
Procedural Encoding of Scattered Data, Theory and Applications

Chair: Kelly Gaither
 The University of Texas at Austin

Texas Advanced Computing Center
 Austin, TX
 kelly@tacc.utexas.edu
 (512) 232-7751
 (512) 475-9445
 http://www.tacc.utexas.edu/~kelly

Instructors: Greg Nielson, Arizona State University, nielson@asu.edu
 Hans Hagen, University of Kaiserslautern, hagen@informatik.uni-kl.de
 David Ebert, Purdue University, ebertd@ecn.purdue.edu
 Kelly Gaither, The University of Texas at Austin, kelly@tacc.utexas.edu

Length: Full Day

Level: Intermediate/Advanced

Abstract: Procedural encoding of scattered data sets is an active area of research with
great potential for reconstructing surface information and compactly representing large
data. The reduced storage requirements allow greater flexibility in the methods for
manipulating and analyzing this data interactively. In this course, we will cover both the
mathematical foundations behind existing encoding techniques, surface reconstruction
methods, and volumetric representations. Additionally, we will present methods for
feature analysis in the functional domain and conclude with applications and benefits of
functional encoding in the scientific and engineering disciplines.

Who Should Attend: Anyone interested in learning how to represent either scattered,
surface or volumetric data in a functional form, and anyone interested in learning how to
manipulate this functional representation to generate feature information and
visualizations.

What Attendees Will Gain: The mathematical foundations for encoding scattered,
surface and volumetric data and concrete examples of extracting features from and
visualizing the data expressed in a functional representation.

Course Outline:

1. Introduction (Kelly Gaither 15 minutes, 8:30 am – 8:45 am)
The introduction will open up with the motivation behind putting this material
together into one course, and the goals that we hope to achieve by presenting the
material to the course attendees. This will set the stage for the full day. The
presentation of the material is organized such that the mathematical theory is
presented in the first half of the day, and applications of the theory and techniques are
presented in the second half of the day.

a. Motivation and Goals
b. Overview of the Course

2. Mathematical Foundations (Greg Nielson, Hans Hagen 2 ½ hours, 8:45 am –

11:15 am)
The mathematical foundations will be a survey of several techniques for modeling
scalar and vector valued functions that are based upon arbitrarily discrete sample
measurements in a plane, a 3D volume, on manifolds, and in a domain that consists of
both Euclidean space and time. Scattered data of this type occurs in many science,
engineering and medical applications.

a. Data Examples – (Pressure over a wing , CAT, MRI, and fMRI , Rainfall over
the Earth, Well Log Data, Big Sur Data, Flame Data, Car Flow Data, Brain
Data, Climate Model Data, Stock Market Data, FEM Data, Reservoir Data)

b. Classification of Data
i. Source: measured/simulated

ii. Dimension: range/domain
iii. Structure, Topology and Grids (uniform, rectilinear, curvilinear,

triangular, tetrahedral, etc.)
c. Sampling and Brief Overview of Modeling Methods

i. Basic Ideas – (Motivation, Problem, Basis Functions)
ii. Methods – (Modified Quadratic Shepard, Volume Splines, Multiquadrics,

Volume Minimum Norm Network, Localized Volume Splines)

BREAK (10:00 am – 10:30 am)

iii. Comparisons
1. Analytical Comparisons

a. MQS: Fast, reasonably good fitting properties, very large data sets
b. Volume Splines: Easy to implement, VG fitting, Conditioning

problems
c. Multiquadrics: Easy, excellent fitting, Conditioning and parameter

selection
d. Volume MNN: Massive Data, VG fitting, Not easy to implement
e. Local Volume Splines: Massive Data, good fitting, problem with

subdivision selection
2. Results of Empirical Comparison

3. Surface Reconstruction (Greg Nielson, Hans Hagen 1 hour 45 minutes, 10:30
am – 12:15 pm)

Following the presentation of the necessary mathematical theory, the course will
cover specific techniques that can be used for surface reconstruction.

a. Triangular Patches
b. Bezier Techniques
c. BBG Methods
d. The Side-Vertex Method for Interpolation in Triangles

e. Variation of Design

LUNCH BREAK (12:15 pm – 1:45 pm)

4. Volume Encoding (David Ebert 1 ½ hours, 1:45 pm – 3:15 pm)
This portion of the course will cover the process and methods for encoding
volumetric scalar, vector and multifield data sets. RBF encoding methods are
presented to provide specific examples of encoding volumetric data sets.
Additionally, the benefits of being able to render this encoded data are presented to
the attendees by covering a variety of techniques for direct rendering of the
functionally encoded data.

a. RBF Encoding Techniques
i. Motivation and Survey of Approaches

ii. Advantages and Comparisons
iii. Details of One System for Gaussian RBF Encoding of Scalar Data
iv. Gaussian RBF Encoding of Vector Data

b. Rendering Issues for Interactive Exploration and Visualization
i. Surface Generation and Visualization

ii. Direct Rendering from Functional Encoding
1. Hardware Capabilities and Limits
2. Splatting Approaches
3. Texture-based Volume Rendering
4. Comparison and Trade-Offs

5. Feature Analysis Using Functional Encoding (Kelly Gaither 1 ½ hours, 3:15

pm – 4:45 pm)
The motivation and a brief survey of existing feature detection techniques are
presented to the course attendees to provide a basis from which specific feature
definitions are presented. These feature definitions are then presented in the
functional domain by performing a change of basis on the fundamental operators and
directly computing the feature equations in this basis.

a. Motivation and Survey of Existing Techniques
b. Feature Definitions

i. Nomenclature
ii. Feature Definitions

BREAK (3:45 pm – 4:15 pm)

c. Computing Features in the Functional Domain

i. Mathematical Operators
ii. Computing in the Functional Domain

6. Applications (Kelly Gaither 1 hour, 4:45pm – 5:45pm)
The course will close by presenting examples of using the functionally encoded
representation to solve systems of equations, feature definitions, and to analyze and
visualize the results.

a. Meshless Methods for Solving Systems of Partial Differential Equations
b. Examples of using functional encoding to analyze computational data sets

Tutorial Instructors:
Gregory M. Nielson is a professor of computer science and affiliate professor of
mathematics at Arizona State University where he teaches and does research in the areas
of Computer Graphics, Computer Aided Geometric Design, and Scientific Visualization.
He has lectured and published widely on the topics of curve and surface representation
and design; interactive computer graphics; scattered data modeling; and the analysis and
visualization of multivariate data. He has edited several books and authored over 100
scientific articles. He has collaborated with several institutions including NASA, Xerox,
General Motors, and LLNL. Professor Nielson received his PhD from the University of
Utah. He has been on the editorial boards of ACM’s Transactions on Graphics, The
Rocky Mountain Journal of Mathematics, IEEE Computer Graphics and Applications,
Visualization and Computer Animation Journal. He is currently on the editorial board of
Computer Aided Geometric Design and the Editorial Advisory Board of IEEE
Transactions on Visualization and Computer Graphics. He is one of the founders and
members of the steering committee of the IEEE sponsored conference Visualization. He
has previously chaired and is currently a director of the IEEE Computer Society
Technical Committee on Computer Graphics. He is the recipient of an IEEE Meritorious
Service Award, an IEEE Outstanding Contribution Award and the John Gregory
Memorial Award in Geometric Modeling.

Hans Hagen is currently full professor at the Technical University of Kaiserslautern and
chairman of the Computer Science Department. He is also the scientific director of the
institute on Intelligent Visualization and Simulation at the German Research Center for
Artificial Intelligence (DFKI). He holds a Ph.D. in mathematics from the University of
Dortmund, a B. S. and M. S. in mathematics and a B. S. in computer science from the
University of Freiburg. Prior to his current position, he was an associate professor at the
TU Braunschweig and he had several visiting positions, especially in the USA. His
research interests include all areas of scientific visualization, computer graphics and
geometric modeling. He was editor in chief of the IEEE Transactions on visualization and
computer graphics from1999-2003 and is an associated editor of CAGD, Computing and
Surveys on Mathematics in Industry. Prof. Hagen has published nearly 200 articles in
scientific visualization, computer graphics, geometric modeling and geometry and is a
member of ACM, GI, IEEE, and SIAM.

David Ebert's research interests include scientific visualization, volume rendering, and
procedural techniques. Ebert received his Ph.D. from The Ohio State University in 1991
and is an Associate Professor with the School of Electrical and Computer Engineering at
Purdue. He has taught twelve courses at the ACM SIGGRAPH Conference every year
since 1992, has published numerous articles on visualization, volume rendering, volume
illustration, multifield visualization, simulating natural phenomena, and is the co-author
of Texturing and Modeling: A Procedural Approach, published by Morgan Kaufmann.
Ebert has been very active in the visualization and computer graphics community,
serving on numerous program committees, serving as papers co-chair for IEEE

Visualization 98 and 99, and is currently Editor- in-Chief of IEEE Transactions on
Visualization and Computer Graphics.

Kelly Gaither (Course Organizer) is an Associate Director and Research Scientist at the
Texas Advanced Computing Center, The University of Texas at Austin. The combination
of her undergraduate and master’s degree in Computer Science and her doctoral degree in
Computational Engineering make her skilled at developing and researching topics that
are heavily rooted in the science and engineering applications. She spent ten years at the
National Science Foundation Engineering Research Center for Complex Geometries and
Complex Physics where she worked closely with both the Computational Fluid Dynamics
group and the Scientific Visualization group. Her research interests include large data
visualization, feature detection, and applications of visualization. She is currently serving
as the general chair for the Visualization ’04 conference. She previously served as the
program co-chair (’03), case studies co-chair (’02), works in progress co-chair (’01), late
breaking hot topics co-chair (’00), tutorials co-chair (’98,’99), and publicity co-chair
(’95,’96).

Mathematical Foundations of Procedural Encoding of
Scattered Data

Gregory M. Nielson, nielson@asu.edu

1. Data Examples

 Rectilinear, Cartesian Grids, Well Log, Curvilinear Grids, Free hand US, Flame

2. Models and Methods

 2.1 Interpolation Methods

 2.1.1 Sampling of Methods and Techniques
 (i) Inverse Distance and related RBFs
 (ii) Volume Splines and related RBFs
 (iii) Multiquadrics
 (iv) Volume version of Minimum Norm Network
 (v) Localization techniques for massive data sets

 References:
 1) Nielson, Minimum Norm Network, Math. Comp. 40:161, 253-271
 2) Nielson, Multivar. Smoothing Splines, SIAM J. Num. Anal., 11:2, 435-446

 2.1.2 Comparisons
 (i) Ease of Implementation, (ii) Applicability
 (iii) Feature maintenance quality (iv) Efficiency

 References
 3) Franke, Scattered Data Interpolation, Math. Comp. 38:157, 181-200
 4) Nielson, Scattered Data Modeling, CG&A, 13:1, 60-70

 2.2 Approximation Methods

 2.2.1 Least Squares
 (i) Knot Selection, (ii) Total Fit, (iii) Venetia Criteria

 2.2.2 Adaptive/Progressive Models
 (i) Refinement strategies (ii) Cracking problems (iii)

 References:
 5) Roxborough et al. Progressive Models for US, Vis 2000, 93-100
 6) Nielson, Triangulations & Tetra., Scientific Visualization, 429-525
 7) Chen et al. Volume Graphics, Springer, 29-48.

Tetrahedron Based, Least Squares, Progressive Volume Models with Application to
Freehand Ultrasound Data

In: Proceedings of Visualization 2000, IEEE CS Press, pages 93-100, 2000

Tom Roxborough and Gregory M. Nielson

Arizona State University, Tempe AZ 85287-5406
tomrox|nielson@asu.edu

Abstract In this paper we only consider freehand 3-D ultrasound. Each
B-scan acquired during a scanning session may be thought of as a
collection of grayscale intensity values located in space. In order
to model these scans many researchers have imposed a regular
rectilinear grid around them, and then filled in individual voxel
values from the ultrasound scan information [1,17,13]. One
problem with these methods is that one must be able to choose an
appropriate voxel size to fit the data. If the voxels are too large
then much of the data acquired from the scans is ignored.
However, if too small of a size is used then there will be many
empty voxels. Since the scanned data will not always fall exactly
on a voxel, some method of interpolation must be used in order to
assign intensities to each voxel. Various methods used include
nearest neighbor interpolation [1] and distance weighted
interpolation [13]. To avoid the problem of fitting the B-scan data
to a regular grid, Prager et al. [15] developed a system that can
produce arbitrary 2-D slices from the B-scans independent of any
voxels. Because this method is based upon the intersections of an
arbitrary plane with the B-scans it will fail when there are no such
intersections. A plane halfway between two parallel B-scans
would then show up as empty.

In this paper we present a new method for the modeling of
freehand collected three-dimensional ultrasound data. The model
is piece-wise linear and based upon progressive tetrahedral
domains created by a subdivision scheme which splits a
tetrahedron on its longest edge and guarantees a valid
tetrahedrization. Least squares error is used to characterize the
model and an effective iterative technique is used to compute the
values of the model at the vertices of the tetrahedral grid. Since
the subdivision strategy is adaptive, the complexity of the model
conforms to the complexity of the data leading to an extremely
efficient and highly compressed volume model. The model is
evaluated in real time using piece-wise linear interpolation, and
gives a medical professional the chance to see images which
would not be possible using conventional ultrasound techniques.

1. Introduction and Background

Two dimensional ultrasound imaging has been used for over
30 years in medicine. It has the advantages of being inexpensive,
non-intrusive, real-time and safe. In conventional 2-D ultrasound
echography a clinician uses a hand held probe to acquire a series
of grayscale images, known as B-scans. These B-scans are viewed
on a CRT as they are being acquired, and may be saved to media
for further investigation. In order to get a three-dimensional feel
for the patient’s interior, the clinician must move the scanner
around the area of interest while viewing the monitor. By training
and experience the operator is able to mentally construct a 3-D
model of the region being scanned, and can concentrate his
scanning accordingly. Since the 1970’s, there have been attempts
to construct ultrasound systems that can give actual three-
dimensional volumes [4, 9]. There are two major approaches for
this. One is to construct an actual mechanical device that will
acquire all the B-scans into a known volume. The other approach
is to allow the clinician to freely probe the patient with a
traditional ultrasound machine, while recording each B-scan’s
position and orientation in space. In this approach, known as
freehand 3-D ultrasound, the position and orientation information
may be attained by any number of means. There have been
systems developed which use mechanical arms, acoustic trackers,
image to image registration, and electromagnetic trackers. See [4,
9] for surveys of the history of three-dimensional ultrasound.
Whichever system is used for freehand 3-D ultrasound, the result
of a scanning session is a series of two-dimensional B-scans,
along with their corresponding position and orientation (POSE)
information. Figure 1 shows a freehand system that can be
inexpensively assembled from readily available hardware and
software.

In this paper we present a new method for the modeling of
freehand 3-D ultrasound scanning data. We approach the problem
as a trivariate scattered data approximation problem. See [10] and
[12]. The domain is an arbitrary rectilinear box, which is broken
down into a tetrahedral grid. A function approximating the B-scan
data is constructed over this mesh. An approximated intensity
value can be calculated at any location in the volume by means of
linear interpolation within the desired point’s enclosing
tetrahedron. An iterative process is used to calculate the values at
the vertices making up the tetrahedral grid. This method has the
advantage that no a priori knowledge is needed about voxel
resolution. Standard volume visualization methods can be used to
view the model [9,8], such as ray casting, isosurface extraction,
and arbitrary slice plane extraction. The method is adaptive, based
upon error tolerance criteria set by the user. This allows
hierarchical and multiresolution models to be constructed. Also,
the adaptivity property can help to guide the clinician to scan
more in regions where more data may be needed.

2. Progressive Tetrahedral Domains

At all times the domain must be a valid tetrahedrization. A
tetrahedrization is valid if the union of all tetrahedra is the domain
of interest and any two tetrahedra only intersect at a vertex, edge,
face or not at all [11]. For this method the initial domain is
represented as a unit cube consisting of the six tetrahedra resulting
from adding an edge from the origin (0, 0, 0) to its opposite corner

 93

mailto:Tomrox|nielson@asu.edu

(1, 1, 1), and adding additional diagonal edges across each of the
cube’s six faces (See Figure 2).

Figure 1. Collecting free-hand ultrasound data. In our lab, we
use an Ascension Flock of Birds electromagnetic tracker to get
position and orientation for each of the B-scans. We use the
Stradx software provided by Cambridge University [14]
running on an SGI O2 to simultaneously sample the tracker
and to collect an image from the video signal of conventional
ultrasound scanning device.

Figure 2. The unit cube initially subdivided into six congruent
tetrahedra.

There have been various methods developed for subdividing
simplicial grids [16, 7, 2, 3]. Grosso, et al [5] used a common

splitting technique known as red-green [2, 3]. In this paper we
have used a technique based on bisecting a tetrahedron along its
longest edge [16, 7]. The longest edge split method was developed
by Rivara [16]. Maubach [7] has adapted the longest edge split
method for the special case of the initial tetrahedral grid described
above. This is the subdivision method which we use (See Figure
3).

