrahedrization. It is only the non-
uniform scaling x <— ax, y < by, z < cz which creates the problem. An example of a
scale change affecting the tetrahedrization is shown in Figure 3.5.1. Here there are 10
data points. In the right image, the data has been scaled in the y-variable by a factor of 2.
Not only does the tetrahedrization change, but even the number of tetrahedra changes.
The Delaunay tetrahedrization of the original 10 data points has eighteen tetrahedra and
the scaled data has thirteen tetrahedra.
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Figure 3.5.1 Delaunay tetrahedrization of 10 data points and a scaled version of the same
data points.
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We now describe the 3D version of the affine invariant norm which leads (by way of
the Dirichlet tessellation) to an affine invariant tetrahedrization. Actually, we can define
it so that it is clear what the generalization is for any dimension. Let

X
2 * \—1
e,z )} = (e 27 )|
z
where V is the 3xN matrix of translated data values

xl_lux ‘x2_11'lx xN_lux
V= Vi—# Da=H, o VT H,
Zl_luz Z2_lllz ZN_luz

As with the 2D case, there are some different approaches to modifying an existing
tetrahedrization procedures. Probably the simplist is to preprocess the data with the
transformation given by the lower triangular matrix, L(V) which results form the
Cholesky decomposition of (VV*)-1

L(V) L(V)* = (VV*)1
Explicitly in the 3D case, we use the transformed data

Xi  =luxit+lyi+ 131z

Yi  =loyitl3z

Zi =l33z

where

arl ai3

i1 =~fa bi=1- 31=1-
1 1 s 2057 317

a33-p1131
Iy =+/azn-(121)? , Ba=""1,

133 =1/a33-(131)2-(132)?

A =(@j) = (VVHT=LVL(V)*
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where
N N
Z(Xi - Hx)z le
2 i=1 =1
Xy = N > Ix = N
N N
D (yi - py)? >yi
o2 _El =l
y N ’ By = N
N N
Z(Zi - Hz)2 Zzi
2 i=1 i=1
ZZ = N 5 Wz = N
N
D (i - (i - Hy)
=1
ZXY - N ’
N
D (¥i - 1y)(zi - 1)
i=1
2y, = N
N
Z(Xi - 1x)(zi - Uz)
i=1
ZXZ = N ’
and

det =, 5, 5, + 25y By Ty, ) - a(Ey) 2 - To(E,,) 2555, 2

We conclude this section with some examples illustrating this affine invariant norm
and its use in characterizing affine invariant tetrahedrizations. In Figure 3.5.2 there are
shown four graphs of 13 data points. The transparent ellipsoids represent all the points
that are 0.25, 0.50 and 1.0 units from the center point using the affine invariant norm.
The different graphs show the data after it has undergone an affine transformation. The
original data is displayed in the upper left. The upper right show the data after it has
been rotated by 44 degrees about the z-axis. The lower right is after it has subsequently
been scaled in the x-variable by a factor of 1.5. The lower left is after it has been scaled
in y by a factor of 0.6. A close examination of these graphs will show that the relative
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distances (as measured by the affine invariant norm) between points is unchanged by this
transformations. In Figure 3.5.3 an affine invariant tetrahedrization is shown. In
comparison the conventional Delaunay tetrahedrization is shown in Figure 3.5.4.

Figure 3.5.2. Examples illustrating the affine invariant norm. The ellipsoids are 0.25,
0.50 and 1.0 units from the center point.
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Figure 3.5.3. Examples of affine invariant tetrahedrization.
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Figure 3.5.4. Delaunay tetrahedrization of the same data as in Figure 3.5.3.

3.6 Interpolation in Tetrahedra

As with the bivariate case covered in Section 2.6, there are two concepts of interest
for interpolation in tetrahedra. The first is concerned with the amount of boundary data
that is proved or assumed to be available. This can be discrete data provided at a finite
number of locations (usually the vertices or midpoints) or transfinite data where
boundary data values are assumed to be available at all locations on the boundary. The
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second concept relates to the degree of continuity of a piecewise defined interpolant
using the local interpolants described here. CO interpolants only use boundary position
data and lead to overall interpolants which are continuous. C! interpolants utilize first
order derivative information and lead to global interpolants which have all first order
derivative continuous. These two concepts lead to four possibilities which comprise the
outline of this section.

Discrete Transfinite

c® | section 3.6.1 Section 3.6.2

c! | Section 3.6.4 Section 3.6.3

Figure 3.6.1. Outline of Section 3.6.

Section 3.6.1 CY, Discrete Interpolation in Tetrahedra
Analogous to the bivariate linear interpolant which will match predescribed values at
the three vertices of a triangle, there is a unique trivariate linear interpolant which will
match data at the four vertices of a tetrahedra, Tijk1. Given F(Vj), F(Vj), F(Vk) and F(V7)
the coefficients of this linear function
F(x,y,z)=a+bx+cy+dz

which interpolates this data can be found by solving the linear system of equations

a+bxj+ cyj +dz; =F(Vj)

a+bxj + cyj + dz; = F(Vj)

a+bxg+cykt+dzyk =F(Vy)

a+ bx| + cy] +dz; =F(V))

As before, it is also possible to use barycentric coordinates. The barycentric coordinates
of a point V= (x, y, z) are defined by the relationships

V = biVi + b_]V] + kak + b1V
1 =bi+bj+bk+b1
and the linear interpolant has the form

F(x, y, ) = F(V) = biF(Vi) + bjF(V;) + bkF (Vi) + biF(V)) (3.6.1)
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As before, there are several ways of defining or computing barycentric coordinates. The
analog of the ratios of areas before is the ratio of volumes of subtetrahedra,

~_ Vol(Tvjx) __ Vol(Tivi)
' Vol(Tjjk) > Vol(Tijk1)

by = Vol(Tijvi) . Vol(Tijkv)
Vol(Tjjk) Vol(Tijjk1)

where Tyijk] is the tetrahedron with vertices V, Vj, Vi, and V| and similar definitions for
the other subtetrahedra. The volume of a tetrahedron, T,pcd, With vertices a, b, ¢ and d is

Vol(Taped) =% [(d-a)+((b-a)x(c-a)))]

Also determinants can be used,

X-Xj X-Xk X-X] X-Xj X-Xk X-X]

Y=Y ¥Y-Yk ¥Y-Y1 Y-Yiy-Yk ¥Y-¥1

7-7j -7k Z-7| Z-7i -7k Z-7]

XX XXk Xi-X1| Y | XX XXk Xj-Xp|

Yi-¥j Yi-¥Yk Yi-yl Yi¥i Yi-Yk Yi-V1
Zi-Zj Zi-Zk Zi-Z| Zj-Zi Zj-Zk Zj-Z|
X-Xj X-Xj X-X| X-Xj X-Xj X-Xk
Y-Yi¥-Yj y-yi Y-¥i¥-Yj ¥-Yk

7-7i 2-7j Z-7| Z-7i 2-7j Z-Zk

bk = ) ) , b= —
Xk-Xj Xk-Xj Xk-X] X|-Xj X]-Xj X]-Xk
Yk-Yi Yk-Yj Yk-Y1 YI-Yi YI-Yj YI-Yk
Zk-Zi Zk-Zj Zk-Z| 21-Zi Z1-Zj ZI-Zk
Vk

v. O
1

Figure 3.6.2. Data site locations for trivariate quadratic interpolation.
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Given the values at the four vertices and the six midpoints of a tetrahedron, there is a
unique trivariate quadratic which interpolates this data,

Qx,y,2z)= F(Vi)bi(b; - bj - bk - by) + F(V;)bj(b; - b; - bi - by)
+  F(Vi)bk(bk - bi - bj - by) + F(V)bi(bs - bj - b; - by)
+  F(Mik)4biby + F(M;))4b;b; + F(M;j)4bib;
+  F(Mjk)4bibk + F(Mj)4bib; + F(Mk1)4bgbi (3.6.7)
where Mjj = (Vi + V;)/2 and the other midpoints are defined similarly.

Section 3.6.2 CO, Transfinite Interpolation in Tetrahedra

As before in Section 2.6.2, we give a sampling of interpolants. One is a
generalization of the side-vertex interpolant and the other is a generalization of the C*
interpolant. Both of these bivariate interpolants were discussed previously in Section
2.6.2.

V.

1

Figure 3.6.3. Notation for the Face-Vertex interpolant.

The CO, Face-Vertex Interpolant: Analogous to the basic interpolants used to
construct the side-vertex interpolant, we have the interpolants which consist of linear
interpolation along edges joining a vertex and the opposing face

Aji[F] = biF(Vj) + (1-bj)F(F;)
Aj[F] = bjF(Vj) + (1-b)F(Fj)
Ax[F] = biF (Vi) + (1-by)F(Fx) (3.6.3)

A [F] =biF(Vy) + (1-b)F(Fy)
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biVi+bi Vi+bVi b;Vitbk Vi t+biVi biVitb;Vi+biV|
where Fi ===yttt »Fi=7 byrbrb; 0 TkT T bbby 2nd
biVi+b;Vi+bi Vi
17 bitbytby

Computing the Boolean sum of these four interpolants leads to
A[FT= (1-b)F(Fy) + (1-bF(Fj) + (1-bi)F(Fy) + (1-bpF(Fy)
- (bitbF(Sk1) - (bi+b)F(Sin) - (bjtbpF(S;1)
- (bjtbR)F(Sjk) - (bitbr)F(Sik) - (bi+bj)F(Sij)
+biF(Vj) + bjF(Vj) + bkF(Vk) + biF (V) (3.6.4)

b VitV
where Spn =5 p —, mn = kI, il, jl, jk, ik, ij
m n

The C* Interpolant (for a tetrahedron): The analog of the bivariate C* interpolant
described in Section 2.6.2 is

C*[F]= biF(Vj) + bjF(V;j) + bxF (V) + biF(VY)
by by by
+ WI{F(Q)) - (bi+3 )F(Vi) - (bj+3 )F(V)) - (b3 )F(Vi)}
b b b
+ Wi {F(Qu) - (bi+3 F(Vi) - (bj+3 E(V)) - (b3 )F(V))}
b; b; b;
+ Wi{F(Qj)) - (bi+3 )F(V) - (bk+3 )F(V) - (br+3 )F(V))}
b; b;

bj
+ WilF(Qi) - (bj+3 )F(Vj) - (bkt3 )F (Vi) - (bit3 )F(VD} (3.6.5)

b by b
where Q| = (bi+3 )Vj + (bj+37)Vj + (bk+3 ) Vi ,

27bibib
W= Gb; +b1)(3bj1+lJ31;((3bk For) and the other Q's and W's are defined in a similar manner.