Figure 3. A tetrahedron is to be split along its longest edge at
the point AD, halfway between vertices A and D.

The following terminology will be used. Two tetrahdera are

neighbors if they share a common face. A split neighbor of a
tetrahedron t is a neighbor that shares t’s longest edge. Note that
there can be at most two split neighbors for any tetrahedron in a
proper tetrahedrization. Two tetrahedra are compatibly divisible if
they are mutually split neighbors, and if their common edge is the
longest edge for both tetrahedra. Every tetrahedron belongs to a
generation, where the generation is an integer referring to the
tetrahedron’s level of subdivision. Each of the six original
tetrahedra making up the initial mesh belongs to generation 0.
When a tetrahedron of generation n is split, it will produce two
tetrahedra each belonging to generation n+1. The tetrahedron to
be split is known as the parent, and the two resulting tetrahedra
are called its daughters. The two daughters resulting from one
parent are twins. Two tetrahedra are congruent if one of them can
be made to exactly cover the other after any combination of the
following affine transformations are performed: uniform-scaling,
translation, rotation. A congruency class is a set of tetrahedra that
are all mutually congruent.

Using the initial subdivision into six congruent tetrahedra
described above, and with the longest edge splitting method, the
following properties must hold [7]:

 All tetrahedra of a single generation belong to the same
congruency class.

 No matter how many subdivisions are performed, all
tetrahedra will belong to one of only three congruency
classes.

 These three congruency classes are cyclic. Initially the
tetrahedra of generation 0 belong to congruency class 0,
those of generation 1 belong to congruency class 1 and those
of generation 2 belong to congruency class 2. Then those of

 94

generation (0+x) belong to congruency class 0, those of
generation (1+x) belong to congruency class 1, and those of
generation (2+x) belong to congruency class 2. See Figure 5.

This process will terminate, giving a finite number of additional
bisections. In addition, the split neighbors of t must be of the same
generation of t, or one lower [7].

So when a tetrahedron is split, it is bisected into two equal-
volume tetrahedra, each of which is congruent to its twin. In order
to avoid cracks within the mesh a refinement step must be taken
after each tetrahedral bisection. The cracking results when there is
a violation of the triangulation criteria stated above for a proper
tetrahedrization. A tetrahedron might intersect more than one
other tetrahedron across a single face or single edge (See Figure 4
). This will give discontinuities when the function is evaluated
across these tetrahedra. To prevent this from occurring Maubach
devised a recursive refinement process.

Figure 5. A single tetrahedron is bisected three times. Four
generations of tetrahedra are shown, with the eight tetrahedra
in the final generation being congruent to the original
tetrahedron.

Figure 4. The cracking problem. The tetrahedron TA,B,C,D
consisting of vertices A,B,C,D has been bisected into the two
tetrahedra TA,B,D,AC and TC,D,B,AC when the edge A,C is split at
AC. The tetrahedron TA,E,C,D has not been split. This results in
TA,E,C,D intersecting with two distinct tetrahedra across the
face made up of vertices A,C,D, violating a valid-
tetrahedrization criterion.

3. Calculation of Vertex Values

The intensity values of the vertices making up the

tetrahedrization may be calculated at any time by using a global
least square error approximation.

Here is pseudo-code for a routine called Refine adapted from

[7], which works on a single tetrahedron t, and uses the procedure
Bisect(t), which is the simple bisection of t along its longest edge
as shown above.

Let
 M = number of B-scan data points,
 N = number of vertices in mesh,
 Ii = unknown intensity at vertex vi, dj = (xj, yj, zj) = B-scan pixel location,

Refine(t) S(vi) = collection of tetrahedra having vi as one of their
vertices, BEGIN

 WHILE A split neighbor ni of t is not compatibly divisible φi = is the piece-wise linear, basis function
 DO such that φι(vj) = δij = (1, if i=j; 0 if i≠j) Refine(nI) F(dj) = B-scan intensity value at dj. END Bisect(t) Then the function to be minimized over all vertex intensities Ii, is FOR Each split neighbor ni of t DO Bisect(ni) ∑j[∑i (Ιi φi(dj)-F(dj))]2 END END

 95

The normal equations that characterize the optimal solution are

AI = b

where A is an N x N Gram matrix, with elements

Ai,j = ∑kφi(dk) φj(dk)

And b is an N x 1 vector with elements

bi = ∑kφi(dk) F(dk)

and I = (I1, I2, … , IN) is the N x 1 vector of unknown vertex
intensities.

The location of any three dimensional point with respect to a

given tetrahedron may be represented in barycentric coordinates
[11]. In barycentric form the 3-D Cartesian point dj is represented
as a linear combination of the four vertices making up any
tetrahedron.

.1

,

4321

4321 4321

=+++

+++=
iiii

iiiiiiii

T
v

T
v

T
v

T
v

TT
v

TT
v

TT
v

TT
vj

bbbb

andvbvbvbvbd

where are the four vertices of tetrahedronT ,

and the are barycentric coordinates of point

dj corresponding to with respect toT . If any of the barycentric
coordinates are negative then the point does not lie within the
tetrahedron.

iiii TTTT vvvv 4321 ,,,
,3,2,1{, ∈ib k

i

T
v

iv

i

},4

k

We may use a slightly modified version of barycentric
coordinates as a substitute for the tent function φ that was
defined in Cartesian coordinates above. Let

=
otherwise 0

 inside is if
)(k

T
vT

v

Tpb
pB ik

i
.

Using this definition we now have for the matrix elements above:

∑

∑

∩∈
=

∩∈
=

=

=

M

vSvST
k

kk
T
vi

M

vSvST
k

k
T
vk

T
vji

jil

l

i

jil

l

j

l

i

dFdBb

dBdBA

))()((
,1

))()((
,1

,

).()(

and ,)()(

.

Often, in typical applications, there may be
approximately a million vertices making up a tetrahedrization.
That means the dimensions of the matrix might be on the order of
10^6 by 10^6. Therefore it is impractical to try to solve this

system of equations using direct matrix inverse methods. Instead
we use a modified version of the Gauss-Seidel iterative method to
solve for the vertex values [6].

Although the matrix A might be very large it will be very sparse.
The matrix itself never has to be stored. Instead all values may be
calculated on an as needed basis, and all information needed to
calculate the elements of A and B are stored within the mesh’s
data structure. By keeping a list with each vertex containing
pointers to the tetrahedron which contain the vertex, and storing a
list of pointers to the data point structures within each tetrahedron,
all needed elements may be quickly calculated.

4. The Algorithm

The unit cube is initially subdivided into six congruent and
equal sized tetrahedra by adding an edge from the corner at the
origin of the cube, (0, 0, 0) to its far opposite corner at (1, 1, 1),
plus diagonal edges across each of the cube’s faces [Figure 2]. All
B-scan values are then added to this cube. In order to place the
three-dimensional position values from the ultrasound B-scans
into a unit cube simple affine transformations are needed. This
just involves uniform scaling and transformation of the sensor’s
position readings, so that all desired B-scan positions will fall
within the unit cube. As each B-scan value is encountered it will
be added to one of the six tetrahedra making up the cube. At this
point its Cartesian coordinates with respect to the cube will be
converted to barycentric coordinates with respect to its enclosing
tetrahedron. After adding all the B-scan image values each
tetrahedron will contain a list of structures, where the structure
contains the four barycentric coordinate values of the data points
and the corresponding intensity value. The modeling process is
now ready to begin.

Any position within the mesh may be evaluated by simple
interpolation, using barycentric coordinates with respect to the
tetrahedron enclosing the position point. The approximated value
for a point p within tetrahedron T having barycentric coordinates
b1, b2, b3, b4 is

.)(
4

1
∑

=

=
i

ii IbpI

The mesh subdivision process is adaptive. This means
we only want to split those tetrahedra that need to be split in order
to satisfy some tolerance criteria. To decide upon the tetrahedra to
be subdivided we do an initial solve of the least squares system,
using the Gauss-Seidel method described above. The tetrahedra
are then sorted according to their mean square error values, where
the mean square error is calculated as

,
))()((

1

2

i

iT

i
T

N

j
jj

T D

dFdI
mse

∑
=

−
=

Where is the number of data points within

tetrahedron T , and is the interpolated value at .
iTD
(dIi)j jd

 96

In order to avoid excessively solving the least squares system
we have found that marking the worst five percent of the
tetrahedra to be split works well. These tetrahedra are each
bisected, the data points from the parent tetrahedron are added to
the proper daughter tetrahedron, then the least squares solution is
again calculated. If the global error is within a prescribed
tolerance then the process is complete, and the model is done.
Otherwise the process is repeated.

• else
• solve least squares system for vertex

intensity values
• calculate grms

When a parent tetrahedron is split into its twin daughter
tetrahedra its data points must be correctly assigned to these
children, and the new barycentric coordinates calculated. Due to
the fact that a tetrahedron is always bisected across its longest
edge into two equal-volume, congruent tetrahedra this is a simple
process. Figure 6 illustrates how this process works. We only need
to compare the two barycentric coordinates corresponding to the
vertices on the longest edge, b0bk. If b0> bk the data point will
belong to the daughter tetrahedron coming from the b0 side of the
parent tetrahedron. Otherwise it will belong to the other child
tetrahedron. To update the barycentric coordinates within the new
tetrahedra, we only need to perform one subtraction and one
multiplication. See Figure 6 for an illustration of this.

After each set of tetrahedral subdivisions is performed a
global root mean square error is calculated. If this error is less
than a prescribed tolerance than the model is done.

,1

D

Dmse
rms

T

ii

N

i
TT∑

==

Where is the number of tetrahedra in the mesh, and is
the number of B-scan data points in the mesh.

TN D

 If the given global rms error tolerance is set too low, the

subdivisions might never produce a model within the tolerance
bound. To prevent this an upper bound on the number of
tetrahedra produced should be given. Also, a limit on the
smallness of tetrahedra is given, not allowing tetrahedra of more
than a prescribed maximum generation to be subdivided. This
minimum size of tetrahedra should be set according to the actual
resolution achievable by the scanning device. Since the
tetrahedron refinement process will only subdivide tetrahedra of
the same or lower generation we do not have to worry about
inadvertently splitting tetrahedra which do not satisfy the
maximum generation bound during the refinement process.

Figure 6. The calculation of new barycentric coordinates for a
point P in tetrahedra TA,B,C,D after bisection. If bA > bD P will
belong to tetrahedron TA,B,C,AD and will have the new
barycentric coordinates (bA – bD), bB, bC, 2bD. Otherwise it
will belong to TD,C,B,AD and have the barycentric coordinates
(bD – bA), bC, bB, 2bA.

 The following is a pseudo-code description of the
algorithm:

Initialize:

• set tol = user-defined global rms error tolerance
• set tetLim = user-defined maximum number of tetrahedra

allowed in mesh
 • set genLim = user-defined maximum generation allowed

for a tetrahedron If a vertex has no support, meaning that no data points are
contained within any of the tetrahedra sharing that vertex, then
during the Gauss-Seidel solution phase there will occur a divide
by zero situation. To avoid this we exclude all such vertices from
the iterative solution process. This condition may occur when the
B-scan data points are not distributed densely enough. We do not
choose tetrahedra with fewer than two data points to be split.
However, during the refinement process this condition may not be
enforced, resulting in occasional unsupported vertices. Also, the
volume being scanned does not need to cover the entire unit cube
after transformation. During the subdivision process these vertices
will not contribute to the solution, and will have no value. In order
to have a complete model something must be done. These
unsupported vertices could be given intensity values based on a
weighted average of the nearest supported vertices. Alternatively,
their values could be set by performing another global
interpolation method using the supported vertices. We decided to
take another approach here. Since ultrasound is used for medical
diagnostic purposes it might be dangerous to set these intensity
values when there is little actual data around them. So these
vertices are marked as “bad”. By coloring them red within the unit
cube a clinician doing the ultrasound scanning will know to
collect more data in those areas, and a new fit can be calculated.

• uniformly subdivide unit cube into 6 equal-volume,
congruent tetrahedra

• add all B-scan data points and intensities to their
respective tetrahedra within the mesh. Store position as
barycentric coordinates

• solve least squares system for vertex intensity values
• calculate grms = calculated global rms error for model

Start:
• done = false
• while (done == false)

• if (grms < tol) OR (number of tetrahedra > tetLim)
• done = true

• else
• sort tetrahedra by mean square error in

descending order
• split the first five percent of sorted tetrahedra

which satisfy:
• tetrahedron’s generation < genLim
• tetrahedron contains at least 2 data points

• if (no tetrahedra can be split in above step)
• done = true

 97

When visualizing the data as arbitrary planes those parts that have
no support can be blacked out. These measures will help prevent
unwanted artifacts from showing up during the viewing phase.

 5. Results

We now present some results of our methods applied to

actual data. We choose to base our examples presented here on a
data set provided by Robert Rohling because this data set is
typical of freehand ultrasound data. A similar data set is available
at [14]. The data set used here consists of 462 B-scan images
being generated, each of size 84 by 102. (The original data was
335 by 408. We shrunk the image sizes by using a mean filter in
because of memory constraints.) Using the position and
orientation information from the six degrees of freedom tracker,
each grayscale intensity value from the scan images was added to
the domain unit cube. Models were then computed using various
global rms error tolerances. Figure 7 demonstrates the adaptive
nature of the subdivision process, where the grid is finer where the
data is present. In figure 8 five of the original B-scans are shown
next to the images extracted from the various models at the exact
same positions in space. Notice that the modeling process has
smoothed out the noisiness of the original B-scans, acting as a
low-pass filter.

Next we show images which result from taking an arbitrary
two-dimensional slice through the model. These images do not
need to correspond to any of the original B-scans, but are the
result of evaluating the model by interpolating within the
tetrahedra. These are images that a medical professional could not
have seen without using 3-D modeling methods. In figure 9 one
can plainly see a cut away view of the carotid artery, which would
not have been possible with normal 2-D ultrasound echography.
From these images it is apparent that 3-D ultrasound could
become a very powerful tool in medical diagnostics.

Figure 7. The top figure shows a sampling of the actual B-
scans within the domain cube. The bottom figure shows the
tetrahedral grid after subdividing. There are 26,552
tetrahedra, with 4,861 vertices.

 98

Figure 9. The top image shows the orientation of a slice in
relation to the original B-scan images (for clarity only one in
four B-scan outlines is shown). On the bottom the slice image
is shown. This illustrates the ability to interrogate the data
(model) as desired. The original B-scans are collected
approximately perpendicular to the carotid artery while the
slice here shows an approximate lateral view.

6. Conclusion
 Figure 8. On the left are five actual B-scan images. Next to

each is the corresponding image from the model. The rms
error is 10.83. The grid contains 252,222 tetrahedra, with
40,578 vertices.

Three dimensional ultrasound echography is poised to
become a common diagnostic tool within the medical community.
Freehand methods used to collect the data from existing
ultrasound machinery could provide an inexpensive, non-
obtrusive means of collecting this data. We have presented a
unique way to model this data, using tetrahedral grids. This
method has the advantage over other methods of being adaptive to
the given data. Therefore no prior knowledge of voxel size is
needed, and there is no wasted memory needed to save or
transport the 3-D model.

We have presented this modeling method as a way to model
freehand three dimensional ultrasound data. However there is no
reason that the same method could not be used on other three

 99

 100

dimensional scattered data problems. Some possible applications
are seismic, oceanographic or weather data. We have not given
any performance data on the present ultrasound application as our
implementation is being continuously improved with the target of
real-time rates on currently available PC’s. .

7. Acknowledgments

We wish to acknowledge the support of the Office of Naval
Research under grants N00014-97-1-0243 & N00014-00-1-0281
and the support of the National Science Foundation under grant
IIS 9980166. We also wish to thank Robert Rohling for sharing
his data sets.

References

[1] D. Barry, C. P. Allott, N. W. John, P. M. Mellor, P. A.
Arundel, D. S. Thomson and J. C. Waterton, “Three-Dimensional
Freehand Ultrasound: Image Reconstruction and Volume
Analysis”, Ultrasound in Medicine and Biology, vol. 23, no. 8, pp.
1209-1224, 1997.

[2] R. E. Bank, A. H. Sherman and A. Weiser, “Refinement
Algorithms and Data Structures for Regular Local Mesh
Refinement”, R. Stepleman, ed., Scientific Computing, pp.3-17,
Amsterdam, 1983.

[3] J. Bey, “Tetrahedral Mesh Refinement”, Computing, vol. 55,
pp. 355-378.

[4] A. Fenster, and D. B. Downey, “3-D Ultrasound Imaging: A
Review”, IEEE Engineering in Medicine and Biology, vol. 15, pp.
41-51, Nov. 1996.

[5] R. Grosso, C. Lurig and T. Ertl, “The Multilevel Finite
Element Method for Adaptive Mesh Optimization and
Visualization of Volume Data”, Proceedings of Visualization 97,
Phoenix, AZ, 1997.

[6] M. L. James, G.M. Smith, J. C. Wolford, Applied Numerical
Methods for Digital Computation, 3rd Edition, Harper & Row,
1985.

[7] J. M. Maubach, “Local Bisection Refinement for N-Simplicial
Grids Generated by Reflection”, SIAM Journal of Scientific
Computing, vol. 16, no. 1, pp. 210-227, 1995.

[8] T. R. Nelson and T. T. Elvins, “Visualization of 3D
Ultrasound Data”, IEEE Computer Graphics and Applications,
vol. 13, pp. 50-57, 1993.

[9] T. R. Nelson, Pretorious, A. Fenster and D. B. Downey, Three
Dimensional Ultrasound, Lippincott Williams & Wilkins, 1999.

[10] G. M. Nielson, “Scattered Data Modeling”, Computer
Graphics and Applications, Vol. 13, N. 1, January 1993, pp. 60-
70.

[11] G. Nielson, “Tools for Triangulations and
Tetrahedrazations”, Scientific Visualization, G. Nielson, H.
Hagen, and H. Muller, eds., pp. 429-526. Academic Press, 1997.

[12] G. M. Nielson, "Volume Modelling", in Volume Graphics,
Min Chen, Arie Kaufman and Roni Yagel, eds, Springer, 1999,
pp. 29-50.
[13] R. Ohbuchi, D. Chen and H. Fuchs, “Incremental Volume
Reconstruction and Rendering for 3D Ultrasound Imaging”, SPIE
1808, pp. 312-322, 1992.

[14] R. Prager and A. Gee, “The Stradx 3D Ultrasound
Acquisition and Visualisation System”, http://svr-
www.eng.cam.ac.uk/~rwp/stradx/

[15] R. W. Prager, A. H. Gee and L. Berman, “3D Ultrasound
Without Voxels”, Proceedings of Medical Image Understanding
and Analysis, pp. 93-96, 1998.

[16] M. C. Rivara, “Local Modification of Meshes for Adaptive
and/or Multigrid Finite Element Methods”, Journal of
Computational and Applied Mathematics, vol 36, pp. 79-89, 1991.

http://svr-www.eng.cam.ac.uk/~rwp/stradx/
http://svr-www.eng.cam.ac.uk/~rwp/stradx/

G. M. Nielson, Tools for Triangulations and Tetrahedrizations, in: Scientific Visualization: Overviews,
Methodologies , Techniques, G. Nielson, H. Hagen & H. Mueller, eds., CS Press, pp.429-525, 1997.

Tools for Triangulations and Tetrahedrizations

and

Gregory M. Nielson
nielson@asu.edu

1 Introduction
2 Triangulations

2.1 Basics
2.1.1 Definitions, Data Structures and Formulas for Triangulations
2.1.2 Some Special Triangulations

2.2 Optimal Triangulations
2.2.1 Types and Characterizations
2.2.2 Algorithms for Delaunay Triangulations

2.3 Visibility Sorting of Triangulations
2.4 Data Dependent Triangulations
2.5 Affine Invariant Triangulations
2.6 Interpolation in Triangles

2.6.1 C0, Discrete Interpolation in Triangles
2.6.2 C0, Transfinite Interpolation in Triangles
2.6.3 C1, Discrete Interpolation in Triangles
2.6.4 C1, Transfinite Interpolation in Triangles

3 Tetrahedrizations
3.1 Basics

3.1.1 Definitions, Data Structures and Formulas for Tetrahedrizations
3.1.2 Some Special Tetrahedrizations

3.2 Delaunay Tetrahedrizations
3.3 Visibility Sorting of Tetrahedra
3.4 Data Dependent Tetrahedrizations
3.5 Affine Invariant Tetrahedrizations
3.6 Interpolation in Tetrahedra

3.6.1 C0, Discrete Interpolation in Tetrahedra
3.6.2 C0, Transfinite Interpolation in Tetrahedra
3.6.3 C1, Transfinite Interpolation in Tetrahedra
3.6.4 C1, Discrete Interpolation in Tetrahedra

1 Introduction

This paper is about triangulations and tetrahedrizations. The original and main
motivation was to provide some information about tetrahedra and tetrahedrizations only,
but it was quickly realized that many of these topics are easier to describe and understand
with some background on their two dimensional analogs. Therefore, it was decided to

1

also include material on triangulations. While much of the material exists elsewhere in
the literature, much is new and appears here for the first time. The intended purpose for
this paper is to serve as a survey/tutorial in the area of data modeling and visualization.
As data modeling and visualization becomes more sophisticated in its application
domains and begins to deal with data sets which are more complex than Cartesian grids,
there will be the need for tools to deal with these data sets. We feel that the tools and
techniques covered here are very basic and will prove to be useful in a variety of contexts
in data visualization.

And now some comments about the organization of this paper. While

tetrahedrizations are the goal, researchers have dealt with triangulations much longer
than tetrahedrizations and so triangulations and related matters are much better
understood. The next section is a survey of triangulations and related matters of interest
in modeling and visualization. The following section is on tetrahedrizations and we
attempt to follow the same flow of information as in the section on triangulations as best
possible. We use the phrase "as best possible" because some aspects of triangulations do
not generalize to tetrahedrization and some facts known about triangulations and
triangular domains are yet to be known about tetrahedrizations and tetrahedral domains.
On the other hand there are topics of interest to tetrahedrization which have no 2D
counterpart of interest. For example, visibility sorting for tetrahedrizations. The outline
of this paper is very simple. In Section 2 we go through a list of topics on triangulations
and triangular domains and then in Section 3 we repeat these topics with reference to
tetrahedrizations and tetrahedral domains.

2 Triangulations

2.1 Basics

2.1.1 Definitions, Data Structures, and Formulas for Triangulations

In order to avoid any possible confusion and problems latter, it is usually best to be a

little precise and formal about the definition of a triangulation. We start with a
collection of points in the plane, P = { pi = (xi, yi), i = 1, . . . , N} and a domain of
interest, D, which contains all of the points of P. We assume that the boundary of D is a
simple (does not intersect itself), closed polygon. Often D is the convex hull of P, but in
general, it need not be convex. In fact the boundary does not have to be a single polygon
so that the domain is not even simply connected. (Connected means that there is path
joining any two points and simply connected means that the compliment is connected.)
Roughly speaking, a triangulation is a decomposition of D into a collection of triangles
which are formed from vertices of P. Since we are eventually interested in defining
functions over D in a piecewise manner over each triangle, we must require that the
triangles do not overlap so as not to have any ambiguities. Thus we require the collection
of triangles of the triangulation to be mutually exclusive and collectively exhaustive. In
order to continue this formalism to a precise definition, we need some additional
notation. A single triangle with vertices pi, pj and pk is denoted by Tijk and the list of
triples which represents the triangulation is denoted by It. A triangle Tijk is a closed 2D

2

point set that includes its three edges which comprise it boundary. The interior of Tijk,
denoted by Int(Tijk) is open and does not include the boundary. The edge joining pi and
pj is denoted by eij and Ne = {ij : ijk in It for some k} is used to refer to the collection of
all edges. Formally, the definition of a triangulation requires:

i) No triangle Tijk , ijk ∈ It is degenerate. That is, if ijk ∈ It then pi, pj and pk are not

collinear.
ii) The interior of any two triangles do not intersect. That is if ijk ∈ It and αβγ ∈ It

then Int(Tijk) ∩ Int(Tαβγ) = φ .
iii) The boundary of two triangles can only intersect at a common edge.
iv) The union of the all triangles is the domain D = ∪ijk ∈ It Tijk .

Examples of valid triangulations are shown in Figure 2.1.1 and Figure 2.1.2. Note

that the example of Figure 2.1.1 is not convex and that of 2.1.2 is not simply connected.
Even though the diagrams of Figure 2.1.3 and Figure 2.1.4 look alright, the actual
triangulation given by the corresponding It's do not represent valid triangulations. In the
case of Figure 2.1.3 the triangle T465 is degenerate. Even if this triangle is eliminated,
what remains is not a valid triangulation because condition iii) would then be violated
since edge e46 contains p5. This example would become a valid triangulation if the point
p5 were to be moved slightly to the right so as not to be on the edge e46. The
information of Figure 2.1.4 is not a valid triangulation because condition ii) is violated.

8

2

5

3 4

1

6

7

1
2

3
4

5

6

7

8 8 6 4

5 1 2
4 5 3
6 1 5
4 6 5
6 7 1

i j k

It

3 5 2

7 6 8

Figure 2.1.1. A triangulation of a non convex domain

3

7 10 9

4 1 3
2 8 3
5 4 3

10 1 4
7 1 10

i j k

I t

8 9 5

3 1 2

6 9 8
6 7 9
5 3 86

1

3

4
5

6

7
8

1

3

2

4

7

8

5

9

10

10

2

11

9

Figure 2.1.2. A triangulation of a domain which is not simply connected.

5

63

2

8

5 8 6

2 4 6
2 6 3
4 6 5
4 7 5
5 7 8

i j k

I t

1 4 21 4 7

Figure 2.1.3. Not a valid Triangulation.

4

1 4 7

63

5
8

9

2

2 6 3

2 4 5
2 5 8
4 8 5
4 7 8
2 4 8

i j k

I t

1 4 2

2 8
9

6
68

Figure 2.1.4. Not a valid triangulation.

We now want to make some assertions about the possibility of triangulating a domain

containing a collection of data points that is bounded by a simple, closed polygon. First
we note that in the case the domain contains no interior data points it is always possible
to form a triangulation. Just for the sake of interest, we mention two ways that this can
be accomplished. The first way is based upon the fact that every simple closed polygon
with more that three vertices can be split into two polygons. This leads to an algorithm
which recursively splits each subpolygon until only triangles are left. The following
argument which guarantees that each simple closed polygon has a diagonal has been
discussed in [16]. A diagonal is an edge between two vertices that lies inside the polygon
and does not intersect the polygon except at the endpoints.

Splitting a polygon: Let b be the vertex with minimum x-coordinate and ab and bc be its
two incident edges. If ac is not cut by the polygon, then ac is a diagonal. Otherwise
there must be at least one polygon vertex inside Tabc. Let d be the vertex inside abc
furthest from the line through a and c. Now edge bd cannot be cut by the polygon, since
any edge intersecting bd must have one endpoint further from line ac.

5

b

a

c

d

Figure 2.1.5. Any polygon with more than three vertices can be split.

The second approach leads to an iterative algorithm. We first give a definition. A
vertex, pi, of a simple, closed polygon is called protruding provided the following
conditions hold:

i) The interior angle Θi, between the edges, pi-1pi and pipi+1 is less than or equal
to π. (Cyclic notation is used here so that pN+1 = p1)

ii) The triangle Ti-1,i,i+1 contains no other vertices of the polygon than pi-1, pi or
pi+1.

iii) The interior of Ti-1,i,i+1 is contained in the interior of D.

It is an easy matter to prove that every simple, closed polygon has at least one protruding
vertex. (The proof is left to the reader. Some people call them ears and so there must be
two of them!). We can triangulate the polygon bounded domain by successively
removing protruding vertices. This approach to triangulating the region bounded by a
simple closed polygon is called the "boundary stripping algorithm." It is easy to
implement, but in a theoretical sense, it is not competitive with other algorithms (see, for
example, the papers of Narkhede & Manocha [175] and Fournier & Montuno [94] among
others.).

Once the boundary of D has been triangulated, it is relatively simple matter to build a
triangulation including the interior points. This can be done by simply inserting them
sequentially in a manner which we now describe:

6

Insertion of an interior point: If the point to be inserted, p, lies in the interior of the
triangle Tabc, we replace Tabc with the three triangles: Tabp, Tbcp, Tcap. If p lies on an
edge shared by Tabc and Tbad, then replace the two triangles Tabc and Tbad with the four
triangles Tbcp, Tdbp, Tpca, Tpad.

a

p

b

c

b a

c

d

p

Figure 2.1.6. Insertion of an interior point.

It is also possible to generalize the insertion idea to include an edge. Once we are armed
with this capability, we know that we can triangulate any polygon bounded domain:
simple connected or multiply connected (i.e. with holes).

Insertion of an interior edge: Assume that the one endpoint, p, lies in the triangle Tabc
and that the other endpoint, q, lies in the triangle Txyz. Collect all of the triangles from
Tabc to Txyz which are intersected by edge pq and form a region R with polygon
boundary D. We can split D with polygon apqw, where a is the vertex of Tabc not on the
edge common with the other triangles whose union is R and w is the analogous vertex of
Txyz. Now we know that each of these two domains can be triangulated. The union of
these two triangulation, which each contain the edge pq, can replace the previous
triangulation of D.

7

b

c

z

x y

a

P

Q

Figure 2.1.7. Insertion of an interior edge.

In addition to It, which represents the triangulation, it is often worthwhile to generate
and maintain some auxiliary information about the neighbors of each triangle. This
information is useful for traversal algorithms and evaluation algorithms which have a
searching component that determines the particular triangle containing a point where a
function defined piecewise over the triangulation is to be evaluated. One very common
and particularly useful data structure is that which is illustrated in Figure 2.1.8. The first
three columns contain the data of It with the additional constraint that the reading from
left to right (cyclically), the vertices of each triangle are traversed in a clockwise order.
The next three columns contain the indices of the triangles which are neighbors to this
triangle. The character φ indicates that the triangle has an edge that is part of the
boundary of D. The entries of these three columns are also in a special order. The forth
column contains the index of the triangle which shares the common edge with vertex
indices specified in the second and third column. Similar relationships hold for the 5th
and 6th columns. The information represented by this data structure is called a
"triangular grid". The neighborhood information contained in the last three columns does
not contain any "new" information over that of It, but it is often (and this depends of
course on the application) the case that it is useful data which is worth generating a
priori.

8

1 4 3 1 6 8

4 5 6 3 1 8
6 5 7 φ 4 2
3 6 7 3 5 1
2 3 7 4 9 6
2 1 3 7 5 φ

3 4 6 2 4 7

Triangles Neighbors
p i p j p k

1 5 4 2 7 φ
2 7 8 φ φ 5

Njk Nki Nij

1
3

4

5
6

1
2

3

4

5

6
7

8

8
9

7

2

Figure 2.1.8. An example that defines a triangular grid structure.

Another data structure for representing a triangulation which is useful for some
applications is illustrated by the example shown in Figure 2.1.9 which represents the
same triangulation as that of Figure 2.1.8. Here, for each vertex a list of all vertices
which are joined by an edge of the triangulation is given. This list is given in counter
clockwise order around each vertex. This is called the data point contiguity list. We
mention this particular data structure because of its convenience for dealing with the
optimal Delaunay triangulation discussed in the next section. Also, it is very useful for
computing the parameters of the Minimum Norm Network method [179] which is one of
the most effective C1 interpolation methods for scattered data.

 Vertex Joining Vertices
 1 2, 3, 4, 5
 2 8, 7, 3, 1
 3 1, 2, 7, 6, 4
 4 3, 6, 5, 1
 5 1, 4, 6, 7
 6 3, 7, 5, 4
 7 6, 3, 2, 8, 5
 8 2, 7

Figure 2.1.9. The data that defines the data point contiguity list.

Even though there are a number of possible triangulations for any given domain D,
the number of triangles is fixed once the boundary has been specified. More precisely, if
Nb represents the number of vertices on the boundary and Ni the number of interior
vertices so that N = Nb + Ni, then the following formulas hold:

Nt = 2Ni + Nb - 2

9

and

Ne = 3Ni + 2Nb - 3,

where Nt is the total number of triangles and Ne is the total number of edges. The
importance of these formulas (not so much what the values in the formulas are, but more
the fact that some fixed formula holds) will show up in the next section. If we let Mi
represent the number of points joining to pi then it is easy to see that

∑
i=1

N
 Mi = 2Ne

and so we have that the "average valence" of a point is given by

M
_

 =

∑
i=1

N
 Mi

 (Ni + Nb) = 6 - 2
(Nb +3)

N

which is approximately 6. For a sphere (or any domain homeomorphic to a sphere) we
have no boundary points and so N = Ni and the analogous formulas are

Nt = 2(N - 1), Ne = 3(N - 1) , M
_

 = 6 Error!) .