The NTW Interpolant (for a tetrahedron): The analog of the bivariate NTW
interpolant described in Section 2.6.2 is

NTW[F]=b,S,+b,S, +bS, +b,S,
where
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S, :Si(bj’bk’bl):F(bjI/J+kak +(1_bj_bk)Vi)
+F(bV, +bV,+(1—b, —b, V)
+Foy,+b7, +(=b b, )

(bV “‘( B /)V,)

~Fbv, +1-b),)

~F(bY, +(1=b),)

+F (V)

Section 3.6.3 C1, Transfinite Interpolation in Tetrahedra

The Cl, Face-Vertex Interpolant: It is a straightforward process to extend the C!,
transfinite side-vertex interpolant to a tetrahedral domain, Tijk). It is called the Cl, face-
vertex interpolant and we assume that position and derivative information is available at
all locations on the four faces which make up the boundary of the tetrahedron Tijjk;. The
basic face-vertex operator is defined as

Si[F1(p) = bi2(3-2by)F(Vj) + b2(bi- DF'(V))

+ (1-bj)2(2bi+1)F(F;) + bi(1-b;)2F'(Fj) (3.6.6)
Fx(Vi)+ Fy(Vi)+ F,(V
where F'(Vi)—(x xi)Fx(Vi)+(y- yi)b}ll( ) (z-zi)F4( 1)
-X)Fx(S)H(y-yi) Fy(Si)+H(z-zi)F (Vi
F'(Fi)z(X %) ERSHy yi)-b?( DHz-zi)F 1). The point Fj is the intersection point of

the ray from Vj through V and the face opposite V; and the derivatives are taken in the
direction of this same ray. If we form the convex combination

bzbﬁbf Si[F] + bbby Si[F] + bi by by Sk[F] + b: bib; Si[F]

bibgby + by bb; + bibyby + b;b: by

then S[F] will match position and derivative values on the entire boundary of Tjjk].

Section 3.6.4 C1, Discrete Interpolation in Tetrahedra
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V.

1

Figure 3.6.4. The data for a 16 parameter, C!, interpolant over a tetrahedron.

For a Cl, discrete interpolant, we assume that position and first order derivative
information is given at all four vertices of the tetrahedron Tjjk). Since there are three
(linearly independent) directional derivatives at each vertex, this amounts to a total of
sixteen data values. The method for describing an interpolant that will match these
sixteen pieces of data and which also has the property that all first order derivatives
across a face with common data will be continuous is somewhat different that the
previous interpolants we have described so far. Our description (and subsequent
implementation) is based upon a two step procedural discretization process. We use the
transfinite interpolant of the previous section. In order to apply this transfinite
interpolant, we need to define position and derivative values on the entire boundary of
Tjjk1. First we assume that information is known on all the edges of the tetrahedra and we
describe how to extend it to the entire boundary. Secondly, we describe how to provide
this transfinite edge data from only the discrete data at the vertices. If we know both
position and derivative information on the edges, then we can use any C! transfinite
planar triangular interpolant to define position values on the interior points of the face
triangles. For example, the side-vertex method itself could be used. Specifying position
information on a face also implies some information about the derivatives on the interior
of a triangle. Namely, all directional derivatives in a direction parallel to the face triangle
are determined and so, in order to completely specify all derivatives, we need only
provide a definition for the derivative perpendicular to the face. For this we use the CO
version of the side-vertex interpolant which interpolates position data only and not
derivatives, but we apply it to the edge data consisting of derivatives normal to a face.

We now describe the second step of the discretization which is how to compute edge
information when only the point and derivative values are known at the four vertices.
For position only on an edge, we simply use univariate cubic Hermite interpolation. This

will also specify one directional derivative on the edge; namely which will vary as a

Llejj
quadratic polynomial. In order to get a C! join from one tetrahedron to the next, the
other two directional derivatives must vary linearly along this edge. This is
accomplished by specifying the gradient, VF, by the relationship

VFij(p) = (1-t)VF; + tVF]
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- [Deij(p) - ((I-)VFi+tVF;, ejj)leij (3.6.8)
i — _ llp-pill . _ o
where VFi = (Fx(pi), Fy(pi), Fz(pi)) and t = Ip-pill This interpolation of the gradient is
i-Pi

[ [F
consistent with the value o already specified because (VFijj(p).eij) = e and it also
1) 1

has the property that for (n,ejj) = 0,
(VFij(p), n) = (1-t)(VFj,n) + t(VFj,n),

and so we have linear interpolation for any derivative in a direction perpendicular to ejj.

This completes the definition of the 16-parameter, C!, tetrahedral interpolant which is
based upon the face-vertex interpolant. Examples and more discussion on this
interpolant can be found in [187]. The Clough-Tocher interpolant has been generalized
to n-dimensional by Worsey and Farin [261]. Other C!, discrete interpolants for a
tetrahedral domain are discussed in [2], [3], and [Worsey and Piper in CAGD, 1988], but
each have some problem or drawback. The method of [2] is based upon the side-side,
transfinite method of interpolation and apparently it has a problem with the linear
independence of the discretized data. The method of [3] requires C2 data for a C!
interpolant and the method of [260] has a problem similar to its bivariate precursor [199]
and [198]. This problem lies in the constraint that the center of the circumcircle of each
triangle must lie interior to the triangular domain.
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2.1 Introduction

This chapter will present an overview of the emerging research area of volume
modelling. To date, there has been considerable research on the development of
techniques for visualising volume data, but very little on modelling volume data.
This is somewhat surprising since the potential benefits of volume models are
tremendous. This situation is somewhat explained by the fact that volume data is
relatively new and researchers have spent their efforts in figuring out ways to “look”
at the data and have not been able to afford the resources needed to devel op methods
for modelling volume data. In addition to providing a means for visualising volume
data, some of the benefits of a volume model are the generation of hierarchical and
multi-resolution models which are extremely useful for the efficient analysis,
visualisation, transmission, and archiving of volume data. In addition, the volume
model can serve as the mathematical foundation for subsequent engineering
simulations and analysis required for design and fabrication.

While interest is steadily growing, the area of volume modelling is till in its
infant stages and currently there are few techniques and little expertise available. In
the next section, we give some precise definitions and describe the scope of our
vision of volume modelling and generally make an appeal for its development. It is
important to realise that practically all visualisation tools require some type of
volume model for their application. Sometimes the model is so obvious that we may
fail to notice it. (For example, the linear interpolation into voxels used by the
standard marching cubes agorithm.) Many of the relatively simple modelling
techniques used for the more popular visualisation tools of today do not apply or
scale up to the data sets currently of interest. These data sets require much more
sophisticated modelling techniques. Another barrier to analysing volume data sets is
the fact that they are often large, and because of this, they are normally associated
with complex and complicated phenomena. Multi-resolution models can be helpful
in this regard. Wavelet models (and the concepts related to wavelet models) have
traditionally been targeted at compression, but they can aso form the basis for
analysis tools that allow for removal of clutter and detail and assist in efficient
browsing and zooming. In the third section of this chapter, we will discuss some
research issues in representing volume models.

We think that it would benefit our readers if we were to be somewhat clear about
some very commonly used terminology in this area:
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Volume Visualisation. We use this as the umbrella term. 1t encompasses al
aspects of analysing and visualising volume data and models.

Volume Graphics. This topic deals with the issues of producing the images
associated with volume visudisation. It is analogous to the traditional
polygon graphics. It includes viewing models, illumination models, and scan
conversion algorithms and related issues required for the creation of images.
A more comprehensive definition can be found in [1]

Volume Rendering. While this term appears somewhat generic, over the
years it has become associated with that particular method of rendering a
volume model which is based upon a certain model of transparency (called
the volume rendering integral). We use it in this context.

Volume Modelling. Thisis the topic of this chapter. Our purpose is to more
precisely define this topic and to make a general appeal for its development
and growth.

2.2 Definition and Scope of Volume Modelling

In this section, we take three possible approaches to a definition of volume
modelling: (1) A volume model can be viewed as the process of modelling volume
data. (2) It can be thought of as a generaisation in dimension to surface modelling.
(3) It can be viewed as the means to provide the input to the volume rendering
integral. In the following subsections, we expand on each of these approaches.

2.2.1 Definition by Modelling of Volume Data

Volume scanning devices produce a value of a dependent quantity at various
locations in space. Examples are widespread, and include:
1. theresultsof MRI and CAT scannersin the medical field,
2. measurements of mineral concentration from core samples scattered over
some typography,
3. results of a 3D, CFD simulation and
4. free-hand ultrasound where a 3D position/orientation sensor is attached to an
ultrasound probe.
What is common here is that each sample of the data consists of a position in space
and the measurement or computation of an associated dependent variable. Invoking
mathematical means of modelling and representing this type of data is one definition
of volume modelling. Volume data does not need to have just a single scalar
dependent variable, there may be several. In fact, some volume data has a dependent
variable that is a vector. This is the case for the data of CFD simulations. Here the
dependent data consists of a single scalar (pressure) and a vector (velocity of the
flow).
In this subsection, we describe four examples of volume data sets. Each requires
some type of volume model before a visualisation tool can be applied. For some of
the data sets, adequate volume models are not currently available.
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Rectilinear, Cartesian Grids from Medical Scanners

This is an example of the most conventiona type of data we see in volume
visualisation. It represents the results of some scanning device (such as MRI or
CAT) and can be viewed as measurements on a Cartesian grid. Because of this, the
domain is implied and so a simple three dimensional array of dependent values,
dije,1=1---,Ny, j=1---,N,,k=1---,N, can be used to represent the data. The

images of Figure 2.1 show isosurfaces which have been extracted from a type of
wavelet model applied to this type of data.

Figure 2.1. Examples of isosurfaces extracted from a volume model called Blend of Linear
and Constant (BLaC) wavelets. The left image is based upon D = 0.0 and theright, D= 0.43.

Seismic Data Samples in Geophysical Studies

This datais typica of measured data extracted from core samples which are taken at
scattered locations, as shown in Figure 2.2. The measurements within core samples
are not necessarily at uniform depths and can vary from one core sample to the next.
Mathematically, we can represent this data as

(Xi, Y5, Zi s M ) =L, N =10, N

7 ‘ Location (X, Y, Z) Mineral
SEEEEIR! 5.50 1.00 0.00 11.0
' | | | | i 550 100  10.00 10.0
| JREN [

Figure 2.2. Diagram depicting core samples.
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In Figure 2.3, we show a snapshot of an interactive tool for interrogating this
type of data. Colour contours are shown at a user specified height. Any number of
these can exist and they can be moved up and down. It is clear that this type of
visualisation or any other would not be possible without a volume model.