2.1.2 Some Special Triangulations

One of the simplest triangulations results from splitting the rectangles of a Cartesian
grid. A Cartesian grid involves two monotonically increasing sequences, xi, i = 1, . . . , n
and yj, j = 1, . . . , m. The grid points have coordinates (xi, yj) and these points mark out
a cellular decomposition of the domain consisting of rectangles. See Figure 2.1.10.
Forming an edge with one of the diagonals of these rectangular cells leads to a
triangulation of the domain. In Figure 2.1.11 is shown a triangulation where a consistent
choice for the diagonal is made. In Figure 2.1.12 is shown a triangulation with mixed
choices for the diagonals. In some applications where dependent ordinate values are
known, it is possible to base the choice of the diagonal upon some criteria such as
minimum jump in normal vector (see Section 2.4) or whether or not the diagonal vertices
are separated on connected based upon the hyperbolic contours at the mean value (see the
asymptotic decider criteria discussed in [186]). In general for this type of triangulation
which results from a Cartesian grid, it is not necessary to maintain the triangular grid
structure (see Figure 2.1.8) as this information can be directly inferred from the natural

10

labeling of pij = (xi, yj). Only the information which indicates which diagonal is selected
needs to be made available.

x ix 1 x 2 x i-1 x i+1 x n

y 1

y j+1

y j-1

y j

y m

y 2

(x ,y)i j

Figure 2.1.10. Cartesian Grid.

x ix 1 x 2 x i-1 x i+1 x n

y 1

y j+1

y j-1

y j

y m

y 2

(x ,y)i j

Figure 2.1.11. Triangulation from Cartesian grid with uniform diagonal choice.

x ix 1 x 2 x i-1 x i+1 x n

y 1

y j+1

y j-1

y j

y m

y 2

(x ,y)i j

Figure 2.1.12. Triangulation from Cartesian grid with mixed diagonals.

11

We now want to discuss some special triangulations which result from curvilinear
grids. A curvilinear grid is specified with two "geometry arrays" (xij, yij), i = 1, . . . , M; j
= 1, . . . , N. A cell Cij consists of the quadrilateral with the boundary delineated by (xij,
yij) to (xi+1j, yi+1j) to (xij, yij) back to (xij, yij). It is assumed that these four points form a
simple (non intersecting) polygon so that the quadrilateral is actually well-defined. This
condition obviously puts some geometric constraints on the values of the geometry arrays
that specify a curvilinear grid.

(X , Y)51 51

(X , Y)75 75

Figure 2.1.13. An example of a curvilinear grid.

An example of a curvilinear grid is shown in Figure 2.1.13. In this case the cell C73

degenerates to a triangle because (X83, Y83) and (X84, Y84) are the same point and the
cell C83 degenerates to an edge because, in addition, (X93, Y93) and (X94, Y94) are the
same point. The cells C33, C43, C53, C63 and C73 have been removed from the domain
creating the hole in the interior.

The domain (the union of all of its cells) can be triangulated by simply triangulating
each of the cells by choosing a diagonal to an edge of the triangulation. An example
related to the grid of Figure 2.1.13 is shown in Figure 2.1.14. Here we have modified the
grid by moving the point (x72, y72) a little. This serves to point out that if the cell is not
convex, then there may be only one choice for the diagonal.

12

(X , Y)51 51

(X , Y)75 75

Figure 2.1.14. Triangulation resulting from curvilinear grid.

We now discuss some special triangulations obtained by subdividing an existing

triangulation. We briefly mention a couple of possibilities. The first is based upon
inserting an additional point into the interior of an existing triangle and thereby forming
three new triangles. This is illustrated in Figure 2.1.15. This particular type of
subdivision is sometimes referred to as the Clough-Tocher split because of its association
with a very well known finite element shape function defined over a triangular domain.

Another way to subdivide an existing triangulation is to insert a new point on an

existing edge and split the two triangles (unless the edge is on the boundary) which share
this edge. If all edges are split simultaneously we obtain yet another triangulation where
each previous triangle is replaced by four new ones. Two different ways for forming
triangles from these points is shown in Figure 2.1.16 and Figure 2.1.17 respectively.
These types of subdivision are particularly interesting due to the nested properties of
function spaces which are defined in a piecewise manner over the embedded
subdivisions. This can lead to wavelets and their related multiresolution analysis. For
the efficient application of these triangulations, it is important to have a method of
labeling the triangles which allows an efficient algorithm for finding the labels of all
neighbors of a triangle. The labeling scheme illustrated in Figure 2.1.17 has these
properties. We call it the divide and flip scheme and have found it to be very useful for
implementations. It is related to the spherical quadtrees discussed by Fekete [85].

Figure 2.1.15. Subdivision by inserting a new point that is interior to an existing triangle.

13

Figure 2.1.16. Nested subdivision triangulation.

iii

jjj

kkk

ooo

ojj

okkoii oio
oik

oij

ojk
ooiook

ooj
oki
okookj

ojo oji ioo

ijj ijo
iji

ioi
iki

iko
ikk

iik iio
iij

ioj

ijk
iok

ikj

jii jio
jij jkj jko jkk

jkijik
joj
joo

jok joi

jjo
jjk jji

kko
kki

kkj koo

kjj
kjo
kjk

kok
kik

kio
kii

kij
koj

koi
kji

oo
ii

jj

kk ioko

jo

kj oj ij
ikki oi ok

ji jk

iok

j

Figure 2.1.17. The divide and flip labeling scheme for a nested subdivision triangulations.

14

1

5

1

2

3

4

5

6

7

8 9

i

j

k

i

j k

j

j

i

k

i

i

i

k

j

1

4

k 3

6

7

i

j

k

8

2

i

j

k

i

j

k

j
k

Figure 2.1.18. A triangulation obtained by splitting each edge of an existing triangulation

and forming triangles as indicated in Figure 2.1.17.

2.2 Optimal Triangulations

2.2.1 Types and Characterizations

skinny triangle with
a very small angle

skinny triangle with
a very large angle

Figure 2.2.1. Examples of poorly shaped triangles

There are many possible triangulations of a given, polygon bounded domain D. For

some applications (but not all) it is desirable to avoid poorly shaped triangles. These are
triangles with very large angles or ones with very small angles. This give rise to two
types of optimal triangulations which have been discussed quite widely: the MaxMin and
MinMax. Both of these optimal triangulations have a similar method of characterization.
Associated with each triangulation there is a vector with Nt entries representing either the
largest or smallest angle of each triangle. The entries of each vector are ordered and then
a lexicographic ordering of the vectors is used to impose an ordering on the set of all
triangulations. In the case of the MinMax criterion, Ai is the largest angle of a triangle
and the entries of each vector, At, are ordered so that

At = (A1, A2, . . . , Ant), Ai ≥ Aj, i < j.

15

The smallest of these vectors based on their lexicographic ordering associates with the
optimal triangulation. In the case of the MaxMin criteria, ai, is the smallest angle and the
entries of each vector are ordered the other way so that

at = (a1, a2, . . . , ant), ai ≤ aj, i < j.

The largest of these vectors represents the optimal triangulation in the MaxMin sense. In
Figure 2.2.2, six data points are shown which have a total of ten possible triangulations
which are shown in Figure 2.2.3. The associated vectors for MinMax criterion are

 Aτ0 = (2.84, 2.36, 1.99, 1.77, 1.57)
 Aτ1 = (2.98, 2.84, 1.99, 1.91, 1.57)
 Aτ2 = (2.98, 2.42, 1.91, 1.88, 1.57)
 Aτ3 = (2.84, 2.36, 2.32, 1.99, 1.40)
 Aτ4 = (2.42, 2.36, 1.88, 1.77, 1.57)
 Aτ5 = (2.98, 2.42, 1.95, 1.91, 1.27)
 Aτ6 = (2.42, 2.36, 2.32, 1.88, 1.40)
 Aτ7 = (2.42, 2.36, 2.32, 1.50, 1.50)
 Aτ8 = (2.42, 2.36, 1.95, 1.74, 1.50)
 Aτ9 = (2.42, 2.36, 1.95, 1.77, 1.27)

which we rearrange into decreasing order to obtain

 Aτ1 = (2.98, 2.84, 1.99, 1.91, 1.57)
 Aτ5 = (2.98, 2.42, 1.95, 1.91, 1.27)
 Aτ2 = (2.98, 2.42, 1.91, 1.88, 1.57)
 Aτ3 = (2.84, 2.36, 2.32, 1.99, 1.40)
 Aτ0 = (2.84, 2.36, 1.99, 1.77, 1.57)
 Aτ6 = (2.42, 2.36, 2.32, 1.88, 1.40)
 Aτ7 = (2.42, 2.36, 2.32, 1.50, 1.50)
 Aτ9 = (2.42, 2.36, 1.95, 1.77, 1.27)
 Aτ8 = (2.42, 2.36, 1.95, 1.74, 1.50)
 Aτ4 = (2.42, 2.36, 1.88, 1.77, 1.57)

which implies the following ordering

τ4 < τ8 < τ9 < τ7 < τ6 < τ0 < τ3 < τ2 < τ5 < τ1

and so τ4 is the optimal triangulation in MinMax sense. On the other hand, the
associated vectors for MaxMin criteria sorted in increasing order are

 aτ1 = (0.02, 0.04, 0.35, 0.46, 0.50)
 aτ2 = (0.02, 0.11, 0.42, 0.46, 0.50)

16

 aτ5 = (0.02, 0.11, 0.50, 0.58, 0.88)
 aτ3 = (0.04, 0.14, 0.35, 0.37, 0.66)
 aτ0 = (0.04, 0.14, 0.35, 0.46, 0.62)
 aτ6 = (0.11, 0.14, 0.37, 0.42, 0.66)
 aτ7 = (0.11, 0.14, 0.37, 0.46, 0.70)
 aτ4 = (0.11, 0.14, 0.42, 0.46, 0.62)
 aτ8 = (0.11, 0.14, 0.57, 0.58, 0.70)
 aτ9 = (0.11, 0.14, 0.58, 0.62, 0.88)

which results in the following ordering

τ1 < τ2 < τ5 < τ3 < τ0 < τ6 < τ7 < τ4 < τ8 < τ9

and so τ9 is the optimal triangulation in the case of the MaxMin criterion.

V6=(.50,.80)

V4=(.70,.15)
V3=(.40,.20)

V5=(.85,.40)

V1=(.50,.90)

V2=(.20,.50)

Figure 2.2.2. Six data points.

17

τ0τ1τ2

τ3τ4

τ8 τ7 τ6

τ5

τ9

Figure 2.2.3. Ten triangulations of six data points.

In the case where D is the convex hull of the points of P, there is an important

relationship between the MaxMin triangulation and the Dirichlet tessellation. The
Dirichlet tessellation is a partition of the plane into regions Ri, i = 1, . . . , N called
Thiessen regions. The Thiessen region Rk consists of all points in the plane whose
closest point among pi, i = 1, . . . , n is pk. A Dirichlet tessellation is usually illustrated
by drawing the boundaries of the Thiessen regions. The collection of these edges is
sometimes referred to as the Voronoi diagram (see [252]) An example is shown in the
left image of Figure 2.2.6. In the right image of Figure 2.2.6 is shown the MaxMin
triangulation which is also called the Delaunay triangulation. It is dual to the Dirichlet
tessellation in that the edges of this optimal triangulation join vertices which share a
common Thiessen region boundary. We have included the great circles in the left image
of this figure so as to point out another important property of the Dirichlet tessellation
and its companion Delaunay triangulation. By definition, the edges of the Thiessen
regions meet at triads (possibly more than three edges meet in some special,
neutral/cyclic cases) which are equally distant to three points. These three points will
form a triangle of the optimal triangulation and the great circle will not contain any other
data points.

We can be a little more formal about this properties if we introduce some notation.

Recall that It = { (i(m), j(m), k(m)), m = 1, , Nt} so that the three data points pi(m),
pj(m), pk(m) will be the vertices of a triangle of the triangulation. We assume that the
neighbor information of the triangular grid is given by three arrays ij(m), jk(m), and
ki(m), m = 1, . . . , Nt. Let Vm be the point which is equidistant from pi(m), pj(m) and
pk(m) and Cm = { p : ||p - Vm|| ≤ ||Vm - pa(m)||, a = i, j or k} be the circumcircle (disk) for
this triangle which has Vm as it center. The Delaunay triangulation is characterized by
the fact that Cm does not contain any other data points pi, i = 1, . . . , N other than pi(m),

18

pj(m) and pk(m). The points Vm are the vertices of the Voronoi diagram. In order to draw
the Voronoi diagram we simply start with some Vm and draw the edges to the three
points that are joined to it; namely Vij(m), Vjk(m) and Vki(m). If anyone of ij(m), jk(m) or
ki(m) is zero (say ij(m), indicating the edge joining pi(m) and pj(m) is on the boundary of
the convex hull) then we draw the ray emanating from Vm in the direction perpendicular
to the appropriate edge (which is pi(m)pj(m) if ij(m)=0, pj(m)pk(m) if jk(m) = 0 and
pk(m)pi(m) if ki(m) = 0). If we go through the list of triangles and draw three edges for
each Vm we will actually be drawing each edge (not each ray) twice. We can avoid this
duplication by (for example) testing whether or not m > ij(m), m > jk(m), m > ki(m)
before we draw the corresponding edge.

Vm Vij(m)

=p i(m) pk(ij(m))

= pj(ij(m))pj(m)

pk(m)

Figure 2.2.4. Drawing the Dirichlet tessellation from the triangular grid structure.

Because of this relationship between the Dirichlet tessellation and the optimal
MaxMin triangulation, we can extend the idea of MaxMin or Delaunay triangulation to
any domain where we can compute the distance between two points. The sphere
provides an interesting and useful example. Here the distance between two points p and
q is easily computed as cos-1(p•q) so the Dirichlet tessellation is also easy to compute.
An example is shown in the right images of Figure 2.2.5. The left image depicts the
triangulation which is dual to this tessellation.

19

Figure 2.2.5. Spherical triangulation and tessellation

Figure 2.2.6. The Dirichlet tessellation and its dual triangulation.

There have been many other criteria for characterizing optimal triangulations that
have been studied and discussed in the literature. Some turn out to be equivalent to those

20

we have mentioned here and some only appear to be similar and so one needs to be rather
careful. Even though the terminology can be similar, the criterion of minimizing the
maximum angle is not the same as the MinMax criterion we have described here. It is
easily the case the two quite different triangulations with different vectors At (as defined
above) could have the same maximum angle and could both be a triangulation which
minimizes the maximum angle. The example of Figure 2.2.2 has this property. Each of
the triangulations τ6 , τ7 , τ9 , τ8 and τ4 have a maximum angle of 2.42 which turns out
to be a minimum and so any one of these triangulations would satisfy the criterion of
minimizing the maximum angle, while only τ4 satisfies MinMax criterion described
here. Overall, the topic of optimal triangulations can be rather technical and one has to
be careful when comparing results found in the literature.

2.2.2 Algorithms for Delaunay Triangulations

In this section we discuss some ideas and techniques leading to algorithms for
computing the Delaunay triangulation of a set of points in the plane. In general, this is a
very rich and full area of research and here we can only provide a glimpse. The literature
is very abundant with both practical and theoretical papers on this subject. There is not a
single "best" algorithm. The choice depends upon the particular application and the tools
and resources available. It is a good strategy to be armed with a collection of ideas, tools
and techniques so that an effective algorithm can be custom designed for the application
at hand. Our approach for the material for this section is based upon a discussion of the
ideas behind a few number of selected algorithms. Our selection is based upon potential
usefulness of the ideas and also what would be representative. In addition, we
particularly interested in those ideas which extend most easily to three dimensions. But,
just for the sake of interest, we have included the description of one 2D algorithm which
does not extend at all to 3D!

21

Data Point Boundary of Convex Hull

Voronoi DiagramVertex

Theissen Region

V
m

Circumscribing Circle (Disk)

Vm

pi

pi

Figure 2.2.7. Notation and terminology for Delaunay triangulation and Dirichlet
tessellation.

The Swapping Algorithm of Lawson [139]: The basic operation of this algorithm

consists of swapping the diagonal of a convex quadrilateral. Lawson [138] showed that
any triangulation of the convex hull can be obtained from any other triangulation by a
sequence of these operations. (Later this property was established for nonconvex
domains by Dyn and Goren [66].) Furthermore, Lawson proved that if the choice of the
diagonal is made on the basis of the MaxMin criterion for the quadrilateral only,
eventually the global optimal triangulation will be obtained. In other words, for this
criterion, a local optimum is a global optimum. A typical implementation of this type of
algorithm would insert new points (say in sorted x-order) in the interior of an existing
triangulation or connect to all points on the boundary which are visible from the new
point. This new triangulation is then optimized by testing and possibly swapping the
diagonals of convex quadrilaterals. It is interesting to note that this type of algorithm
will not necessarily produces the MinMax because for this criterion, a local extreme is
not necessarily a global optimum. The example of Figure 2.2.2 of the previous section
illustrates this. Based upon the MinMax criterion, τ4 is optimal and τ8 is a local
minimum. Locally optimal swaps of diagonals from τ8 would never lead to τ4. The
algorithm could easily get trapped in a local extreme at τ8. The ideas of simulated
annealing can be used to develop algorithms which can escape from these local extrema.
See Schumaker [225] for example.

22

The Algorithm of Green & Sibson [107]: This algorithm depends heavily upon a
particular data structure used to store the Delaunay triangulation (or Dirichlet
tessellation). For each object (a Dirichlet tile or window boundary constraint) is recorded
in a "contiguity list" consisting of all objects with which it is contiguous. This data
structure is very similar to the contiguity list structure we described in Figure 2.1.9 but it
also includes some window boundary constraints. New points are inserted sequentially.
We quote directly from [107] as to how this done.

The contiguity list for the new point is then built up in reverse (that is,
clockwise) order and subsequently standardised. We begin by finding
where the perpendicular bisector of the line joining the new point to its
nearest neighbour meets the edge of the nearest neighbour's tile, clockwise
round the new point. Identifying the edge where this happens gives the
next object contiguous with the new point and this is in fact the first to go
onto its contiguity list. The new perpendicular bisector is then constructed
and its incidence on the edge of this new tile is examined to obtain the
subsequent contiguous object: successive objects are added to the
contiguity list in this way until the list is completed by the addition of the
nearest neighbour. Whilst this being done old contiguity lists are being
modified: the new point is inserted in each and any contiguities strictly
between the entry and exit points of the perpendicular bisector are deleted,
the anticlockwise-cyclic arrangement of the lists making both this and the
determination (sic) of the exit very easy.

This insertion algorithm requires the computation of the nearest existing data point to

the data point that is to be inserted. The authors discuss an algorithm which takes
advantage of the tessellation computed so far. In the authors words: "Simply start at an
arbitrary point and "walk" from neighbour to neighbour, always approaching the new
point, until the point nearest to it is found."

K

N

L

Figure 2.2.8. An aid to the Green and Sibson algorithm.

The algorithm of Bowyer [21]: Bowyer described an algorithm for inserting a new
point (lying in the convex hull) into an existing Delaunay triangulation. An example

23

given by Bower and which we include in Figure 2.2.9 serves to define this data structure.
(A careful examination of this data shows that it is the same as the triangular grid
structure of Figure 2.1.8). In the terminology of Bowyer, the forming points for a vertex
are simply the vertices of the triangle which has this particular vertex as the center of its
circumcircle. Since each triangle gives rise to a vertex, giving a list of indices of the
forming points for each vertex (as Bowyer does) is equivalent to giving a list of indices
of the data points which comprise each triangle of triangulation. Except for change in
ordering, the neighboring vertices is exactly the same as the indices of the triangle
neighbors as given in the triangular grid data structure.

Vertex Forming points Neighboring vertices
 1 2 3 1 2 3
V1 P6 P4 P5 V4 φ V6
V2 P1 P4 P3 V3 φ V7
V3 P2 P3 P4 V2 V4 V5
V4 P2 P5 P4 V1 V3 φ
V5 P7 P3 P2 V3 φ φ
V6 P6 P8 P4 V7 V1 φ
V7 P1 P8 P4 V6 V2 φ

P
3

P7

P2

P5

P
6

P
8

P1

P4

Q

W1

V4

V2

V7

V6

V1

W4

W2

W3

W5
V5

V3

Figure 2.2.9. Illustrating the algorithm of Bower[21].

In order to insert a new point (Q in Figure 2.2.9) within the current convex hull of the

data points, Bowyer [21] gives the following algorithm:

1. Identify a vertex currently in the structure that will be deleted by the new point
(say V4). Such a vertex is any that is nearer to the new point than to its forming
points

24

2. Perform a tree search through the vertex structure starting at the deleted vertex
looking for others that will be deleted. In this case the list will be: {V4, V3, V5}

3. The points contiguous to Q are all the points forming the deleted vertices: {P2,
P5, P4, P3, P7}

4. An old contiguity between a pair of those point will be removed (P2 - P4 say)
if all its vertices {V4, V3} are in the list of deleted vertices.

5. In this case the new point has five new vertices associated with it: {W1, W2,
W3, W4, W5}. Compute their forming points and neighbouring vertices. The
forming points for each will be the point Q and two of the points contiguous to Q.
Each line in the tessellation has two points around it (the line V3 - V2, for
example, is formed by P3 and P4). The forming points of the new vertices and
their neighbouring vertices may be found by considering vertices pointed to by
members of the deleted vertex list that are not themselves deleted, and finding the
righs of points around them. Thus W5 points outwards to V2 from Q and is
formed by {P3, P4, Q}.

6. The final step is to copy some of the new vertices, over writing the entries of
those deleted to save space.

The Algorithm of Watson [254]: This algorithm relies on the property of a

Delaunay triangulation that a triple of data point indices (i, j, k) will be in It provided the
circumcircle of pi, pj, and pk contains no other data points. As with the other algorithms,
this algorithm is based upon inserting a new point into an already existing Delaunay
triangulation. The general philosophy of Watson's approach is described by the
following two steps:

1. Find all triangles whose circumcircle contains the point to be inserted.

2. For each of these triangles, form three new triangles from the point to be
inserted and the three edges of this triangle and test to see if any of these three
new triangles contain any other data points. If not, then add this new triangle to
the triangulation.

More details for this general approach are given in the flow diagram of Figure 2.2.10

which is based upon the flow diagram of [254].

25

yes

yes

Get Next Point

Is new point within
this circumsphere?

Do for all current
n-simplices

Do for each face of
old n-simplex

Calculate new
circumsphere

Is this old point within
new circumsphere?

Reject the new
n-simplex

Do for all current
data points

Figure 2.2.10. Flow Diagram for Watson's Algorithm.

Watson [254] describes a number of features and details to make the basic algorithm
efficient and eventually discusses a particular implementation which he says has an
expected running time which is observed to not increase more that N3/2.

The embedding/lifting approach: Algorithms of this type are based upon a very
interesting relationship that exists between the three dimensional convex hull of the lifted
points (xi, yi, xi2 + yi2) and the Delaunay triangulation. Faces on the convex hull are
designated as being either in the upper or lower part. The lower part consists of faces
which are supported by a plane that separates the point set from (0, 0, -oo). The
Delaunay triangulation is obtained directly form the projection onto the x-y plane of the
lower part of the convex hull. See [27] and [68]. An algorithm for computing the convex

26

hull which is based on an initial sort followed by a recursive divide-and-conquer
approach has been described by Preparata and Hong [202]. This algorithm is also
covered in [68] and [203] Theoretically the algorithm is optimal time O(n log(n)), but
Day [49] reports that empirical data implies a worst-case complexity of O(N2) The paper
of Day [49] covers many of the details and special case issues of practical interest for
implementation which are often brushed over in more theoretical papers.

Divide and Conquer Algorithms: The general structure of this type of algorithm is
to divide the data set into subsets A and B, solve the problem for A and solve the problem
for B and merge the results into a solution for A ∪ B. See Figure 2.2.11. Divide and
conquer algorithms can lead to theoretically optimal algorithms, but often fail to be
competitive in practical usage. The merging portion is often the most troublesome in
trying to maintain bounds on the running times and complexity of the algorithm.

Figure 2.2.11. Divide and Conquer Algorithms

2.3 Visibility Sorting og Triangulations

This is an example of an area that is interesting in 3D but not in 2D. It is possible to
make a definition of a visibility sort for a triangulation which is completely analogous to
that of a tetrahedrization, but there does not appear to be any application or use for such a
property. We defer further discussion on visibility sorting to Section 3.3.

2.4 Data Dependent Triangulations

The topic of data dependent triangulations arises within the context of determining a
modeling function F(x, y) for the data (Fi; xi, yi), i = 1, . . . , N. A relatively simple
approach to defining a modeling function is to first form a triangulation of the convex
hull of the independent data (xi, yi), i = 1, . . . , N and then define F to be piecewise linear
over this triangulation. This will yield a C0 (continuous) function which interpolates the
data; that is, F(xi, yi) = Fi, i = 1, . . . , N. We denote this function by FT(x,y). Any
triangulation of the independent data (xi, yi), i = 1, . . . , N will suffice for this approach.
While we are well aware of the many desirable properties of the Delaunay triangulation,
it might very well be the case that some other triangulation whose choice would depend

27

upon the values Fi, i = 1, ., . . , N would lead to some desirable properties for the
modeling function F. This is the basic idea of data dependent triangulation. Of course,
there are potentially many ways to accomplish this, but we choose for this discussion
here to briefly describe the criteria called "nearly C1" as proposed in [67]. An ordering is
imposed on the collection of all possible triangulations of the convex hull in the
following manner. First a local cost function for each edge ei = 1, . . . , Nie = Ne - Nb is
defined and denoted by S(FT, ei). (We will shortly describe the four examples of local
cost functions covered in [67]). If T and T' are two triangulations, then

T ≤ T'

provided the vector

(s(FT, e1), s(FT, e2), . , . , . , s(FT, eNie))

is lexicographically less than or equal to

(s(FT', e1), s(FT', e2), . , . , . , s(FT', eNie)).

It is assumed that the components of these vectors are arranged in nonincreasing order.
The goal is then to find the optimal data dependent triangulation which is defined by
having the smallest associated vector under this lexicographical ordering. Since there are
only a finite (albeit possibly very large) number of possible triangulations, we know that
a global minimum exists even though it may not be unique and it may not be so easy to
compute. The algorithm used in [67] is similar to the swapping algorithm of Lawson
(which we have described above in Section 2.2) in that an initial triangulation is obtained
and then an internal edge of a convex quadrilateral is considered. If T' < T, where T' is
the same triangulation as T except the diagonal of the convex quadrilateral has been
switched, then this switch is made and other edges are considered for potential swapping.
Since each swap moves strictly lower in the lexicographic ordering, we are guaranteed
that this algorithm will eventually converge after a finite number of steps. This means
that swapping any edge would not move to a smaller triangulation. This limit
triangulation may not be the global minimum, it is only guaranteed to be a local
minimum and steps to find the global minimum must do more than swap diagonals which
improve (with respect to the ordering) the triangulation.

P 2
P 1

(,)xk yk

xi yi(,)

28

Figure 2.4.1. Notation for local cost function definitions.

We now describe the four local edge cost functions used in [67]. Let P1 = a1x + b1y
+ c1 and P2 = a2x + b2y + c2 be the two planes defined over the two triangles of a convex
quadrilateral.

i) The angle between normals: The local cost function is taken as the acute angle
between N1 and N2 which are the respective normals for P1 and P2.

s(FT, e) = cos-1(A)

where

A =
a1a2+b1b2+1

 (a
2
1+b2

1+1)(a2
2+b2

2+1)
 .

ii) The jump in normal derivative: This cost function is the difference between the
derivative of P1 and P2. This derivative is taken in the direction perpendicular to the
edge dividing the two triangles.

s(FT, e) = [nx(a1-a2) - ny(b1-b2)]

where (nx, ny) is a unit vector perpendicular to the edge e.

iii) The deviations from linear polynomials: The cost functions measures the error
between P1 and P2, evaluated at the other point of the quadrilateral.

s(FT, e) = (P1(xi, yi) - Fi)2 + (P2(xk, yk) - Fk)2

iv) The distance from planes: This cost functions measures the distance between the
planes P1 and P2 and the corresponding vertex of the quadrilateral.

s(FT, e) =
(P1(xi,yi)-Fi)2

a2
1+b2

1+1
 +

(P2(xk,yk)-Fk)2

a2
2+b2

2+1

Some typical results are given in [67] which confirm the expectation that using the

optimal data dependent triangulation improves the overall fitting properties of FT over
that of the Delaunay triangulation, which, by the way, is used as the initial triangulation
for the swapping algorithm. It is observed that long thin triangles tend to appear where
the data seems to indicate a function that is increasing (or decreasing) relatively rapidly
in a certain direction. The use of the data dependent triangulation generally gives an
overall reduction in errors when certain test functions are used to generate the data.

29

As we have mentioned, the local swapping algorithm used in [67] can only find a
local minimum. In order to move more closely to the globally optimal data dependent
triangulation, Schumaker [225] and Quak and Schumaker [204], [205], [206] have
involved the tools of simulated annealing. More details on this are contained in Section
3.6 on data dependent tetrahedrizations. We include here the results of one example
described by Schumaker. The data consists of

(Fij; xi, yj); xi , yj = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0;

where

F(x,y) = (y - x2)+ .

Three triangulations are shown in Figure 2.4.2. The first is the Delaunay triangulation of
the independent data. The next is the triangulation which results from the local swapping
algorithm of [67] using the local cost function of "angle between normals". The last is
the triangulation after simulated annealing has been applied. The associated vectors for
each of these triangulations is given in Figure 2.4.4.

Figure 2.4.2. Examples of data dependent triangulations.

30

Figure 2.4.3. The graphs of Schumaker's example. See [225].

31

Angles between normals for Delaunay triangulation:

55.077 48.155 44.684 39.801 39.588 38.378 37.734 35.445 33.992
33.786 33.561 33.162 30.470 28.898 28.287 27.284 27.284 26.003
23.633 21.958 20.814 17.886 16.066 15.942 15.642 11.310 10.302

9.661 7.294 7.294 7.294 6.843 0.649 0.649 0.459 0.458
0.458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000

Angles between normals for locally optimal triangulation

35.993 30.590 26.070 23.610 21.813 21.558 16.563 16.521 15.793
12.810 11.929 11.310 10.646 10.261 9.622 8.844 8.707 8.321

8.076 8.047 5.794 5.563 3.777 0.649 0.649 0.459 0.459
0.458 0.458 0.458 0.448 0.020 0.020 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000

Angles between normals for annealed triangulation

26.070 22.929 22.113 20.049 17.257 16.563 16.521 13.031 12.505
11.929 10.389 10.270 10.261 8.954 8.321 7.844 5.962 5.794

5.256 1.652 1.480 1.025 0.649 0.648 0.459 0.458 0.458
0.448 0.447 0.020 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000

Figure 2.4.4. Angles for the data dependent triangulation.

2.5 Affine Invariant Triangulations

The desirable properties of the Delaunay triangulation have been previously
discussed. Unfortunately, this optimal triangulation is not invariant under affine
transformations and this means that methods for analyzing and visualizing data that use
this particular triangulation can be affected by the choice of units used to measure the
data. This could be considered an undesirable property. In this section we describe a
relatively new method for characterizing and computing an optimal triangulation which
is invariant under affine transformations. Before we proceed with the discussion of these
techniques, we wish to motivate further the desirability of affine invariance.

As we have mentioned earlier, one of the main purposes for triangulations and

tetrahedrizations is their use in defining functions in a piecewise manner over the domain
of a data set. It would be undesirable if the happenstance of the choice of units used to
measure the data were to affect the definition of a data modeling function. But this does
happen with the Delaunay triangulation. The example of Figure 2.5.1 points this out.
This data represents the independent data and the dependent data is not given as it not
important in this context. The data is the same in both the left and right graphs of Figure

32

2.5.1; the only difference is that in the left graph we have used years and £ (pounds,
British monetary unit, equal (approximately and assumed here to be exactly equal) to
two US dollars) and in the right graph we have used months and dollars. If we use the
units of years and £ then we can see that the three vertices (1yr, 1£), (0.5yr, 3£), (2yr, 2£)
will mark out a triangle to be included in the list of triangles for the Delaunay
triangulation. But on the other hand if we use months and $ we can see that the
circumcircle defined by these same three vertices (12mon, 2$), (6mon, 6$), (24mon, 4$)
contains the data point (6mon, 4$). Therefore, these three vertices will not comprise a
triangle of the Delaunay triangulation if these units are used. This simple example points
out the possible affects of the choice of the units of measurement. The choice of the units
of measurement is the same as a change in scale, x ← ax and y ← by. Uniform scale
changes of the type x ← αx, y ← αy will not affect the Delaunay triangulation.

1 2 3 54

1
2
3

5
4

years

£
4

10 20 30 5040

1
2
3

5
6
7

months

$

Figure 2.5.1. Two different units used to measure the same data lead to two different

Delaunay triangulations.