A

-

q
g.
1=
4

:

3

Figure 2.3. Screen snapshot of an interactive tool for visualising model of core sample data.
(Courtesy of David Kao).

Curvilinear Grids from Computational Fluid Dynamics Simulations

A time-dependent, 3D curvilinear grid is described by three, four-dimensional
geometry arrays, (X, ik Zike) Which provide the vertices for a cellular

decomposition of the domain of interest for each time step, t, (Figures 2.4 and 2.5).

The numerical simulation provides the solution to the Navier/Stokes equations at
these vertices. This information is provided by four additional arrays
(Pike Yije Vigke - Wigee ), Where Py, is a scalar representing pressure  and
(Ui Vigke Wik ) is the velocity at vertex (Xij,Yij, Zij,) a time step t, . Typical
spatial resolutions of interest and value today range from 107 to 10°. For efficiency,
time-dependent grids are often partitioned into blocks with vertices of some blocks
moving over time and others being stationary. For example, the V-22 Tiltrotor data
set [2] consists of 26 blocks, of which 9 are time dependent and the remaining ones
are steady. For this data set there are 1,400 time steps each consisting of about 100
MB of data

Free-hand Ultrasound Data

A typical ultrasound probe produces a “dice” of data through an object. These are
called B-scans and are viewed and manipulated as images (Figure 2.6). The use of
the phrase “free-hand” means the addition of a 3D POSE (Position and Eularian
angles) sensor attached to the conventional ultrasound probe. This alows one to
associate a position in 3D space for each of the pixels of a B-scan image.
Mathematically, we can then view each pixel as a sample of the volume model and
represent it as (x;,Y;,z;;d;),i =1---,N .
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Figure 2.4. A diagram illustrating a 3D curvilinear grid.

—

Figure 2.6. The process of collecting free-hand ultrasound data
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The idea of free-hand ultrasound data is over ten years old [3-4], but effective
and efficient modelling of this type of datais a very difficult problem which is only
recently receiving some attention [5]. We will cover some exciting new work in this
area in the next section of this chapter. A volume rendering (MIP) based upon these
new progressive models is shown in Figure 2.7.

Figure 2.7. A snapshot from an interactive viewing of a progressive volume model (discussed
in the next section) of ultrasound data. (Datais courtesy of Bill Lorensen.)

2.2.2 Definition by Analogy to Surface Modelling

In Figure 2.8, we see that the flow of information from top to bottom is “surface” to
“volume” and left to right is “modelling” to “graphics’. The traditional computer
graphics pipeline, which is illustrated in the top half of Figure 2.8, consists of a
parametric surface model that is evaluated at a set of parameter values in order to
obtain a polygon tessellation or approximation. The polygons are mapped by the
viewing transformation to device coordinates and then scan converted. In a similar
manner we can envision a “volume graphics’ system that takes cells (the 3D
analogues of polygons) that have an associated intensity at each vertex and scan
converts them to a 3D frame buffer which subsequently is used to produce a volume
rendering (either by hardware or software). In the diagram of Figure 2.8, volume
modelling is represented by the oval, which is providing the information for the
tessellation process. That is, volume modelling from this point of view is whatever
is evaluated and used to produce the 3D tessellation with density values at the
vertices.
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Modeling Graphics

S
u
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E Parametric S(u, v) = (X(u, v), Y(u, v), Z(u, v))

implicit {(x, vy, 2): F(x,y,2) =0}
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b | |
M
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Figure 2.8. Diagram depicting the analogy between surface modelling and volume modelling.

2.2.3 Definition by Input to the Volume Rendering
Equation

Ray cast volume rendering images are based upon a compositing process. Given a
sorted collection of objects, which emit C; and have transparency t ; , we compute
the observed intensity by applying a very smple model of transparency and
successively computing i = (1- t;)C; +t;F_; (Figure 2.9). A standard limiting
process on this discrete compositing leads to the volume rendering integral

« - :‘;ﬁ(t)dt
F(x) = Q d(s)C(s)e ds
0
- :‘ji(u)de
where the density and the transparency are related as t (xy,x) =€ . From this

point of view, in order to produce a volume rendering we need a trivariate density
function, d, and a trivariate colour function C. The mathematical model from which
these two trivariate functions are obtained is called a volume model. In many
applications, one data function D leads to both of these. A transfer operator
(function) is applied to D to yield d. One can use the choice of this transfer function
to make certain values opague and visible and other ranges transparent. If additional
attributes are known, or if information is known about the location of objects, then it
may be possible to also define the colour function C. This is related to the very
difficult problem of segmenting the data into different classes of materials from
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which the colour function can be determined (possibly in a piece-wise constant
fashion). Often C is taken as a direct relation from D, or possibly it is computed
from D and the gradient of D in order to flush out isosurfaces.

C; Ci color C,
T T; transparency n
AN \ >

Figure 2.9. Compositing.

2.2.4 Summary of Definition of Volume Modelling

Aswe can see, dl three of these approaches (volume data, volume rendering integral
and anal ogue to surface modelling) lead to the same definition of volume modelling.
A volume model is a trivariate relationship whose independent argument is a
position in 3D space and whose dependent argument is a scalar or tuple of scalars or
even a vector. The volume model might aso have the aspect of varying over time.
Before we leave this section, we should mention some concepts with similar
terminology, which are not volume models. Even though it is an important part of
certain algorithms in volume graphics the problem of scan converting lines, curves,
surfaces or solids into discrete voxels [6-7] is not the process of volume modelling.
Nor is amodel of avolume (Figure 2.10), as for example described by the methods
of CSG (constructive solid geometry). It is a region of space. For the same reasons

CSG tree for a simple

DIFFERENC

Figure 2.10 A modd of avolume s not a volume model
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that a collection of pixelsis not a curve (Figure 2.11) and a cloud of points is not a
surface (Figure 2.12), a collection of voxels or tetrahedra (see Figure 2.13) is not a
volume model. It is a spatial enumeration and is missing the important component of
arelationship possessed by a volume model. But on the other hand, we can make the
following observation. Just as it is possible (though not necessarily easy) to
parameterise and fit a collection of points to a curve and just as it possible (but even
more difficult) to parameterise a cloud of unorganised points to a surface, it is
possible to construct a volume model based upon discrete voxels and points.

pixels:

(6,16),
(33,19),
(13,20),

Figure 2.11. A collection of pixelsisnot a curve, but it may lead to one when an ordering and
other implications are added.

Erna 8
e

Figure 2.12. A collection of points is not a surface, but it may lead to one when the topology
of atriangulation is added. (Images courtesy of UNI-KL.)

Figure 2.13. A collection of voxels is not a volume modd. It is a voxelised volume that
serves as a means to describe a region of 3D space. (The left image is courtesy of Arie
Kaufman and the right image is courtesy of Lego.)
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2.3 Research Issues in Representing Volume
Models

In this section, we cover a sampling of methods for representing volume models
along with some research issues for each of these methods.

Basis Functions

This is the most straightforward approach to representing a volume model. In this
approach, we assume a genera form of the volume model. It involves coefficients
and basis functions. The volume data or other considerations are then used to select
the coefficients in the generic form of the model. In mathematical terms, the volume
model takes the form:

N
VM (x,Y,2) = g abi (X, Y,2) 2.1)
i=1

where b;(X,v,2),i =1---,N denote the basis functions and the unknown coefficients
are a;,i=1,---,N . This type of volume model is often used in a visualisation tool

even though it may not be completely apparent what the form of volume model
really is. For example, with the marching cubes agorithm piece-wise linear
interpolation into voxels is used. Thisis equivaent to using a volume model of the
form given in Equation 2.1 where the basis functions are the 3D versions of the
“hat” functions based upon a Cartesian grid. Viewing the modelling process this
way opens up the possibility of using many other, possibly more efficient, basis
functions.

Research Issues: The research question for a particular application then becomes
how to select the basis functions and then how to select the method of computing the
coefficients of the volume model. Ideas about choices for basis functions come from
generalising useful and successful basis functions for lower dimension problems.
For example, splines have served the surface modelling community very well. So
then the question arises as to what are the proper basis functions for a spline volume
model. Some suggestions and comparisons are discussed in [8]. Issues as to whether
interpolation or approximation is most appropriate must be addressed. Also, should
the basis functions have local or globa support? Are there numerical condition
problems in the computation of the coefficients? What type of basis functions will
allow interactive speeds? O

Mathematical Modelling

Prior to describing this method of representing volume models, let usfirst establish a
context by mentioning a few simple things about mathematical/physical modelling.
One of the first uses of mathematical modelling, that we all see, are the equations for
a pendulum introduced in a beginning physics course. If Q(t) represents the angle
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2 -
of deflection at time t, then Newton’s second law takes the form C:j—? = Tgsin(Q)
t
where g is the gravitational constant and L is the length of the pendulum. To
completely determine the solution, the initial conditions Q(0)=Q, and

Z—? (0) = Q§ must be provided. Even though these equations uniquely determine the

solution, there is not a smple formulafor Q(t) . A solution usually requires infinite

expansions or numerical techniques.
For CFD (computational fluid dynamics) studies, the Navier/Stokes equations
characterise the volume model as the solution of a second-order PDE:

BV 4 (v Ryv 8= Rp + mRi2v + F 2.2)
et o

whereV = (u, v, w) = (u(x,y, 2), v(x,y,2), w(x, y, 2)) represents the velocity vector and
p =p(x,y,z) isascaar valued function representing pressure. The scalar constant r is
fluid density, and m is the dynamic viscosity. The externa forcesare F = (X, Y, 2).
As with the pendulum problem, a solution of Equation 2.2 for VV and p requires some
type of approximation or numerical technique. This is where curvilinear grids come
into play. They are often used for the numerica solutions of the PDE's that
characterise a volume model. Either they serve as a cellular decomposition for a
finite element approach to a solution or they are used in the finite difference
approach where partial derivatives are replaced with discrete approximations. In
either case, a solution to the volume model is computed at each of the nodes of the
curvilinear grid. Later, this data is passed along for post visualisation and analysis.
What is often not passed along is the method of solution. Most data
visualisation/analysis tools require that the discrete data be modelled or interpolated
in some manner. Quite often, the simplest or most readily available method is used
for this purpose whether or not it has anything to do with the underlying volume
model. This is an unfortunate situation which is likely to change as the scientists
themselves are getting more and more involved in the analysis and visualisation of
their data and as the general level of knowledge and mathematical sophistication is
increasing in the area of volume visualisation.