We now discuss how to avoid this problem. It would be possible to simply normalize

all data ranges to one unit by scaling by the range. But this approach would mean that
rotations of the data could have an effect on the Delaunay triangulation meaning the final
data model would be affected by rotations of the data. In other words, the placement and
alignment of the axes for the measurement of the data would have an affect on the data
modeling function and subsequently on our analysis of the data and this we would like to
have the opportunity to avoid. It would, in general, be useful to have a characterization
(and subsequent algorithms) for an optimal triangulation which is not affected by affine
transformation. An affine transformation is a map of the form

(x,y) = A(x,y) + c

where A is a 2 x 2 matrix and c is two-dimensional point. Affine transformations include
not only scale changes and rotations, but also, translations, reflections and shearing
transformations. The approach to such an optimal triangulation covered here is through
the duality that exists between the conventional Delaunay triangulation and the Dirichlet
tessellation. As we previously described the characterization of the Delaunay

33

triangulation (as a MaxMin triangulation), it was heavily dependent upon angles and
angles are affected by scaling transformations and so it should be no surprise that the
Delaunay triangulation is also affected by scaling transformations. But the definition of
the Dirichlet tessellation uses only distance and we know that the Delaunday
triangulation is dual to (a direct result of) the Dirichlet tessellation. The approach here is
to use a method of measuring distance which is invariant under affine transformations.
The Dirichlet tessellation based upon this new method of measuring distance will have a
dual which will serve as our optimal triangulation. Rather than use the standard
Euclidean norm ||(x,y)||2 = x2 + y2 we propose the use of the following norm

 ()
() ()

() ()

−−

−

−

−

−
=

∑ ∑∑
∑

∑ ∑∑
∑

∑ ∑∑
∑

∑ ∑∑
∑

y
x

yxyx

x xyy

x

x xyy

xy

x xyy

xy

x xyy

y

V

2 22

2

2 22

2 222 22

2

2 ,),((2,5.1)

where

 Σ
2
x =

∑
i=1

N
(xi - µx)2

N , µx =

∑
i=1

N
xi

N

 Σ
2
y =

∑
i=1

N
(yi - µy)2

N , µy =

∑
i=1

N
yi

N

Σ

xy =

∑
i=1

N
(xi - µx)(yi - µy)

N

and

−−−
−−−

=
yNyy

xNxx

yyy
xxx

V
µµµ
µµµ

L

L

21

21

We have used the subscript of V on the norm to explicitly indicate that this method of
measuring distance is dependent upon the data set. Change the data set and you change
how you measure distance but the distance between any two data points will remain
constant.. This norm and its use within the context of scattered data modeling was first
described in [181]. This norm has the property that it is invariant under affine
transformations. More precisely,

34

 ||P-Q||V = ||T(P) - T(Q)||T(V) (2.5.2)

for any two points P = (x, y) and Q = (u, v) and any affine transformation

()

+

=

2

1

2221

1211

c
c

y
x

aa
aa

PT

Here, T(V) (used as a subscript in (2.5.2)) is the transformed data

()

−
−

−
−

−
−

=
yN

xN

y

x

y

x

y
x

T
y
x

T
y
x

TVT
µ
µ

µ
µ

µ
µ

L
2

2

1

1

Figure 2.5.2 illustrates the properties of this new method of measuring distance. Each

of the data sets shown in this figure are affine images of each other. Starting in the upper
left and moving in a clockwise direction, the transformations are: counter clockwise
rotation of 44 degrees; a scaling in x by a factor of 2; a scaling in y by a factor of 0.4.
The four ellipses in each figure represent points which are 1/4, 1/2, 3/4 and 1 unit(s) from
their center point as measured with the affine invariant norm. In Figure 2.5.3 we show
the Dirichlet tessellation of these four affinely related data sets and in Figure 2.5.4 we
show the corresponding dual triangulation and as one can see the triangulation is
unchanged by these transformations.

35

Figure 2.5.2. Affine transformations of a data set and points equally distant (affine
invariant norm) from a point.

36

Figure 2.5.3. The Dirichlet tessellation (affine invariant norm) of affine transformations

of a given data set.

37

Figure 2.5.4. The triangulation dual to the Dirichlet tessellation (affine invariant norm) of

a given data set and some affine transformations.

As a comparison, we have also included the Delaunay triangulation based upon the
standard Euclidean norm in Figure 2.5.5. And as we indicated earlier, we can see that
triangulation results are affected by the transformations. Not all triangles are changed,
but some are.

38

Figure 2.5.5. The Delaunay triangulation of a data set and some affine transformations.

And now some practical information on how to incorporate this feature in to an

algorithm for computing triangulations. If you already have an procedure for computing
an optimal triangulation, then it is possible to modify it slightly to achieve the results we
have described in this section. Say for example that the procedure is based upon
Lawson's algorithm and there is a subprocedure which decides whether or not to switch
the diagonal of a quadrilateral formed from two triangles. It might be that this procedure
is based solely on Euclidean distance. That is, the center and radius of the circumcircle
of three points is determined and the distance to the center from the fourth point is
computed so as to make this decision. In order to modify this subprocedure, we only
need to replace the use of the Euclidean norm with the affine invariant norm described
here. The equations for computing circumscribing circles (ellipses) for a quadratic norm
in general are given in [182]. If, on the other hand, the procedure you are already using
is known to be rotation invariant, then there is even an easier way to affect the results of
the affine invariant triangulation. This is based upon the factorization of the matrix
which defines the affine invariant norm. We denote this matrix by A(V) so that we have

() () ()

=

y
x

VAyxyx
V

,, 2

The matrix A(V) can be factored (Cholesky) into

39

() () ()*

22

2111

2221

11

0
0

VLVL
l
ll

ll
l

VA =

=

Here the notation L(V)* denotes the transpose of L(V).

Using this factorization, we have that

() () () () () () 2*2 ,,, VLyx
y
x

VLVLyxyx
V

=

==

which means measuring distances with the affine invariant norm is the same as
measuring distance in the standard Euclidean but with the points transformed by
multiplying by L(V). This means that we can achieve the result of the optimal affine
invariant triangulation by computing the standard Delaunay triangulation on the
transformed data

(Xi, Yi) = (xi, yi)L(V)

In summary, we need only compute

 l11 = 11a , l21 =
 a21

 a11
 , l22 =

11

2
212211

a
aaa −

where a11 =
Σ

2
y

Σ
2
xΣ

2
y-(Σ

xy)2
 , a21 =

-Σ
xy

Σ
2
xΣ

2
y-(Σ

xy)2
 and a22 =

Σ
2
x

Σ
2
xΣ

2
y-(Σ

xy)2
 .

and apply any rotation invariant triangulation algorithm to the transformed data

 Xi = l11xi + l21yi

 Yi = l22yi, i = 1, . . . , N.

2.6 Interpolation in triangles

We now take up the topic of interpolating into (or over) a single triangular domain.

The interpolants we describe here form the basic building blocks for constructing the
global interpolants which have piecewise definitions over the individual triangles of a
triangulation. The domain here is a single triangle, T = Tijk with vertices Vi, Vj and Vk,
and the data consists of values given on the boundary of the triangular domain. We need
to differentiate between two types of boundary data. If the data consists of function and
certain derivative values specified only at the vertices (or possibly other points such as
midpoints), then we call this discrete data. If, on the other hand, the data is provided on

40

the entire boundary of the triangle, we refer to this type of data as transfinite data. The
importance of an interpolant which will match transfinite data is that it serves as a
prototype for developing a large variety of discrete interpolants. This is accomplished
through the process of discretization where the data required for a transfinite interpolant
is provided by means of using some interpolation scheme only on the boundary, discrete
data. For example, given only data values at the vertices, we can use linear interpolation
along an edge to produce the transfinite data required by the transfinite interpolant.

There is a second concept which is rather important for interpolants defined over

triangles and this has to do with the degree of continuity of the global interpolant. Often,
we require that the global interpolant at least be continuous. We call such an interpolant
a C0 interpolant. If the global interpolant has continuous first order derivatives, we say it
is a C1 interpolant. A C0 interpolant for a single triangle is one which interpolates to
boundary data consisting of only position values, either at the vertices (and midpoints)
only or on the entire boundary. A C1 interpolant for a single triangle is one which will
interpolate to first order derivative data specified on the boundary. But this must be done
in a manner so as to guarantee C1 continuity across the boundary edges. So, if the cross
boundary derivative varies quadratically along an edge, then the data on this edge must
be sufficient to uniquely determine this derivative so that on an adjoining triangle we will
have exactly the same cross boundary derivative. For this reason, it is common for C1
interpolants to have linearly varying cross boundary derivatives which are determined by
their values at the two endpoint vertices.

Combining the two concepts of discrete and transfinite data and C0 and C1 data leads

to four types of triangular interpolants as indicated in Figure 2.6.1 This general area of
interpolation in triangles is fairly rich and well developed and we urge the really
interested reader to follow the citations into the literature after taking a look of the
sampling we have chosen to include here. Figure 2.6.1 serves as an outline for the
remainder of this section. We first cover C0, discrete interpolants, then a sampling of
three C0, transfinite interpolants. This is followed by the description of a C1, discrete
interpolants. We have chosen to include a discretized version of the minimum norm
triangular interpolant (see [178]). Another rather popular C1, discrete interpolant is the
Clough/Tocher interpolant often mentioned in conjunction with the finite element
method. Much has been written about this interpolant in the past and so we do not
include it here. This section is concluded with a description of a C1, transfinite
interpolant called the side-vertex interpolant [177]. It is one of the easiest to describe and
the most versatile to use. It also generalizes rather nicely to a tetrahedral domain.

Section 2.6.1

Section 2.6.3

Section 2.6.2

Section 2.6.4

TransfiniteDiscrete

C0

C1

Figure 2.6.1. Outline of Section 2.6

41

2.6.1 C0, Discrete Interpolation in Triangles

The lowest degree polynomial, C0 discrete interpolant is linear and it is unique.
Given the data F(Vi), F(Vj) and F(Vk), the coefficients of the linear function

F(x,y) = a + bx + cy

which interpolates this data can be found by solving the linear system of equations

a + bxi + cyi = F(Vi)

a + bxj + cyj = F(Vj)

a + bxk + cyk = F(Vk).

Another path to this basic linear interpolant is via barycentric coordinates. Given a point
V = (x, y), barycentric coordinates, bi, bj and bk of this point relative to the triangle Tijk
are defined by the relationships

y
x

 = biVi + bjVj + bkVk

1 = bi + bj + bk .

The linear interpolant now takes the form

F(x,y) = F(V) = biF(Vi) + bjF(Vj) + bkF(Vk) .

There are several alternative ways of defining or determining the barycentric
coordinates of a point. For example,

 bi =
Ai
A bj =

Aj
A bk =

Ak
A

where Ai, Aj and Ak represent the areas of the subtriangle shown in Figure 2.6.2 and A is
the area of Tijk. Also,

bi =

x-xk xj-xk

y-yk yj-yk

xi-xk xj-xk

yi-yk yj-yk

 bj =

x-xi xi-xk

y-yi yi-yk

xj-xk xi-xk

yj-yk yi-yk

 bk =

x-xj xi-xj

y-yj yi-yj

xk-xj xi-xj

yk-yj yi-yj

42

Vk

Vi

Vj

(x, y)

Aj

Ak

Ai

Figure 2.6.2. Areas leading to barycentric coordinates.

Given the values at the three vertices and the three midpoints of a triangle, there is a

unique quadratic which interpolates this data,

 Q(x,y) = F(Vi)bi(bi - bj - bk) + F(Mjk)4bjbk
 + F(Vj)bj(bj - bi - bk) + F(Mik)4bibk
 + F(Vk)bk(bk - bi - bj) + F(Mij)4bibj

where Mjk = (Vj + Vk)/2, Mik = (Vi + Vk)/2 and Mij = (Vi + Vj)/2.

A common way to specify a cubic along an edge is to use the Hermite form which
involves the first order directional derivatives along the edges

 F'ki(Vi) = (xk - xi)Fx(Vi) + (yk - yi)Fy(Vi)

which are further illustrated in Figure 2.6.3.

Vk

Vj

Vi jiF' (V)jk k

jiF' (V)ik k

jiF' (V)kj jjiF' (V)ij j

jiF' (V)ki i

jiF' (V)ji i

43

Figure 2.6.3. The notation for the six directional derivatives.

The six directional derivative at the three vertices along with F(Vi), F(Vj) and F(Vk)
do not uniquely determine a cubic since the bivariate cubics are of dimension 10. The
interpolant

 C(x, y) = F(Vi)b

2
i (3-2bi) + F'ki(Vi)b

2
i bk + F'ji(Vi)b

2
i bj

 + F(Vj)b
2
j (3-2bj) + F'ij(Vj)b

2
j bi + F'kj(Vj)b

2
j bk

 + F(Vk)b2
k(3-2bk) + F'ik(Vk)b2

k bi + F'jk(Vk)b2
k bj

 + wbibjbk

will match this function and derivative data for any value of w. This remaining degree of
freedom represented by w can be absorbed by a variety of conditions. For example, it
can additionally be required that the interpolant match some predescribed value at the
centroid. Another common choice is

 w = 2[F(Vi) + F(Vj) + F(Vk)]

 + 12 [F'ki(Vi) + F'ji(Vi) + F'ij(Vj) + F'kj(Vj) + F'ik(Vk) + F'jk(Vk)]

which guarantees quadratic precision and is a result of discretization of a number of
transfinite interpolants (see [189]). Quadratic precision means that whenever the data
comes from a bivariate quadratic function the interpolant will become this very same
quadratic polynomial.

2.6.2 C0, Transfinite Interpolation in Triangles

In this section, we only give a sampling of three interpolants which will interpolate to

arbitrary function values on the boundary of a triangular domain, Tijk. More information
on this general topic can be found in [189].

44

V
i

Vj

Vk

(x, y) = V

S i

b j Vj
b j

Vk
b k

bk+
+=

Figure 2.6.4. The side-vertex interpolant notation.

The Side-Vertex Interpolant: The side-vertex interpolant is built from three basic

interpolants which are defined by linear interpolation along line segments joining a
vertex and the opposing side. See Figure 2.6.4 In terms of barycentric coordinates, we
have

Ai[F] = biF(Vi) + (1-bi)F(Si),

Aj[F] = bjF(Vj) + (1-bj)F(Sj),

Ak[F] = bkF(Vk) + (1-bk)F(Sk)

where Si =
bjVj+bkVk

bj+bk
 , Sj =

biVi+bkVk
bi+bk

 , Sk =
biVi+bjVj

bi+bj
 . Each of these interpolants will

interpolate to arbitrary function values on one edge of the triangular domain. In order to
obtain an interpolant which matches arbitrary values on the entire boundary of Tijk, we
form the Boolean sum of these three interpolants

 A[F] = Ai⊕Aj⊕Ak[F] = Ai[F]+ Aj[F] + Ak[F]

 - Ai[Aj[F]] - Aj[Ak[F]] - Ak[Aj[F]] + Ai[Aj[Ak[F]]]

 = (1-bi)F(Si) + (1-bj)F(Sj) + (1-bk)F(Sk)

 - biF(Vi) - bjF(Vj) - bkF(Vk)

45

V
i

Vj

Vk

(x, y) = V

Figure 2.6.5. The evaluation points (ttencil) for side-side interpolant.

The Side-Side Interpolant: The side-side interpolant is based upon the basic

operation of linear interpolation along edges which are parallel to the edges of Tijk.
There are three of this interpolants,

 Pi[F] =
bkF(biVi+(1-bi)Vk) + bjF(biVi+(1-bi)Vj)

 bk + bj

 Pj[F] =
biF(bjVj+(1-bj)Vi) + bkF(bjVj+(1-bj)Vk)

 bi + bk

 Pk[F] =
biF(bkVk+(1-bk)Vi) + bjF(bkVk+(1-bk)Vj)

 bi + bj

Unlike the basic interpolants of the side-vertex interpolant, these interpolants do not
commute and so their triple Boolean sum is not well defined. However, it is possible to
form the average of all double Boolean sums (each of which interpolate to the entire
boundary) to arrive at the following affine invariant interpolant

 Q*[F] =
bkF(biVi+(1-bi)Vk) + bjF(biVi+(1-bi)Vj)

 bk + bj

 +
biF(bjVj+(1-bj)Vi) + bkF(bjVj+(1-bj)Vk)

 bi + bk

 +
biF(bkVk+(1-bk)Vi) + bjF(bkVk+(1-bk)Vj)

 bi + bj

 - biF(Vi) - bjF(Vj) - bkF(Vk).

46

Vk

Vj

Vi (b +)V + (b +)V ji ji
bk
2

bk
2

Figure 2.6.6. The stencil of the C* interpolant.

The C* Interpolant: The third transfinite, C0, interpolant which we describe utilizes
the stencil illustrated in Figure 2.6.6.

C*[F](bi,bj,bk} =
bibj

(bi+
bk
2)(bj +

bk
2)

 F((bi +
bk
2)Vi + (bj +

bk
2)Vj)

 +
bibk

(bi+
bj
2)(bk +

bj
2)

 F((bi +
bj
2)Vi + (bk +

bj
2)Vk)

 +
bjbk

(bj+
bi
2)(bk +

bi
2)

 F((bj +
bi
2)Vj + (bk +

bi
2)Vk)

 -
3bibjbk

(bj+2bk)(bk+2bj) F(Vi)

 -
3bibjbk

(bi+2bk)(bk+2bi) F(Vj)

 -
3bibjbk

(bi+2bj)(bj+2bi) F(Vk)

which can be written in the form

C*[F](bi,bj,bk} = biF(Vi) + bjF(Vj) + bkF(Vk)

 + Wk { F(Qk) - (bi +
bk
2)F(Vi) - (bj +

bk
2)F(Vj) }

 + Wj { F(Qj) - (bi +
bj
2)F(Vi) - (bk +

bj
2)F(Vk) }

 + Wi { F(Qi) - (bj +
bi
2)F(Vj) - (bk +

bi
2)F(Vk) }

47

where

Wi =
4bjbk

(2bj+bi)(2bk+bi) , Wj =
4bibk

(2bi+bj)(2bk+bj) , Wk =
4bibj

(2bi+bk)(2bj+bk) ,

 Qi = (bj +
bi
2)Vj + (bk +

bi
2)Vk,

 Qj = (bi +
bj
2)Vi + (bk +

bj
2)Vk,

 Qk = (bi +
bk
2)Vi + (bj +

bk
2)Vj .