Research Issues: Can the mathematical model be “attached” to the simulated data?
Can the mathematical model be applied locally? In a multi-resolution manner? How
much error is associated with each approach? O

Deformations

In a nutshell, the basic idea here is described as follows. We start with a generic
model which has an associated classification function and morph this generic model
to a particular model inferred by the collected data. This is done with the use of
function norms and a minimisation strategy. The classification function for the
particular datais now obtained by composing the morphing function and the generic
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classification function.
A 3D morph can be accomplished with a trivariate map:

(a;exp'g ge:x(xg'Yg'Zg)Q o gai
(;Yp fngy(Xg,Yg,Zg)fz a gbi
&c

6
‘EMi(Xg'Yg'Zg)
%Zpa ng(Xg'Yg'Zg)B 2

which maps a portion of 3D space onto itself. It deforms the space. These types of
maps have been used for designing objects [9] and animations [10]. The basis
functions Mi(Xg, Yg, Zg) Would usually be polynomial or piece-wise polynomial. The
coefficients of the morph (a;, b;, ci)t may be thought of as control points and the idea
is to manipulate these values so as to accomplish the desired end.

And now more details: Suppose the generic model has been segmented so that
we have atrivariate function C(x, y, z) which represents the colour or classification
function. This function tells us what material is located at position (x, y, z). It might
be that C(x, y, z) is piece-wise defined (say over voxels) but the precise type of
function it is, is not important in this context. Also associated with this generic
model is a data function d(x, y, z). This is to represent, for example, a model
obtained from applying our scanning device to the generic model and then fitting
this data with a volume model. This function may possibly be aobtained by a
simulation of a mathematical model of the generic model using C(x, y, z) and the
physical properties of the materials that are classified or even scanning a physica
phantom model. Both C and d are based upon some type of basis functions and
therefore we can represent them as follows:

Cxy.2) =@ aCi(xy.2), d(xy,2)=§ adi(x,y.2).

Next we obtain the scanned data which we represent as d,(x, y, z) where p is for
“particular”. What we want is the colour or classification function for this particular
data. Let us call it Cy(x, y, z). We first find a morphing function M which maps the
generic model into the particular model. This is done on the basis of the scanned
data. We choose M so that the function d(M(x, y, z)) is close to function d,(X, vy, z).
Thiswill require arepresentation of M in terms of some unknown coefficients and a
norm or method of discretely measuring the error between these two functions. This
leads to a minimisation problem where the parameters of M are manipulated until
the optimal or best fitting morphing function is obtained. We then take as the
classification function for the particular model to be:

Cp(% ¥.2) =C(M(x,Y.2))

Research Issues: What is the form of the morphing map? Trivariate Bezier?
Catmull/Clark solid? Piece-wise linear over tetrahedra? How to incorporate
particular datainto the computation of the morphing map coefficients? Least squares
with cost function? Simulated annealing? O
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Wavelet-Type Multi-resolution Models

The ideas and concepts of wavelets have their origins in the univariate world of time
varying signals [11-12]. Many of the more useful techniques have been extended to
certain types of surface models in the past severa years [13]. The first use of
wavelet techniques for volume data was by Muraki who used tensor product
techniques to obtain wavelet models for MRI data. In [14] he discussed the
application of Batelle-Lamarie wavelets and later [15] he compared these results to
those of the DOG wavelets (difference of Gaussian). While tensor product methods
afford a relatively easy way to extend the origina univariate wavelet models to 3D
data, they are often not suitable for certain applications and types of volume data.
This includes the volumetric curvilinear grids of CFD data, as we will explain later
in this section.

Wavelet expansions often are based upon basis functions with different
resolutions and within each of these resolutions there are basis functions with
different regions of support. This yields two views of the wavelet expansion and
allows for two very useful types of reconstructions. We can pick out the resolution
of interest and approximate with only these basis functions. This would allow, for
example, the elimination of noise or clutter in order to visualise an overview or trend
in some data. We can pick aregion of interest and only use the basis functions that
have support (non-zero values) in this region. This alows for efficient means to
zooming in and out for browsing.

FO=8 a0+ bM(0)+Q cH (0= & agRy()++ §ayRy(X)
regnl regn N

low medium high

Both of the properties of compact support and orthogonality are important to the
successful application of wavelets. Unfortunately if we also impose symmetry then
we are frustrated in our attempts to define piece-wise linear (polynomial in general)
wavelets. A recently developed wavelet [16] overcomes this obstacle with a
technique for blending the piece-wise constant and piece-wise linear wavelets. There
is a parameter, D, which allows the user to emphasise the compact support properties
of the Haar wavelet or to emphasise the higher order approximations possible with a
piece-wise linear wavelet.

We now turn our attention to wavelets for curvilinear grids. Recently, we
published some results on the development of wavelets for 2D curvilinear grids in
[17]. We are currently working on extending these techniques to 3D. In this work,
the nested wavelet spaces are defined in a piece-wise manner over nested cellular
decompositions. One important constraint that we imposed on this cellular
decomposition was that the origina inner boundary must persist at all levels. This
constraint added considerable complexity to the models and subsequent algorithms,
but without it, we felt that the application of the wavelets would suffer. One of the
reasons for this is the fact that much of the activity of the flow takes place near the
inner boundary and a degradation of this representation at low resolutions would
deter the possibility to analyse the flow. We opted for a knot removal approach for
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building the nested cellular decomposition. We will report on this work in the near
future.

Research Issues: How to define wavelet volume models for the types of grids and
data sets of interest in volume visualisation today? For example, 3D, time dependent
curvilinear grids, tetrahedral decompositions, spherical curvilinear grids, free-hand
ultrasound data and, in general, scattered volume data. How important is the trade-
off between orthogonality and local support for this genera application? Are nested
spaces critical? Is it better to build multi-resolution models for isosurfaces or the
volumes from which they are extracted. Can both be done at the same time? O

Progressive Volume Models

The basic idea of progressive models can be quickly gleaned from the univariate
data example illustrated in Figure 2.14. On the l€ft, the raw data is modelled by a
piece-wise linear function in the bottom left graph. Successive local, piece-wise
approximations are replaced with more global models leading to the final model in
the top left graph. (See [18] for a model of this type applicable to Cartesian grids
and [19] for a more genera agorithm which was applied to curvilinear grids.) On
the right, we start with a globa model (linear least squares for example) and
examine if it is acceptable or not. If not, then the domain is split, a new piece-wise
model is computed and the same acceptability criterion is repeated for the sub-
models. These are simple, yet powerful ideas for obtaining models whose
complexity and ability to fit conform to the complexity and variability of the data
We fed there is a great promise for these ideas in volume models, but it is not a
trivial matter to extend these ideas to 3D.

Top-Down/Adaptive

N
AU

Bottom-Up/Collapsing

Figure 2.14. The univariate example illustrates the basic ideas of two approaches to
progressive models. Volume modelling isinterested in these concepts extended to 3D.

In addition to the oracle (the general collapsing or subdivision decision making
process) there is the requirement of an effective and useful means of actually doing
the subdivision and collapsing. A general approach to solving the problem is to think
up something for 2D and then try to generalise it to 3D. The simplest and most
robust cells are triangles in 2D and tetrahedra in 3D. (See [20] for basic algorithms
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and data structures for triangles and tetrahedra)) The basic problem with building
meshes that are coarse in one region and fine in another is the avoidance of the so-
called “cracking problem”. We mention three approaches. See Figure 2.15. The
method of Maubach [21] performs a local subdivision and repairs the crack by
propagating this split out through the mesh. The method of Bey [22] has been used
in FEM [23] and a variation has been discussed and used for volume models by
Grosso et a. [24]. It uses a combination of two types of subdivisions to avoid cracks
and avoid poorly shaped tetrahedra. A new approach is based upon not worrying
about the crack, but rather using a Coons patch local model that covers it over [25-
26]. Each of these approaches has it own set of research issues that must be worked
out before the methods become viable, but each shows promise.

Maubach Bey Coons

-4
D 04
San

Figure 2.15. Three different approaches to the cellular decomposition for progressive models
which avoid the cracking problem. (The 2D is shown only for illustration purposes. Volume
modelling is concerned with the 3D case.)

We now describe some current research results in this area. They are rather exciting.
In Figure 2.16, samples of some free-hand ultrasound data are shown. This data was
collected in the neck region and includes portions of the carotid artery and the
thyroid gland. The complete set of data consists of approximately a million data
points. It is noisy (due to the ultrasound sensors) and it is redundant due to the
overlaps caused by the free-hand method of collection. A typical tetrahedral mesh
resulting from the adaptive method of fitting is shown in the right image of Figure
2.16. Note that the tetrahedra are much smaller and denser in the regions where the
data is more dense and exhibit greater variation. This shows the ability of the model
to conform to the complexity of the data. In Figure 2.17, we show the results of a
very low resolution model. The left image of Figure 2.17 shows 5 B-scans of the
original data and a “floating window” reconstructed from the volume model. On the
right the same five data B-scans are shown aongside their corresponding
approximations. Also the reconstruction of the “floating window” is shown on the
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right. Figure 2.18 shows a higher resolution model. The results are impressive in
light of the number of vertices and the detail that is present in the approximations. A
different and quite interesting way to compare the approximation is shown in Figure
2.19. And due to the existence of the volume model, tools such as that shown in
Figure 2.20 are possible. Figure 2.7 is aso based upon the volume modelling
techniques we have just described.

Figure 2.16. Free-hand ultrasound data collection and typica tetrahedral mesh for
progressive model. (Data courtesy of Cambridge University.)

Figure 2.17. Results from progressive fit with afairly large RMS error of 17.3 with only 909
vertices (approximately 1000 to 1 reduction).
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Figure 2.18. The same information as in the previous figure, but the RMS is 9.94 and the
number of vertices is 53,995 (approximately a 20 to 1 reduction). The quality of the
reconstructed images is excellent!