In this form of C* we can see that it consist of linear interpolation plus a correction term.
It can easily be verified that C* is precise for all quadratic functions. That is, if f is a
quadratic, bivariate polynomial, then C*[f] = f.

The NTW Interpolant: This may be the simplest of all triangular Coons patches. The
weights are simple linear functions as are the stencil points.

Vk

Vi

Vj

b V b Vi i i k+ (1-)

b V b Vk k k i+ (1-)

NTW[F](bi,bj,bk)= bi[F(bjVj+(1-bj)Vi)+F(bkVk+(1-bk)Vi)-F(Vi)]

 + bj[F(biVi+(1-bi)Vj)+F(bkVk+(1-bk)Vj)-F(Vj)]

 + bk[F(bjVj+(1-bj)Vk)+F(biVi+(1-bi)Vk)-F(Vk)]

48

2.6.3 C1, Discrete Interpolation in Triangles

 A commonly used 9-parameter, C1 interpolant, is

 C∆[F](x,y) = ∑
(i,j,k) � I

{F(Vi)[b

2
i (3-2bi)+6wbi(bkαij + bjαik)]

 + F'ki(Vi)[b
2
i bk+wbi(3bkαij + bj - bk)]

 + F'ji(Vi)[b
2
i bj+wbi(3bjαik + bk - bj)]} ,

where

 F'ki(Vi) = (xk-xi)Fx(Vi) + (yk-yi)Fy(Vi) ,

 F'ji(Vi) = (xj-xi)Fx(Vi) + (yj-yi)Fy(Vi) ,

 w =
bibjbk

bibj+bibk+bjbk
 , I = { (i,j,k), (j,k,i), (k,i,j) } ,

and

 αij =
||ejk||2 + ||eik||2 - ||eij||2

 2||eik||2 .

We use ||eij|| to denote the length of edge eij. This 9-parameter, C1 interpolant is a

discretized version of a transfinite, C1, triangular interpolant which is described in [178].
The derivatives which are in a direction perpendicular to an edge vary linear along an
edge. This guarantees that when two of these interpolants share a common edge the two
surface patches will join with continuous first order derivatives. It is possible to
discrectize the same transfinite interpolant and use an additional three parameters
consisting of cross boundary derivatives at the midpoints of the three edges. This leads
to an interpolant that has all first order derivatives varying quadratically along the edges.
For a comparison of the C∆ interpolant to the Clough/Tocher interpolant within the
context of triangle based scattered data models, see Franke and Nielson [97].

2.6.4 C1, Transfinite Interpolation in Triangles

In this section, we extend the problem of interpolating to transfinite data on the

boundary to include also the requirement that the interpolant match user specified
transfinite derivative data on the boundary. These types of interpolants can be used to

49

construct surfaces over triangulated domains which are C1; that is, functions which have
continuous first order partial derivatives. One of the most versatile and easily described
C1, transfinite interpolants is the C1, side-vertex interpolant [177].

Figure 2.6.7. The data for C1 interpolants position and derivative boundary values.

Earlier, we saw that the basic building blocks of the C0, side-vertex interpolant
consisted of linear interpolation along lines joining a vertex and its opposing side. In
order to extend these ideas to C1 data, we make use of the univariate cubic, Hermite
interpolation applied along rays emanating from a vertex and joining to the opposing
edge. See Figure 2.6.4. Cubic Hermite interpolation will match position and derivatives
at the two ends of the interval. We assume that position and derivative information is
available on the entire boundary of a triangle Tijk.

 Si[F](p) = bi2(3-2bi)F(Vi) + bi2(bi-1)F'(Vi)

 + (1-bi)2(2bi+1)F(Si) + bi(1-bi)2F'(Si)

where F'(Vi) =
(x-xi)Fx(Vi)+(y-yi)Fy(Vi)

1-bi
 and

F'(Si) =
(x-xi)Fx(Si)+(y-yi)Fy(Si)

1-bi
 .

Si[F] has the property that it interpolates to the boundary data provided by F at Vi and on
the entire opposing edge ekj. It also matches first order derivatives on this edge and at
Vi. It does not necessarily interpolate F or its derivatives on the other two edges. In
order to have an interpolant for the entire boundary of the triangular domain, we could try
to construct one using the ideas of Boolean sums as was done earlier for the C0, side-
vertex interpolant. Even though the interpolants Si, Sj and Sk commute so that their
Boolean sums are well defined, this approach does not work (see [177]) and so the use of
convex combination techniques has been suggested. This leads to the interpolant

50

 S[F] =
b2

j b2
kSi[F] + b2

i b2
kSj[F] + b2

j b2
i Sk[F]

 b2
i b2

j + b2
j b2

k + b2
i b2

k

which has the property that it matches F and its first order derivatives on the entire
boundary of the triangular domain. In the case where the boundary information has been
discretized with cubically varying (Hermite) position values and linearly varying cross
boundary derivatives, it is possible to obtain a final interpolant with simpler weights in
the convex combination. Namely,

 S[F] =
b

jb

kSi[F] + b

ib

kSj[F] + b

jb

iSk[F]

 b
ib

j + b

jb

k + b

ib

k

 .

3 Tetrahedrizations

In this section we follow the outline of the previous section as best possible. Since

the dimension is one less and since bivariate problems have been considered for a much
longer period of time, the development in the 3D domain is not as rich as the 2D domain
and so we can not exactly parallel the previous section, but most everything generalizes
or leads to something interesting and often useful.

3.1 Basics

3.1.1 Definitions, Data Structures and Formulas for Tetrahedrizations

Our definition of a tetrahedrization follows very closely to that given for a

triangulation at the beginning of Section 2.1. We start with a collection of points pi = (xi,
yi, zi), i = 1, . . . , N which we assume are not collectively coplanar. We denote this
collection of point by P. A tetrahedrization consists of a list of 4-tuples which we denote
by It. Each 4-tuple, ijkl ∈ It denotes a single tetrahedron with the four vertices pi, pj, pk
and pl. The following conditions must hold:

i) No tetrahedron Tijkl , ijkl ∈ It is degenerate. That is, if ijkl ∈ It then pi, pj,

pk and pl are not coplanar.
ii) The interior of any two tetrahedral do not intersect. That is if ijkl ∈ It and

αβγδ ∈ It then Int(Tijkl) ∩ Int(Tαβγδ) = φ .
iii) The boundary of two tetrahedra can only intersect at a common triangular

face.
iv) The union of the all triangles is the domain D = ∪ijkl ∈ It Tijkl .

We should point out that condition iii) must hold in the strictest sense and so

tetrahedra joining as shown in right side of Figure 3.1.1 are not allowed. The reason for
this condition (and all the others) is that same as before with the conditions of a

51

triangulation and that is we eventually wish to be able to define C0 functions in a
piecewise manner over the domain consisting of the union of all tetrahedra.

Figure 3.1.1. The configuration indicated by the diagram on the left is acceptable while
that on the right is not acceptable for a tetrahedrization. It is eliminated by condition iii)

above.

The triangular grid data structure for representing triangulations (illustrated in Figure
2.1.8) generalizes very nicely to a structure for representing tetrahedrizations. For
example, in Figure 3.1.2, we show a tetrahedrization of the cube into 5 tetrahedra.

φφ 5 φ
1 3 2
4 0 1
2 6 4
4 7 1

5

Tetrahedra Neighbors

p i p j

7
2
7
2

p k p l Njkl Nikl Nijl Nijk

7 4 1 φφ 5 φ
φφ 5 φ

φφ 5 φ

21 3 4

 X

Y

Z

6

4 5

0
7

2 3

1

Figure 3.1.2. An example which defines the tetrahedral grid data structure.

We saw earlier in the case of triangulations that once the boundary is specified, the

number of triangles comprising the triangulation was fixed and more over we had a

52

simple approach to determining a formula for the number of triangles that existed in the
triangulation. This property allowed for the definition of the vectors of angles which lead
to the criterion for optimal triangulations and so was rather important. It would be nice if
everything extended to 3D in a straightforward manner. That is, we would like to say
that any polyhedron can be decomposed into tetrahedra and there is a fixed formula of the
following form Nt = aNb + bNi + c where as before, Nb and Ni are the number of vertices
on the boundary and interior, respectively. Unfortunately, this is not the case and in fact
the situation is much worse than that. We saw earlier that any polygon bounded region
can be triangulated using only the vertices of the polygon. This is one of the first areas
where matters differ significantly when going from 2D to 3D. It turns out that not every
polyhedron can be tetrahedrized. The example illustrated in Figure 3.1.3 is originally due
to Schoenhardt [221]. It can be visualized as a prism which has been twisted until each
face (a quadrilateral comprised of two triangles) has "buckled" inward. Any tetrahedron
we form from these vertices must include an edge which lies outside the domain of the
"twisted prism" and so it is clear that the object can not be tetrahedrized.

Figure 3.1.3. The twisted prism of Schoenhardt [221] which cannot be tetrahedrized.

One very basic operation does carry over in a straightforward manner from 2D to 3D

and this the process of inserting an additional vertex into the interior of an existing
tetrahedrization. If the new vertex p lies interior to an existing tetrahedron, say Tabcd,
then this tetrahedron is simply replaced with the four tetrahedron, Tabcp, Tabdp, Tbcdp,
Tacdp adding a net increase of three tetrahedra. If the new vertex p lies on the common
triangular face of two tetrahedra, then these two tetrahedra are replaced with six new
tetrahedra Tabcp, Tbcdp, Tabdp, Taecp, Tecdp, Taedp resulting in a net increase of four new
tetrahedra. This latter aspect of the number of tetrahedra increasing which is different
here from the 2D case is that net increase in the number of tetrahedra depends on the
actual location of the interior point to be inserted. This observation points out that not
only can the number of ways that a data set is tetrahedrized vary, but even the number of
tetrahedra can vary. We will illustrate this further with some examples even without
interior points.

53

d

a

c
p

b

d

b
p

c

a

e

Figure 3.1.4. Inserting a point interior to an existing tetrahedrization. On the left, the
new point is interior to a tetrahedron and on the right it is on a common face fo two

tetrahedra.

We have already seen (see Figure 3.1.2) the decomposition of a cube into five
tetrahedra. It is also possible to tetrahedrize the cube into six tetrahedra. This is
illustrated in Figure 3.1.5.

X

Y

Z

6

5

7

2 3

10

4

24 6 φ
5 7 2
1 5 2
1 7 2

6

Tetrahedra Neighbors
p i p j

4
4
5

p k p l Njkl Nikl Nijl Nijk

4 7 2 φφ 2 φ

14 3 φ

25 3 φ

4φ φ φ
φφ φ 3

3 7 21
1 2 04

Figure 3.1.5. A tetrahedrization of the cube into six tetrahedra.

It is interesting to note that from the exterior, the tetrahedrization of Figure 3.1.5
looks exactly the same a that of Figure 3.1.2 as all external edges are the same. Another
interesting connection between these two tetrahedrization of the cube is that one can be
obtained from the other by "swapping" operations similar to those used in the Lawson
algorithm for computing optimal triangulations. Previously, in the case of triangulations,
there was the possibility of two triangulations of a convex quadrilateral. The analogous
situation in 3D is the tetrahedrization of the region formed by five vertices when two
tetrahedra meet at a common triangular face. If the line segment joining the two vertices

54

not on the common face intersect the interior of the common face then, analogous to the
convex quadrilateral case in 2D, there is the possibility of an alternate tetrahedrization.
But what is really different from the 2D case is that the number of tetrahedra changes
from two to three!. This is illustrated in Figure 3.1.6. This basic operation was applied
to the center and upper, back right tetrahedra of Figure 3.1.2 to arrive at the
tetrahedrization of Figure 3.1.5.

da
a

b

c
ce

d

d
e

e

a

a

b b

c

c
e

Figure 3.1.6. Two different tetrahedrizations of five points.

Another example worth noting in this context is the case where pi = (i, i2, i3), i = 1, . .

. , N. The (Delaunay) tetrahedrization of the convex hull of this set of points consists of
the tetrahedra with vertices pi, pi+1, pj and pj+1 of which there are a total of ((N-2)(N-
1))/2 tetrahedra. Bern and Eppstein [16] point out that this example provides an upper
bound on the number of tetrahedra in a tetrahedrization of an N-vertex polyhedron and
that a lower bound is provided by the fact that any tetrahedrization of a simple
polyhedron has at least N-3 tetrahedra.

3.1.2 Some Special Tetrahedrizations

Following the pattern established in the earlier sections on triangulations, we first

discuss tetrahedrizations related to Cartesian grids followed by tetrahedrizations
associated with curvilinear grids. A 3D Cartesian grid involves three monotonically
increasing sequences, xi, i = 1, . . . , Nx , yj, j = 1, . . . , Ny and zk, k = 1, . . . , Nz. The
grid points have coordinates (xi, yj, zk) and these points mark out a cellular
decomposition of the domain consisting of regular parallelepipeds. Each of these cells
can be tetrahedrized in a manner similar to that given for the cube in the previous section.
Probably the most popular, is the tetrahedrization involving five tetrahedra shown in
Figure 3.1.2. So as to not end up with a non tetrahedrization with problems similar to
those shown in the right side of Figure 3.1.1, it is necessary to "alternate" the
tetrahedrization from cell to the next so that adjoining cells have the same diagonal on
the common faces. This alternate tetrahedrization is not really different and is just a
rotation of its companion. It is shown in Figure 3.1.8. Another popular choice is the
tetrahedrization shown in the upper left corner of Figure 3.1.9. It has the advantage that
all of the tetrahedra are the same shape (up to mirror images). Actually, it turns out that
there are six different tetrahedrizations of a cube (parallelepiped). See Nielson [183].
We have previously shown pictures of two of them in Figure 3.1.2 and Figure 3.1.5. The
other four are shown in Figure 3.1.9.

55

(x , y , z)i j k

(x , y , z)i+1 j+1 k+1

Figure 3.1.7. Three dimensional Cartesian grid.

Figure 3.1.8. The two alternating tetrahedrizations with five tetrahedra of the cell of a 3D
Cartesian grid. (One can be rotated to the other.)

Figure 3.1.9. Four different tetrahedrizations of the cube each with six tetrahedra.

All six tetrahedrizations of the cube are comprised of five primitive tetrahedra which
are shown in Figure 3.1.10. We use the names of 0F, 1F, 2Fr, 2Fl and 3F for these
tetrahedra so as to indicate the number of exterior faces for each tetrahedra. There are
two different primitive tetrahedra with two exterior faces; one is a mirror image version
of the other and so it can not be rotated to the other. The tetrahedron 0F has volume 1/3
and all the others have volume 1/6. During informal discussion we most often use the

56

names 3F = "corner", 2Fr or 2Fl = "right wedge" or "left wedge", 1F = "kite" and 0F =
"equi" or "fatboy".

0F 1F

2Fr 2Fl

3F

Figure 3.1.10. The five primitive tetrahedra comprising the tetrahedrizations of the cube.

In a joining similar to that shown in Figure 3.1.6, three 1F tetrahedra can come
together to form the same exact shape formed by a 0F and a 3F together. Also a 2Fl and
2Fr together form the same shape as a 1F and a 3F, but two 2Fr's or two 2Fl's can not
share a common face and remain inside a unit cube. There are four tetrahedrizations
(each comprised of three primitive tetrahedra) of the prism making up half of the cube.
They are 3F, 1F, 2Fl; 3F, 1F, 2Fr; 2Fr, 2Fl, 2Fr, and 2Fl, 2Fr, 2Fl. In Figure 3.1.11 we
show the dual graphs of the six tetrahedrizations of the cube. A node is a primitive
tetrahedron and an arc is a common triangular face. As expected, in each case the
"names" add to twelve.

57

3F 3F

3F 3F
0F

3F 1F 3F

3F 1F 1F

2Fr 2Fl 2Fr

2Fl 2Fr 2Fl

1F3F

2Fl 2Fr 2Fl

2Fr

2Fl 1F 3F

1F3F 2Fr

2Fl

2Fr1F

1F

3F

3F

Figure 3.1.11. The six tetrahedrizations of the cube shown as dual graphs. (These are the
only tetrahedrizations of the cube.)