Research Issues: These results show the promise and potential of progressive
models for this type of data and for this reason they are exciting. Is it possible to
develop very fast and efficient algorithms that will operate in real time? Imagine an
environment where a user sees the results of the volume model as the data is being
collected. If a region is of specia concern, the probe can be positioned so as to
collect more and more data in this region resulting in better and better fitting
models. This type of performance will require efficient data structures for the
tetrahedralisation and efficient means to compute the coefficients of the volume
model. What is the best subdivision strategy? The results we just described (Figure
2.7 and Figures 2.17-2.21) are based upon a particular 3D version of the Maubach
algorithm [21]. We previously mentioned two other possibilities: (1) The red/green
strategy of Bey [22] and Banks [23] and (2) the idea of using triangular Coons
patches. Are there others, and what specia properties do they have? What is the best
oracle or fitting strategy? Top-Down/Adaptive or Bottom-Up/Collapsing? Within
either genera strategy there are choices to be made. For example, how do you
decide which cells to split or collapse? For some splitting strategies and
applications, it may be advantageous to go very deep and for others there are reasons
for keeping the overall meshing more uniform and shallow. The results reported
here use a piece-wise linear model. Is it worth it to use higher order functions?
Second order, for example? We suspect that the savings in the total number of
tetrahedra will indicate that thisis a wise decision for some applications. O



46 Nielson

Vertical Thyroid_45, RMS

250
200
150

1 M /HNWWWM/\

Actual 50

Horizontal Thyroid_45, RMS

250
200

“/\M\/\/\f\x
avaA
e N

100

. . 50
Approximation

Figure 2.19. Comparison of actual B-scan and approximation.
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Figure 2.20. Using adice tool to interactively view avolume model of ultrasound data.
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2.4 Conclusions

In this chapter, we have presented a definition of volume modelling, made an appeal
for its general development and covered some basic methods of representing volume
models. The methods covered are only a sampling. Many techniques have not been
covered. For example there have been a number of procedural techniques devel oped
where the primary goal is to generate an image or animation which is acceptable to
the viewer. In these applications the picture is the main goal and the volume model
is not so important. Fire, gases, clouds, fluids and many other phenomena have been
considered. Discussion of these procedural techniques can be found in [27] and the
references therein. Also, we did not cover the very interesting and potentially very
useful topic of layered manufacturing (see Chapter 5). Volume models are needed to
drive these new and interesting methods of fabrication, for instance, the use of
transfinite deformation maps for describing volume models [28].
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Surtace Reconstruction

a. Trniangular Patches

Sl
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barycentric coordinates




barycentric coordinates

i




barycentric calculus

— 1.2

¥




b. Beziér Techniques

Bezier - curves

X, (u)= Z“:bmﬂ:'[ woli )

i=0 U — U

Bernstein - polynomials

R

0<r<1
as blending functions

by ABQ)
SAB0)

Rational Bézier - curves X(t):z

]
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30 +

25 +

20 + 2




Béezier — surfaces

X (“ w)= ZZ o1 et 75 [HHHP )B:[ il )

=0 ;=0 rH

Rational Bézier - surfaces

i A8 (u)B7(w)
X( ) Zzb ZZ%BH(H)BM(W)

SO
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triangular Bezier - patches

i+ jrk=n

x (u, v, w) o Z b Bl (u, v, w)
=0

Ij.K=

0<uv.w<l and u+vi+w=1







transfinite methods

Vi




Triangular Interpolation schemes with parallel projectors

Earnhill — Birkhoff — Gordon and Earmhill — Gregory

Compatibly corrected BEG — scheme |
X(u,w) := [Pg@ PiaePs)| X

wihers




Convex combination schemes (Gregory)

s

= F(SF) + b;F,. (5F) + F(S]) + b (SD)
—F(V;) — bj Fyn; (Vi) — bp Fny (V3) — bjbpFop iy (Vi)







side vertex methods (Nielson)
v




applying the Hermite operator

Hlg|(t) == H(t)g(1) + H(t)g'(1) + H(1 — t)g(0) — H(1 — t)g'(0)

to the radial operator

Ri(t):=F@tSi+(1-t)V;); i=1,23




curvature continuous triangular patches (Hagen)

geometric Hermite-operator

GH(y) = Y Hi(t)y(i) + Hi(0)y'(i) + Gi(t) [[y/ (i), 4" ()], ' (3)]

i=0,1




combing the geometric Hermite-operator with tha radial operator

Ri(t)=FS;+(1—-V;); i=123

we can define




[[Ri(0), B{ (0)], Ri(0)] = IR (O)I* (kv (Vi)N (Vi) + kg (Vi) [N (V2), R; (0)])
[[Ri(1), R ()], Ry(1)] = [IR{(D)II* (kn(Si)N(S;) + kg(S:)[N(S3), Ri(1)])

LSING COmny ombinations




Triangular Patches with first and second order geometric continuity

Mielson — Hagen — Pottmann

Mielson's G — patch interpolates surface normals and is based upon




combining this operator with the radial operator we can define

GilF)(br,basbe) = ol (V). F (2R ) N (R ()
NIFEEER 1 -

using convex combinations we get:




52 — patch {Hagen — Pottmann)

geometric extension of the quintic Hermite-operator

HE[%: Vl: VH: T/f& VH! V;{f](t) ~
Hg(t)Vo + HY (t)Vy + H3(e)Vy' + H3())Vy + H (1) V] + H2 (t)W;




g[%w 1{1: C{}'} Cl](t) i HE[PEH Vl: AUTU: AlTl*.l }"{E}kﬂ + WT{}? A%kl + ﬁlTl](t)

apphing this operator to the radial operator;

biV; + b Vi

Pi[F](b1,b2,b3) = g[F(V3),F CIF](Va),

e













/— At least G1 continuity
A Across the section curve




Simulation Based Modelling

data generation: measurements =>» large unstructured
data reception: numerical simulations data sets
data enrichment: filtering
and improvement: clustering
data analysis: structure recognition
data reduction: testing of features

representation sets
modelling: variational design

physically based modelling
interrogation: reflection lines, GFS,
quality analysis: Isophotes, ...

manufacturing
process

I Jrens Prof. Dr. Hans Hagen
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Clustering for structuring and data reduction

Clustering means grouping of similar objects by optimizing a certain
function or other object dependent properties.

Input: a set P of arbitrary distributed data points
P Doy -5 P, With weights w, w,, ..., w

Fl

output: a smaller set O of cluster centre points
41> §o» ---» 4, (m < 1), Which minimizes the
least squared errors

22

2 2
P _qj'H —» nm

with the Index sets:

1.:={i| p, closer to ¢, than to any other ¢,, Vizk

I R Prof. Dr. Hans Hagen
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Voronol Diagrams

A multidimensional Voronol diagram Is a partitioning of the space E?

In regions R, with the following properties: each point g, lies in exactly
one region R, which consists of all points x of E# that are closer to g,

than to any other point g, (; #k).

Rj:{xeEd:Hx—qu{Hx—qk,jik}
L . A Sl
I.={i.p lies inregion R} .
. .
- _. g
g  a
. '

oS
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Algorithm

—Initialize a starting cluster configuration ¢, ¢., ..., g, with at least one
data point for each cluster

—for each cluster (=1, 2, ..., m) do:
move the cluster point ¢, in the weighted mean of
data points p, (i € /) and update the index sets

— iterate until the clusters don't "change” anymore
Kelper Recaro GmbH & Co KG

.“E{-!..

300.000 measured points reduced to 10.000 points

i
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— project the 3D points onto the best fitting plane

—triangulation of this 2D point set

Delaunay-Triangulation




neighbourhood-criterion

Fy
B

angle-criterion

clrcle-criterion

et |
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—create Initial triangulation using circumscribed rectangle of set P
—for each point p of set P do:

» determine the triangle, that contains p:

e _ Poco &
p is ,visible® from edge E (e, e,) <> det L >0
. R HHHH . “
D :
12 i

oriented-walk-algorithm:
starting with a first triangle, follow the edges that are not
visible® until all edges of the current triangle are ,visible”

L]
I 3 e Prof. Dr. Hans Hagen
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- delete all triangles with a - create triangles, that replace
circumcircle containing point p deleted triangles and embed
point p Into the triangulation




Segmentation based on curvature distribution

« curvature estimation with osculating paraboloids (B. Hamann)

+ least square fitting with
f(u, w) — ZZCHHPWE

based on our neighbourhood structure and a first  best plane fitting
parametrization

« grouping of the points to this curvature measure
two adjacent points belong to the same group <

» deviation of the normals Is .small”

+ the difference of the minimal curvatures Is less than a given
tolerance

I R Prof. Dr. Hans Hagen
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Variational modelling
(I_WS gwpk[‘x(uk?vk)_ Ptlz}

2

‘SEX (u,v)

dudv
o

+ws{ii(w3ug£ i I: 1 w3u,

i1 =1

5 .
+w3vgffﬂj:imw3vﬁ dudv]r—}min

‘SSX (u,v
S

minimal strain energy In a thin elastic plate:

i
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Step 2. Parametrization

igitizing

Step 1. D



Stiffness degree concept for curves:
74 I Hx'(s]|1ds+ B I ‘h’(s]‘zdf —> min
a, >0 a+p=1
general concept

Curves.

5| O der 3255 x > min
L k=0 1-1
¢, =@ geometric spline curves (Hagen)
L=3  weighted 7 - splines (Foley- Neuser)
7 -splines (Hagen)

L=2  v-splhines(Niclson)

interval tension splines (Saulkaskas)
23 v, =0(Nowacki-Meier)

L

]
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Volume Encoding

David S. Ebert & Yun Jang

School of Electrical and Computer Engineering
Purdue University

Collaborator Material from Kelly Gaither, Thomas Ertl, Manfred
Weiler, Matthias Hopf, Jingshu Huang
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Introduction

Enormous datasets from scientific simulation
Goal: interactive visualization on desktop PC
Volume rendering

* Regular or recti
— Texture map
» Large scatterec

iInear gridded volume datasets solved
ning on commodity PCs

or unstructured volume datasets

— Still a challenging problem

Fﬁm
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Introduction

Purpose of presentation

* Procedurally encoding arbitrary scalar, vector, and
multifield datasets using Radial Basis Functions
(RBFs)

* Improvement on spatial distribution of RBFs for
Interactive rendering

* Interactively render RBF encoded data

TEURPLTT
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Previous Work

Interpolation of surface data

« Hardy(1971, 1990), Franke(1982), Franke and
Nielson(1991), Franke and Hagen(1999), Carr et
al.(2001)

Interpolation of volume data
* Nielson et al. (1991), Nielson(1993)

Knot selection
 McMathon and Franke(1992)

PECRECII
Purdue Universi
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Previous Work

Compactly supported RBFs
* Morse et al.(2001), Ohtake et al.(2004)

Hierarchical representation of volumetric
data

* Co et al.(2003)

Meshless isosurface generation
« Co et al.(2004)




Previous Work

Reconstruction and Representation of 3D
Objects with Radial Basis Functions by Carr
et al. (2001)

« Zero level set implicit surface

 Fast fitting and evaluation

* Greedy algorithm for RBF fitting

« Energy minimization for the smoothest interpolant

* RBFs have global support

— Problem for interactive rendering

FPURPL W
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Previous Work

3D Scattered Data Approximation with
Adaptive Compactly supported Radial Basis
Functions by Ohtake et al. (2004)

 Implicit surface fitting

« Compactly supported RBFs

— Randomly chosen centers according to point
density and surface geometry

— Noise-robust approximation

 Link between RBF fitting and partition of unity
approximation




Previous Work

Hierarchical Clustering for Unstructured
Volumetric Scalar Fields by Co et al. (2003)

« Multi-resolution representation of volumetric scalar
data

 Cluster generation using Principal Component
Analysis (PCA)

 Level-of-detail extraction by level-based and error-
based traversal

RPL

Purdue University




Previous Work

Meshless Isosurface Generation from
Multiblock Data by Co et al.(2004)

o Extraction of continuous isosurface from volumetric
data

« Continuous interpolant by locally defined RBFs using
partition of unity method

« Sample points on Marching Cube triangle
 Project points onto isosurface defined by interpolant
 Surface splatting for visualization

TEURPLTT

Purdue I.Iniversiﬂr




Radial Basis Functions:
Basic RBFs

RBF is a circularly-symmetric function
centered at a single point

Examples
=[x~ al
7, (I’ ) =r? |Og (r ) Thin plate spline
¢ (I’ ) = exp (— cr ? ) Gaussian

¢ (I’ ) = \/r 2 + C 2 Multiquadric

:Gﬁ ue Unive rsity



Radial Basis Functions:
RBF Interpolation

\ Example
f (X) = Zwi¢i (”X — Hi H)

= @D
\\ Number of Inputs
X D-dimensional input vector
W, RBF weight p
@ Basis function 1\ . . &,
7 RBF center 1 W, 4
HX — U H Vector norm v v

/
£
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urdue University



RBF Encoding of Volume Data:
Basis Function

Gaussian function .

 Functional value converges to f(X)ZWo+ZWj
zero exponentially

- Can adjust the width for \Y Number of Basis Functions
accurate representation of W, RBF Weight
local features HX— H; H 3D-space distance
« Can easily compute ) |
. . oFf RBF Width
derivatives 1
Wo Bias

|;rdue 11ni1rer£itv



RBF Encoding of Volume Data:
Encoding System

Input Point Vectors Find Center Calculate Width
Using nonlinear

I ighted
(Xia yi )’ {i - 1, ceey N } |:> v uaevvc\e/?allggetf)oint |:> optimization

Maximum error point

X, 3D position vector
Yi  Scalar value ﬁ IL
Split Space Calculate Weight
Principle component Minimizing sum
EUEWSS squared error
Final Encoding Output ﬁ ﬂ
(,U, ) O' y Wi ) Evaluate Errors

Max Error > Target Error

(-1...M] %ﬁ y = f(x)

Max Error < Target Error

L"’ . r 7"'. -
urdue University



RBF Encoding of Volume Dat gz
Clustering methods

K-means
* One of the simplest clustering methods
e Iterative search the nearest cluster for each point

Principal component analysis (PCA)

« Dimension reduction method

 Splits data distribution into sphere-like shapes
Gaussian mixture model

* Density estimation method according to neighborhood
« Expectation and Maximization algorithm for training

 PURPL
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RBF Encoding of Volume Data:
Center Determination

Value Welghted cluster average point

Zy.

J i=1
position _ x. = {x| x € j,cluster |
value _y.=value _at_x.

Maximum error point
yjzmax{gi,izl,... n.}

5i:‘Yi_f(Xi)( |

:Gﬁ ue Unive rsity




RBF Encoding of Volume Data:
Calculate Width

Levenberg-Marquardt method
« Gradient descent nonlinear optimization
* Find &7, a local minimizer for




RBF Encoding of Volume Data:
Calculate Weight

Minimize the sum squared error for all data
poiNts  Fw)=2> [y, - t(x.w)]f

B

Matrix representation Weight solving system

W =W, -+, W
() fu(x) e Wy
: Y=[y1,---,yN]
= AWT :YT
_fl(XN) fM (XN )_ AT AWT _ ATYT

fJ(x,)—exp[— I _/:’} W' = (AT A)_l ATYT




RBF Encoding of Volume Datag.z=s.
Optimization methods

Nonlinear optimization methods
« Gauss-Newton method
* Levenberg-Margquardt method
 Trust region algorithm

Combination for solution optimization
* Width
« Width + Center
« Width + Weight
« Width + Center + Weight

High computational cost but nearly optimal
solution

Purdue University



RBF Encoding of Volume Data:
Vector Data Encoding

Extension of scalar field encoding
« Solve each RBF system for each vector component
* For 3D:
— 3 center sets, 3 width sets, 3 weight sets

Encode all components in one RBF system
* 1 center set, 1 width set, 3 weight sets
— Might not capture variances between vector components
« 1 center set, 3 width set, 3 weight sets
— Can capture variances
— Fast evaluation of RBFs in rendering process

RPL

Purdue University




RBF Encoding of Volume Data:
Error Measurement

Scalar fields
* Absolute error
— Difference between original value and evaluated value
* Percentage error
Vector fields
* Absolute error
* Percentage error
« Angular and magnitude error
— Separate error measurement of these two
— Combination of both

— Balance between angular error and magnitude error is
important

— Importance determined by features to be analyzed
 PURPL :

Purdue University




RBF Encoding of Volume Data:
Large Scale Datasets

Domain decomposition by fast multipole method
* Weight solving method for the large RBF system

Domain localization
* Generate several independent RBF systems for large domain

Partition of unity
« Solve decomposed domains independently

* Need summation of decomposed domain solutions in rendering
process

RPL

Purdue University




Encoding Statistics

X38 Natural Black Oil Neghi Blunt Fin
Shock Convection | Reservoir ghip

# of Cells 1,943,483 48,000 156,642 32,768 40,960

# ot Cells 89.140 48,000 156,642 32.768 40,960

Encoded

# of RBFs 2,932 435 458 812 695
Data Range | 0.00-1.65| 0.00-1.00 | 0.00-1.00 | 0.00-1.00 [ 0.19-4.98
Avg. Error 0.05 0.04 0.007 0.012 0.11

urdue University



Spatial Data Structure:
RBF Influence Calculation

For improved rendering performance

f(x)=w exp —HX_MHZ =W, exp| — 8
| 20, | 20°

ri Radius of influence

E Error tolerance

‘;Fi ue Unive rsity




" Spatial Data Structure:
Spatial RBF Distribution and Octree
Generation

Example, Max number of RBF per cell =4

(-




" Spatial Data Structure:

Spatial RBF Distribution and Octree
Generation

Example, Max number of RBF per cell =4
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o)
25 B

AN

LS
o )

~_




Spatial Data Structure:
3D Spatial RBF Distribution
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Surface Generation and
Visualization

Achieved by rendering slices

Mapping the reconstructed data into the
alpha channel of fragment color

OpenGL alpha test to simulate the first-hit
semantics of a volume ray caster

Pixel values are drawn only If
* They pass the z-buffer test

e The alpha values are larger than or equal to the
selected iso-value

B .
Purdue University



Direct Rendering from Encoding: ==, _
Hardware Capabilities and Limit "%

nVdia high-level shading language Cg

nVidia GeForceFX chip series

« Supports long fragment program with up to 1024
fragment program instructions

High memory bandwidth and parallel
processing capability

Limited dynamic branching supported by
GeForceFX fragment processing unit




Direct Rendering from Encoding: ==
Splatting Approach h

Rendering a polygon for each RBF center
* Polygon covers the influence disc of the basis function with
respect to the rendered slice
Accumulation of the polygons
 Blending is not supported for floating point p-buffer

* Ping-pong rendering by binding the result from previously
rendered splats as a texture map

« Remove the continuous texture rebinds with feature of the
GeForcekFX

Subdivision approach
 Reduces the rasterization overhead

Purdue University



Direct Rendering from Encoding:
Programmable Fragment Pipeline

General, orthogonal instruction set
Floating-point data types

Resources
« Large number of registers
e Long programs
* Unlimited texture lookups

« Multiple levels of dependent
texture lookup

High level programming languages
Very limited data dependent jumps or loops
ﬁa’m‘.ﬁn.sigf




" Direct Rendering from Encodlng
Fragment Based RBF
Reconstruction

Similar to procedural textures
Decouple geometry from appearance

Compatible with various
rendering/visualization algorithms
* Property texture for arbitrary geometry

— Pressure on airplane body
e Individual cutting slices
« Texture based volume rendering
* Includes volume rendered isosurfaces

Eﬁ'ﬁ’l’ﬁ:‘
Purdue Univers it
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Direct Rendering from Encoding:
RBF Reconstruction during

Rasterization




Direct Render

High Level Rendering

Ing from Encoding: .=

Spatial decom
Multipass rend

position (bricking)
ering (last pass for all cells)

 Hardware acce

erated p-buffers

« Uses ping-pong rendering

* Active cell list

Switching to cell-based traversal for single
pass reconstruction
* Requires cell sorting by recursive depth-first traversal

|;rdue 11ni1rer£itv




Direct Rendering from Encoding: ===
Texture Encoding ‘

RBF parameters as two texture maps
* Resides in the local graphics memory
 Full precision floating-point textures

RBF parameters of a single cell
 Stored consecutively in the texture map

* Fragment program may access RBF parameter by
lookup with increasing texture coordinate

« Avoid texture wrapping

B .
Purdue University



Direct Rendering from Encoding:
Texture Packing |

RBF chunks for multipass rendering
* Different chunk sizes for reducing rasterization

» Specialized fragment programs
* Padding




Direct Rendering from Encoding: ==
Fragment Program e




Results:
X38 Crew Return Vehicle

Tetrahedral finite element
viscous calculation on
geometry
« Computed at Engineering

Research Center at Mississippi

State University by the
Simulation and Design Center

« Single time step in the reentry

process into atmosphere Shock Volume Rendering

* 1,943,483 tetrahedra at a 30 representing normal Mach
degree angle of attack number around 1.0

“PURPL 7
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Results:
X38 Crew Return Vehicle

Cutting plane rendering Volume isosurface
of shock rendering of density

F .—‘}

4
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f

I ’. |_ ;.."___F..-
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Results:
Natural Convection in a box

80t time step of
temperature from a
natural convection
simulation

* A non-Newtonian fluid in a
cube

* Developed at The University of
Texas at Austin

» 48,000 tetrahedral elements

e T e =
urdue University



Results:
Black Oil Reservoir Simulation

A simulation for
prediction of
placement of water
Injection wells to
maximize oil from
production wells

« Computed by the Center for
Subsurface Modeling at The
University of Texas at Austin

* 156,642 tetrahedra
containing water pressure
values for the injection well

B B e+
_uri ue University






Results:
Tornado

Synthetic dataset

» Courtesy of Roger Crawfis
from The Ohio State
University

» 32,768 cells

 Visualization of velocity
magnitude

_Iri_ ue Unive rsity



Results:
Turbulent Channel Flow

Experiment studying of
laminar-turbulent
boundary layer
transition in a water
channel

* Provided by the Institute for
Aerodynamics and
Gasdynamics of the
University of Stuttgart

» 32,085 cells

‘;Fi ue Unive rsity



Results:
System

Intel Pentium 4 2.80 GHz process, 2 GB
memory

256 MB nVidia GeForce 6800GT graphics
board

B ®o
_uri ue University



Results:
Performance

Limited by the rasterization of the graphics card

Single cutting planes
>> 30 fps even for several thousands of RBFs per fragment

Volume Rendering by splatting approach
* 6.4 — 44.3 fps with 64 slices on 400 x 400 viewport

Volume Rendering by texture-based approach
¢ 0.96 — 10.5 fps with 64 slices on 400 x 400 viewport
 Limited by multipass rendering
* Isosurface shading

Optimization for nv40
e Code not optimized for new capabilities

Purdue University




Conclusion

Effective encoding of scalar and vector fields

Novel approach for interactive reconstruction
and visualization of arbitrary 3D fields

Allows interactive exploration of large
datasets from a variety of sources

" el
urdue University



Future Work

Improve rendering and increase image
guality by incorporating pre-integrated
volume rendering

Improve RBF encoding techniques for
Improved performance

Better error measurement methods for
vector encoding

:Gﬁ ue Unive rsity
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Motivation

Recent computational performance
increases

Massive dataset from advanced computing
simulations

Difficulty in direct analysis of large datasets




Motivation

Feature detection

« Powerful means of automatically detecting regions of
Interest

« Automates data analysis

» Extracts the salient features




Survey of Techniques

J. Helman and L. Hesselink
« Evaluation of Flow Topology from Numerical Data, 1987
— Two dimensional topology using critical points

— Attachment and separation surfaces in three dimensional
flows

« Representation and display of vector field topology in fluid flow
data sets, 1989

— Representation of global topology based on the analysis of
critical points

* Visualizing vector field topology in fluid flows, 1991

— Combining simplicity of scheme depiction with curves and
surfaces directly from the data




Survey of Techniques

Globus et al.

« A tool for visualizing the topology of three-dimensional vector
fields, 1990

— Numerical analysis and graphical display of topological
aspects of vector fields

— Critical points, their invariant manifolds, and integral curves
Jeong and Hussain

* On the identification of a vortex, 1995

— Identifying a vortex core referred to as the A,-definition




Survey of Techniques

Lovely and Haimes
* Shock detection from computational fluid dynamics results, 1999

— Locating shocks in transient and steady state solution using
flow physics

— Removing false shock detection using a set of filtering
algorithms

Haimes and Kenwright
* On the velocity gradient tensor and fluid feature extraction, 1999

— Identifying global features using local analytical tests based on
critical point theory, phase plane analysis, and the velocity
gradient tensor




Survey of Techniques

Silver and Wang

« Tracking scalar features in unstructured datasets,
1998

— Visualization of time-varying datasets and tracking
volume features in unstructured scalar datasets

— Determining history of time-varying features
difficult




Feature Definition

Critical point

e Stationary point

« Location in the vector field v where v=0
Vortex core

« Central core region of a vortex

Shock

« Connected regions of sharp discontinuities

* Very thin region in a supersonic flow




Critical Points

Integral manifolds

« Combination of vector field topology consisting of key points,
curves, and surfaces

With a few exceptions, all integral manifolds must
begin and end at zeros in the vector fields

These zeros form the critical manifolds

Critical manifolds allow us to characterize the flow
in the areas surrounding the critical points

Critical point contains a greater probability of a
region of interest




Critical Points
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Critical Points Detection

Taylor series expansion of the vector field v

x(o)) V, -+ O (AXAX)

8XJ

v, = v +(xJ

3x3 coefficient matrix




Critical Points Detection

Classification of critical points

« Eigenvalues of the coefficient matrix
R +il, R, +1l,, R, +il,
« Combination of real part and imaginary part
— Positive real part
— Repelling direction
— Negative real part
— Attracting direction
— Imaginary part
— Circulation
« Real eigenvalues all having same signs
— Purely repelling node
— Purely attracting node




Critical Point Detection

Repelling Focus
R1,R2>0
1,12 <>0

Attracting Focus
R1,R2 <0
1,12 <=0

Saddle Point
R1*R2<0
n,12=0

Repelling Node
R1,R2>0
1,12=0

i

Center Attracting Node
R1,R2=0 R1,R2 <0
11,12 <=0

[Hesselink and Helman, 1994]




Vortex Core Detection

Velocity gradient tensor J =Vv

¢ Symmetric part, strain-rate tensor S

J+J7

2
* Asymmetric part, spin tensor ()

J-J7
2
Eigenvalues of S°+Q°

A=A, =4

S:

Q=




Vortex Core Detection

Vortex

» Connected region where s?+Q? has two negative
eigenvalues

Vortex core

+ Points having negative 4,




Shock Detection

Calculate quantities: U represents
[Marcum and Gaither, - P, pressure
1997] y \ * p, density

E, = max[M.AU ’O/ M, mach number

i
E,=min| —-AU,0
v /




Shock Detection

P p M
E Positive E, : Positive E, : Positive E, :
1 Compression shock | Expansion shock Expansion shock
E Negative E, : Negative E, : Negative E, :
2 | Expansion shock Compression shock | Compression shock
E Representing shear shock or contact discontinuities orthogonal
3 | to the flow direction




Shock Detection

Compression Shock of  Expansion Shock of X38
X38
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Shock Detection: U=p
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Shock Detection

Bunning’s technique [Haimes 1999]
 Normal mach number

« Stationary shock

Vp|

Normal Mach number
Velocity vector
Speed of sound
Pressure gradient
Mach number

M Mach vector




Calculation of Velocity gradierf

In the tetrahedral cell, 4 nodes are used to
calculate velocity gradient




Computing Features in Functional
Domain

Possible to compute features analytically
s= f(x)
Functional representation S using RBF

:%(x):w0 +i/1iq)(r)




Computing Features in Functional.c===
Domain

Partial derivatives of function s

Vs (x) = _ix‘_j‘i,ﬁ exp(_ HX_/;H]

iz1 O; 20'

Approximations of partial derivatives are
used to compute a wide variety of features
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i
Meshless Method ‘

Shift from scattered data approximation to
numerical solution of partial differential
equations (PDESs)

Mesh-free nature of RBFs: Motivation for
dealing with PDEs




Meshless Method

Scattered data approximation

* Globally supported RBFs for relative small number of
points (400-500)

* For large datasets (> 10,000)

— Domalin decomposition using fast multipole
method [Beatson et al. 2000]

— Domain localization [Nielson 1993]

— Partition of unity [Ohtake et al. 2003]




Meshless Method

Scientific visualization

* Providing a crucial role in the development and
understanding of computational simulations

 Current focus:

— Improved understanding of results from traditional
grid-based techniques (e.g., rectilinear,
tetrahedral, curvilinear, and hierarchical grid
structures)




Meshless Method

Traditional methods for modeling numerical
system

« Generation of an underlying grid structure (e.g., finite
element methods (FEM), finite volume methods
(FVM), and finite difference methods (FDM))

« Time consuming creation of “good” meshes

* Prohibitively expensive to solve excessive change
scale model by traditional FEMs (e.g., crack
propagation)




Meshless Method

Traditional methods for modeling numerical
system:

« Construction of airtight geometry
— free of cracks or holes

« Generation of surface mesh given
— geometry description
— set of point distributions

* Generation of a volume with elements (e.g., hexahedra,
pyramids, prisms, tetrahedra) adhering to desired spatial
transitions




Meshless Method

Traditional methods for modeling numerical
system

« Grid generation technique balancing
— Manpower time required to generate the grid

— Resulting size of data set with proper resolution
and spacing needed to maintain accuracy and
convergence

« Storage of a set of discretized points with either
Implicit or explicit connectivity




Meshless Method

Additional reasons for exploring meshless
techniques [Kansa, 1990]

e Too much user tuning for multi-dimensional moving
mesh schemes

« Modification of physics to accommodate the
numerical schemes, rather than modification of
numerical schemes to accommodate physics

* Very slow convergence of numerical scheme




Meshless Method

Development of “meshless” methods
« Growing research area

* Providing a fundamental shift away from the
traditional grid-based simulation techniques

* Modeling the domain of interest

« Governing equations of a series of basis functions




Meshless Method

Advantages over the traditional grid-based
techniques

* No dependence on a large underlying grid structure with explicit
connectivity

* Increasing rates of convergence when solving the numerical
PDEs

« Higher order continuity across the global domain of interest

« Superior methods for computing physical systems that have
excessive variation in scale and large deformations (e.g., crack
propagation and fragmentation)




Meshless Method

Meshfree models and particle systems

« Often better suited to cope with geometric changes in
the underlying domain (e.g., free surfaces and large
deformations)

Elimination of cost of grid generation

Weak dependence on a coarsely defined
background mesh that support numerical
guadrature calculations




Meshless Method

Pure functional representations

 Gaussian basis functions

— Relatively localized basis set for modeling rapidly
varying functions

— Easy addition in the regions of clusters

— Most suitable for the evaluation of quantum
mechanical operators between wave functions

Ga,lmn,x,y,z)=N-L4r)x y""
N normalization factor
coordinates of the electron Maybe this
o contraction coefficient equation is not
. _ needed
r radius of the electron orbit from the nucleus N

[.m,n = power coefficients



Meshless Method: Pure
Functional Representations

Wavelets

Excellent mathematical framework for the systematic
decomposition of data into levels of detail (LOD)

Perfect reconstruction while simultaneously
maintaining a sparse data representation

Multi-wavelets

— Approximation of a scalar function by expanding
several scaling and wavelet functions

— Direct construction of a vector wavelet transform




Meshless Method: Pure
Functional Representations

Smooth Particle Hydrodynamics (SPH)

* Lagrangian method for modeling a variety of computational fluid
dynamics simulations

* Approximation of materials by particles that are free to move
rather than being fixed at grid locations

« Convert PDEs governing forces (e.g. gravitational forces) into
equations of motion

« Advantages
— Handles momentum dominated flows well
— Natural modeling for complex free surfaces

— Easy addition of complicated multi-phase physics,
realistic equations of state, compressibility, radiation,
and solidification

— Easy handing of complex geometries in two anW
dimensions



Meshless Method: Hybrid
Methods

Functions + Coarse background mesh

Radial basis functions (RBFs)

* Numerical solutions of PDEs via the method of collocation by
Kansa

No requirement of adaptively finer controls of both space and
polynomial order

Two-dimensional incompressible Navier-Stokes equations [Florez
and Power, 2002]

 Elliptic boundary value problems [Chan and Ke, 2002]
* Transient nonlinear Poisson problem [Balakrishnan et al. 2002]




Meshless Method: Hybrid
Methods

Element-Free Galerkin methods (EFGM)
« Solve PDEs using a
— Set of points in the domain of interest
— geometric description of the body to form a discrete model

« Background grid to support numerical quadrature calculations
* Moving Least Squares Methods as a mean for approximating the function

« Computationally expensive
« Advantages over FEM
— C! continuity over the domain
— Rapid convergence rates
— No dependence on an explicitly defined grid structure

« Attractive in the analysis of crack problem without interactive refining
underlying mesh




Meshless Method: Hybrid
Methods

h-p cloud

Relies on key principal of a signed partition of unity

As smooth as desired

No need to partition the domain of interest into smaller domain
Only an arbitrarily placed set of nodes needed

Moving Least Squares Method for all numerical interpolation

Suitable for large deformation problems exhibiting a significant
change in shape by some load or force

Crack propagation and vehicle crashworthiness

Av0|ds the solution instabilities due to mesh distortion




Examples of using Functional
Encoding

X38 Crew return vehicle

 Tetrahedral finite element
viscous calculation on
geometry

« 1,943,483 tetrahedra at a 30
degree angle of attack

Y |

« Computed at Engineering
R_ese_arg:h _Center al ] _ Shock Volume Rendering
Mississippi State University representing normal Mach
by the Simulation and number around 1.0
Design Center




Examples of using Functional
Encoding

Compression Shock Expansion Shock
5,703 RBFs 6,750 RBFs




Examples of using Functional
Encoding

Natural Convection in a
0]0)¢
« 80™ time step of

temperature from a natural
convection simulation

» 48,000 tetrahedral elements 435 RBFs

« Developed at The University
of Texas at Austin




Examples of using Functional
Encoding

Black Oil Reservoir
Simulation

* A simulation for prediction of
placement of water injection
wells to maximize oil from
production wells

— 156,642 tetrahedra
containing water pressure
values for the injection well

458 RBFs

222 RBFs
— Computed by the Center

for Subsurface Modeling at
The University of Texas at
Austin




References

Meshless techniques

« G.E. Fasshauer, "Solving partial differential equations by collocation
with radial basis functions", Surface fitting and multiresolution
methods, pp. 131-138, 1997

* G.E. Fasshauer, "On the numerical solution of differential equations
with radial basis functions", Boundary Element Technology XIllII, pp.
291-300, 1999

* G.E. Fasshauer, "Nonsymmetric Multilevel RBF Collocation within an
Operator Newton Framework for Nonlinear PDES", Trends in
Approximation Theory, pp. 103-112, 2001

* Y.C. Hon and Z.M. Wu, “A guasi-interpolation method for solving stiff
ordinary differential equations”, International Journal for Numerical
Methods in Engineering, Vol. 48, pp. 1187-1197, 2000




References

Meshless techniques

E.J. Kansa, “A scattered data approximation scheme with applications to
computational fluid-dynamics - |: Surface Approximations and Partial Derivative
Estimates”, Computers and Mathematics with Applications, Vol. 19, Num. 8, pp.
127-145, 1990

E.J. Kansa, “A scattered data approximation scheme with applications to
computational fluid-dynamics - II: Solutions to parabolic, hyperbolic and elliptic
partial differential equations”, Computers and Mathematics with Applications, Vol.
19, Num. 8, 147-161, 1990

E.J. Kansa and Y.C. Hon, “Circumventing the ill-conditioning problem with
multiquadric radial basis functions: applications to elliptic partial differential
equations”, Computers and Mathematics with Applications, Vol. 29, pp. 123-137,
2000

B. Forberg and T.A. Driscoll, “Interpolation in the limit of increasingly flat radial
basis functions”, Computational and Applied Mathematics, Vol. 43, pp. 413-422,
2002




References

Meshless techniques

Chen et al., “Dual reciprocity method using for Helmholtz-type
operators”, Boundary Elements, Vol. 20, pp. 495-504, 1998

W. Chen and M. Tanaka, “A meshless, integration-free, and boundary-
only RBF technique”, Computational Mathematics Applications, Vol.
43, pp. 379-391, 2002

O. M. Nielsen, “Wavelets in Scientific Computing”, in Department of
Mathematical Modeling, Technical University of Denmark, pp. 224,
1998

J. Fowler and Hua L., “Omnidirectionally Balanced Multiwavelets for
Vector Wavelet”, Proceedings of Data Compression Conference, 2002

J. J. Monaghan, “Smoothed particle hydrodynamics”, Journal of
Computational Physics, Vol. 110, pp. 229-406, 1994




References

Meshless techniques

 W. F. Florez and Power, H., “DRM multi-domain mass
conservative interpolation approach for the BEM solution of the
two-dimensional Navier-Stokes equations”, Computer &
Mathematics with Applications, Vol. 43, 2002

« C.Y.Chan and Ke L., “Numerical computations for singular
semilinear elliptic boundary value problems”, Computer &
Mathematics with Applications, Vol. 43, 2002

« K. Balkrishnan et al. “An operator splitting method radial basis
function method for the solution of transient nonlinear Poisson
problems”, Computer & Mathematics with Applications, Vol. 43,
2002




References

Meshless techniques

« M. Fleming et al., “Enriched Element-Free Galerkin Methods for Crack
Tip fields”, International Journal for Numerical Methods in
Engineering, Vol. 40, 1997

* N. Sukumar et al., “An element-Free Galerkin Method for Three-
dimensional Fracture Mechanics”, Computational Mechanics, Vol. 20,
pp.170-175, 1997

« T. Belytschko et al., “Element-Free Galerkin Methods”, International
Journal for Numerical Methods in Engineering, Vol. 27, pp. 229-256,
1994

« T. Belytschko et al., “Crack propagation by elementfree galerkin
methods”, Advanced Computational Methods for Material Modeling,
Vol. 180, pp. 191-205, 1993




References

Large scale techniques

R.K. Beatson and W. A. Light, “Fast Evaluation of radial basis functions: Method
for 2-dimensional polyharmonic splines”, IMA Journal of Numerical Analysis, Vol.
17, pp. 343-372, 1997

Beatson et al., “Fast fitting of radial basis functions: Methods based on
precondition GMRES iteration”, Advanced in Computational Mathematics, Vol. 11,
pp. 253-270, 1999

Beatson et al., “Fast Solution of the Radial Basis Function Interpolation Equations:
Domain Decomposition Methods”, SIAM Journal of Scientific Computing, Vol. 22,
Num. 5, pp. 1717-1740, 2000

M.J.D. Powell, “Radial basis function methods for interpolation to functions of
many variables”, Proceedings of the 5th Hellenic-European Conference on
Computer Mathematics and its Applications, pp. 2-24, September, 2001




	VolumeEncoding_v4.pdf
	Volume Encoding
	Introduction
	Introduction
	Previous Work
	Previous Work
	Previous Work
	Previous Work
	Previous Work
	Previous Work
	Radial Basis Functions:Basic RBFs
	Radial Basis Functions:RBF Interpolation
	RBF Encoding of Volume Data:Basis Function
	RBF Encoding of Volume Data:Encoding System
	RBF Encoding of Volume Data:Clustering methods
	RBF Encoding of Volume Data:Center Determination
	RBF Encoding of Volume Data:Calculate Width
	RBF Encoding of Volume Data:Calculate Weight
	RBF Encoding of Volume Data:Optimization methods
	RBF Encoding of Volume Data:Vector Data Encoding
	RBF Encoding of Volume Data:Error Measurement
	RBF Encoding of Volume Data:Large Scale Datasets
	Encoding Statistics
	Spatial Data Structure:RBF Influence Calculation
	Spatial Data Structure: Spatial RBF Distribution and Octree Generation
	Spatial Data Structure:Spatial RBF Distribution and Octree Generation
	Spatial Data Structure: 3D Spatial RBF Distribution
	Surface Generation and Visualization
	Direct Rendering from Encoding: Hardware Capabilities and Limit
	Direct Rendering from Encoding:Splatting Approach
	Direct Rendering from Encoding:Programmable Fragment Pipeline
	Direct Rendering from Encoding:Fragment Based RBF Reconstruction
	Direct Rendering from Encoding:RBF Reconstruction during Rasterization
	Direct Rendering from Encoding:High Level Rendering
	Direct Rendering from Encoding:Texture Encoding
	Direct Rendering from Encoding:Texture Packing
	Direct Rendering from Encoding:Fragment Program
	Results:X38 Crew Return Vehicle
	Results:X38 Crew Return Vehicle
	Results:Natural Convection in a box
	Results:Black Oil Reservoir Simulation
	Results:Blunt fin
	Results:Tornado
	Results:Turbulent Channel Flow
	Results:System
	Results:Performance
	Conclusion
	Future Work
	Acknowledgements
	References: RBF Encoding
	References: RBF Encoding

	FeatureAnalysis_v3.pdf
	Feature Analysis using Functional Encoding
	Motivation
	Motivation
	Survey of Techniques
	Survey of Techniques
	Survey of Techniques
	Survey of Techniques
	Feature Definition
	Critical Points
	Critical Points
	Critical Points Detection
	Critical Points Detection
	Critical Point Detection
	Vortex Core Detection
	Vortex Core Detection
	Shock Detection
	Shock Detection
	Shock Detection
	Shock Detection: U = P
	Shock Detection: U = ρ
	Shock Detection: U = M
	Shock Detection
	Calculation of Velocity gradient
	Computing Features in Functional Domain
	Computing Features in Functional Domain
	References
	References

	Applications_v3.pdf
	Applications
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method: Pure Functional Representations
	Meshless Method: Pure Functional Representations
	Meshless Method: Hybrid Methods
	Meshless Method: Hybrid Methods
	Meshless Method: Hybrid Methods
	Examples of using Functional Encoding
	Examples of using Functional Encoding
	Examples of using Functional Encoding
	Examples of using Functional Encoding
	References
	References
	References
	References
	References
	References