Each of these six tetrahedrizations has its own unique and interesting properties. The

tetrahedrization of 3.1.2 and Figure 3.1.5 both "swap" diagonals on all three pairs of
opposing faces. The tetrahedrization shown in the lower right of Figure 3.1.9 swaps the
diagonals of two pair of opposing faces and the of the upper right swaps one pair. The
two tetrahedrizations on the left of Figure 3.1.9 do not swap any diagonals of any
opposing faces. The tetrahedrization of the upper left of Figure 3.1.9 can be realized with
three cuts of the entire cube. while the others cannot. This particular tetrahedrization also
has the unique property of being comprised only of 2F primitives whose faces are all
right triangles and they all (six) share the diagonal of the cube as a common edge. This
tetrahedrization has been discussed and used widely. It is call the CFK-triangulation of
the cube after Coxeter [47], Freudenthal [79] and Kuhn [137]. A replacement rule can be
used to generate this tetrahedrization. Using the labeling scheme of Figure 3.1.2, we start
with the four vertices P2i-1, i = 0, 1, 2, 3 and replace each vertex Vj, other than V0 and
V7, with Vj+1 + Vj-1 - Vj. Explicitly, this will successively generate the six tetrahedra:
p0,p1p3p7; p0p2p3p7; p0p2p6p7; p0p4p6p7; p0p4p5p7; p0p1p5p7. The CFK triangulation
generalizes to n-dimensions as does the "replacement" algorithm for generating the
simplicial decomposition.

It is interesting to note that not all possible face triangulations are realized by the six

possible tetrahedrizations of the cube. In addition to the five different face triangulations
(note that two tetrahedrizations have the same face triangulations) which are realizable
there are three others which can not be realized. They are shown in Figure 3.1.12. In
order to determine these eight unique face triangulations, we start with the 64 = 26 face
triangulations and then grouped them into these eight equivalence classes by rotations.

58

Figure 3.1.12. Face triangulations which are not consistent with any tetrahedrization of
the cube.

Theorem: It is impossible to tetrahedrize a cube and yield face triangulations as shown
in Figure 3.1.12.

Proof: We give only the proof for the case in the top, center as the others are similar. We
use the same labeling as shown in Figure 3.1.5. We start with the face 457. Only vertex
0 can be attached to the face 457 which gives the tetrahedron 0457. The internal face 047
must be shared by some other tetrahedron. Any vertex, however, cannot be joined to the
face of 457 without violating the conditions of the face triangulations and so this
completes the argument.

Earlier we discussed triangulations related to curvilinear grids. We now take up the
topic of tetrahedrization of 3D curvilinear grids. Analogous to the 2D situation, a 3D
curvilinear grid is specified by three geometry arrays xijk, yijk, zijk, i = 1, . . ., Nx; j = 1, .
. . , Ny; k = 1, . . . , Nz. In the 2D case a cell Cij consisted of the quadrilateral with
vertices (xij, yij), (xi+1,j, yi+1,j), (xi,j+1, yi,j+1), (xi+1,j+1, yi+1,j+1), and the cells serve as a
decomposition of the domain.

(x , y , z)ijk ijkijk

(x , y , z)i+1,j+1,k+1 i+1,j+1,k+1 i+1,j+1,k+1

Figure 3.1.13. Single cell of a 3D curvilinear grid.

59

In the 3D case, matters are not as straightforward as we might expect and there are

some areas where we need to be concerned. These have mainly to do with just exactly
what comprises a cell. In 3D the cell Cijk has the eight vertices (xabc, yabc, zabc), a = i,
i+1, b = j, j+1, c = k, k+1 but there is not always a consistent definition for the cell
boundaries. We mention briefly some possible choices. If the geometry arrays are
constrained so that each collection of four vertices of the six "faces" of the cells are
coplanar, then an obvious choice for the cell boundaries is this common planar
quadrilateral. In this case the cells are hexahedron and it is relatively easy to determine
whether or not an arbitrary point, (x, y, z) is in a particular cell or not. Often this
planarity condition does not hold and cell boundaries are taken to be the parametrically
defined (hyperbolic) surface obtained by substituting 0 or 1 for any of the parameter
value s, t, u in the following trilinear mapping:

 Ci,j,k(s,t,u) = (1-s)(1-t)(1-u)Pi,j,k + (1-s)(1-t)uPi,j,k+1
 + (1-s)t(1-u)Pi,j+1,k + (1-s)tuPi,j+1,k+1
 + s(1-t)(1-u)Pi+1,j,k + s(1-t)uPi+1,j,k+1
 + st(1-u)Pi+1,j+1,k + stuPi+1,j+1,k+1

where

 Pi,j,k = (xi,j,k, yi,j,k, zi,j,k)

Given a point (x,y,z) in the cell Cijk, the value (s, t, u) which associates with it via the
trilinear mapping is called the corresponding computational coordinate. In fact, in order
to determine whether or not an arbitrary point is in this type of cell or not requires that we
solve the three nonlinear equations which represent this association. This can be a
considerable problem from a computational point of view. Most methods use some
heuristics to obtain an initial approximation for some type of Newton's method. Another
choice for the cell boundaries in the event the four vertices of a face are not coplanar is
choose them to be piecewise planar. That is, a diagonal edge is selected and boundary
between the two cells consists of the two triangles which result. Often the cell would be
further decomposed into tetrahedra thus leading to a an overall tetrahedrization of the
curvilinear grid. We should point out that not all choices for the diagonals can lead to a
tetrahedrization of the cell. In order to be specific about this, consider the cell illustrated
in Figure 3.1.14. This cell was created from a unit cube by cutting notches in the faces so
as to force the diagonal edges p2p7, p4p1, p3p5, p3p0, p0p6, p6p5 to be exterior to the cell.
If the depth of the notches is ε then this results in the points po = (0, ε, 0), p1 = (1-ε, 0, ε),
p2 = (ε, 1, ε), p3 = (1, 1-ε, 0), p4 = (ε, 0, 1-ε), p5 = (1, ε, 1), p6 = (0, 1-ε, 1) p7 = (1-ε, 1,
1-ε). Note that p6, p3, p4 and p1 all lie in the plane x + z - 1 = 0 and p2, p7, p0 and p5 are
in the plane x - z = 0.

60

 X

Y

Z

X

Y

Z

6

4

7

0

1
5

32

Figure 3.1.14. A curvilinear grid cell (polyhedron) that can't be tetrahedrized.

Theorem: The polyhedron of Figure 3.1.14 can not be tetrahedrized.

Proof: Consider the triangle face with vertices p6, p4 and p7. In any tetrahedrization,
this face must be joined to some vertex to form a tetrahedron. By considering the
remaining five vertices p5, p0, p2, p1 and p3 we find that the only p3 would not lead to a
tetrahedron with an edge which is outside the cell. If the tetrahedron p6, p4, p7 and p3 is
included in the list of tetrahedra, then the interior triangle face p3p4p7 must connect to
another vertex (besides p6) to form a tetrahedron. But a consideration of each of the
possible vertices p5, p1, p2 and p0 each lead to an edge which is exterior to the cell and
this concludes the argument.

We conclude this discussion on the tetrahedrization of the cells of a curvilinear grid
by pointing out that some hexahedra will decompose into seven tetrahedra. Consider the
cell of Figure 3.1.13 and let the six faces be planar, but assume that the four diagonal
points pijk, pi+1,j+1,k+1, pi,j,k+1 and pi+1,j+1,k are not coplanar so that they will form a
tetrahedron. Remove this tetrahedron leaving two prisms with two planar quadrilateral
faces which can each be decomposed into three tetrahedra. We should point out that we
have observed cases where this decomposition was the Delaunay tetrahedrization.

In Section 2.1.3 we described two different approaches leading to nested subdivision
triangulations and pointed out their potential value in multiresolution approximations.
These both have analogs in 3D and these are shown in Figures 3.1.15 and 3.1.16
respectively. The first one is based upon recursive subdivision and the second one is
called "symmetric" subdivision and is related to the CFK-tetrahedrization of the cube
[170]. It is comprised of six 2Fr's and two 2Fl's and is the same shape and twice the size
of one 2Fr.

61

Figure 3.1.15. Nested tetrahedral subdivision analogous to that of Figure 2.1.16.

Figure 3.1.16. Symmetric nested tetrahedral subdivision.

It should be noted that if primitive tetrahedra of the shape shown in Figure 3.1.17 are

assembled as in Figure 3.1.16, then we obtain a composite tetrahedron which is twice the
size and exactly the same shape as the primitive tetrahedron. This particular
tetrahedrization of tetrahedra is related to the Delaunay tetrahedrization of the BCC
lattice which is the union of the lattices { (i,j,k) : i, j and k are integers} and {(i+1/2, j+1/2,
k+1/2): i, j and k are integers}. See also Senechal [229] for a discussion of tetrahedra that
can be decomposed into similar tetrahedra.

62

(α, α, 0)

(0, α, α/2)

(α, 0, α/2)

Figure 3.1.17. A tetrahedron that can be tetrahedrized into eight tetrahedra each of which
are the same shape as the original yet half size.

3.2 Algorithms for Delaunay Tetrahedrizations

needle cap wedge sliver

Figure 3.2.1. Examples of poorly shaped tetrahedra.

Analogous to the examples of Figure 2.2.1, examples of poorly shaped tetrahedra are
shown in Figure 3.2.1. The sliver has small dihedral angles, but need not have any small
planar angles. Several measures of the quality of tetrahedrizations have been proposed.
See Baler [12] and Field [86]. For example the ratio of the inradius (radius of inscribed
sphere) and the circumradius. The problem here is there is no apparent way to order the
collection of all tetrahedrizations of a point set. The approach of lexicographically
ordering the associated vectors of angles as we described in Section 2.2 does not extend
to 3D because the number of tetrahedra in a tetrahedrization is not necessarily fixed.
Nevertheless, the Delaunay tetrahedrization of the convex hull which is dual to the
Dirichlet tessellation is well defined (in the absence of neutral cases where points lie on a
common sphere) and so the remainder of this section is devoted to a discussion of the
extension of the previously discussed 2D algorithms for computing the Delaunay
triangulations to the case of 3D tetrahedrizations.

Extension of Lawson's Algorithm (Incremental Flipping): It is possible to extend

this algorithm to 3D, but the extension is not as simple as one might expect. The first
major difference that one encounters is the character of the basic swapping step. In 2D
we take an edge and consider the quadrilateral formed by the two triangles which share
this edge. If the quadrilateral is convex we can swap the diagonal if this step moves us
closer to the optimal solution which can easily be determined by applying the circle

63

inclusion test. Two triangles are replaced by two other triangles. But the analogous steps
in 3D can lead to a situation where the two tetrahedra sharing a face can be replaced with
3 tetrahedra. See Figure 3.2.2 for an example.

3-2

2-3

2-2

4-4

Figure 3.2.2. Different cases of swapping for 3D version of Lawson's algorithm.

Joe [122] showed that if the points are inserted in a particular manner, then

incremental flipping will lead to the optimal Delaunay tetrahedrization. Edelsbrunner
and Shah have generalized these results [72]. Software based upon these ideas is
provided by the Software Development Group at the National Center for Supercomputing
Application is available at the WWW site:

http://www.ncsa.uiuc.edu/SDG/Brochure/Overview/ALVIS.overview.html.

Extensions of the algorithm of Green & Sibson: There does not seem to be an
apparent method of extending this type of algorithm to 3D. The algorithm is dependent
upon the "contiguity list" and here lies the difficulty to extend to 3D. We included this
algorithm in our selection of 2D algorithms so that this very point could be made. Some
concepts extend easily to 3D and others do not.

Bowyer's Algorithm for 3D: It is a straight forward exercise to extend Bowyer's 2D
algorithm to 3D. In fact, the original paper of Bowyer [21] describes the algorithm for
arbitrary dimensions. Bowyer also mentions that with some care, the algorithm can be
extended to other domains. In [164] there is a brief discussion of Bowyer's algorithm
along with some code.

Watson's Algorithm for 3D: The original description of Watson's algorithm applies
to arbitrary dimension. In the paper [254] results for 2, 3 and 4 dimension are reported.
Information on implementing this algorithms in 3D is given by Field in [86] and [87]. It
is also the basis for the 3D algorithms discussed in [29].

Embedding/Lifting Algorithms for 3D: Software for computing general dimension
convex hulls and Delaunay tetrahedrizations based on the relationship mentioned earlier
in Section 2.2 are provided by the Geometry Center, University of Minnesota at the
WWW site: http://freeabel.geom.umn.edu/software/download/qhull.html.

64

3.3 Visibility Sorting of Tetrahedra

We first give a motivation for the definition and the need of a visibility sort. We use

the example of volume rendering which is a means of graphing (visualizing) a density
function (cloud) d(x,y,z) defined over a 3D domain (which is often a cube). A view point
V is selected along with a projection plane. A rectangular portion of the projection plane
is subdivided into a rectangular array of subrectangles which associate directly with the
pixels of an image to be generated. The RGB value for each pixel is defined by

 F(i,j) =
⌡

⌠

0

D

δ(s)C(s) e
-⌡⌠

s

D
δ(u)du

ds + F0e

-⌡⌠
0

D
δ(u)du

 (3.3.1)

where the integral is taken along the ray emanating from the viewpoint and passing
through the center of the subrectangle associated with the pixel at location (i,j), F0 is the
background intensity and D is a distance along the ray sufficiently large so that the ray
completely passes through the domain of interest. The function C, also defined over the
same domain as δ, is called the color function and governs the color of light emanating
(by reflection say) from a point within the density cloud. In actual application the
integrals are approximated by numerical schemes based upon sampled values of the
integrand. The sample values are often obtained by some simple interpolation into the
cells covering the domain. And these cells are often a result of the positions where δ has
been measured. If we let 0 = x0 < x1 < x2 < • • • < xn-1 < xn=D be the distances from the
viewpoint to each sampled value along the ray then the upper Riemann sum
approximation to this integral is

 Fn= ∑
i=o

n

∆xiδ(xi)Ci ∏
j=i+1

n
tj , (3.3.2)

where Ci = C(xi), tj = e
-∆xiδ(xi)
 and ∆xi = xi - xi-1 . This discrete approximation can be

computed by the compositing process

 Fi = tiFi-1 + Ii , (3.3.3)

where Ii = ∆xiδ(xi)Ci.

Another way to view this compositing process is as a simple model of transparency
where an object of thickness ∆xi attenuates the incoming light intensity Fi-1 by the factor
ti and this object emits light of intensity Ii. Algorithms which accumulate these values

65

into a frame buffer (with each location holding the value for a pixel) can either be image
space oriented or object space oriented. Image space algorithms proceed along the lines
of our development here and accumulate all contributions for a pixel along a particular
ray. Object space algorithms compute exactly the same values but the calculations are
done in a different order. These algorithms sequential process each cell by accumulating
into the proper location of the frame buffer all contributions of a particular cell. Due to
the nature of the compositing process, it is mandatory that these accumulations be done
in the proper order. It is this latter approach which motivates the definition and need for
visibility sorting in this context.

Definition of Visibility Order: Let T and T' be tetrahedra of a tetrahedrization and
let V be the enter of perspective projection. If there is a ray emanating from V which
intersects T' before T, then T is said to precede T' and we write T < T'.

The purpose of a visibility sort is find a linear ordering of all of the tetrahedra of a
tetrahedrization so that the ordering relation is never violated.

Definition of Visibility Ordering: A visibility ordering of a tetrahedrization is a
sequence, n1, n2, . . . , nT which has the property that whenever Tni < Tnj then i < j.

The implication of the definition of visibility ordering for splatting or object space
traversal algorithms for volume rendering is that a tetrahedron T must be processed
(sampled and composited into the frame buffer) before T' whenever T < T'.

A couple of items should be noted at this point. The relation of visibility order is in
the strict mathematical sense not a partial ordering. A partial ordering is required to be i)
transitive: x < y, y < z implies x< z; ii) antisymmetric: x < y and y < x implies x = y; and
iii) reflexive: x < x. It is entirely possible that a visibility order could not exist at all due
the presence of cycles as shown in Figure 3.3.1.

Figure 3.3.1. An example of three tetrahedra that can not be visibility ordered.

Knuth [136] has discussed in some detail (including MIX programs) the topological
sort algorithm as a means of "embedding a partial order in a linear order." A linear
ordering is a partial ordering where either x < y or y < x for all x, y. Even though this
does not strictly apply in the context of a general tetrahedrization, the basic ideas (mainly
due to the manner in which it is described) are very useful for developing visibility

66

sorting algorithms for specific applications and so we include a description of the
topological sort algorithm here.

Topological Sort Algorithm: The topological sort algorithm as described by Knuth
[136] starts with a directed, acyclic graph (DAG). The DAG can be represented with a
diagram using nodes and arrows. See Figure 3.3.2. The nodes represent the elements of
the set to be ordered and an arrow from node x to node y represents the relation of the
partial ordering, x < y. The algorithm is simple. Any node that has no incoming arrow is
removed from the DAG (with all of it attached arrows) and placed in the linear ordering.
This process is repeated until the DAG is empty. It is easy to prove (left to the reader)
that if the DAG represents a partial ordering, a linear ordering will always be produced
by this algorithm.

7

1
2

3

4 5

6

4

1 2

35

6 7

4 123 567

DAG

Linear

Ordering

Figure 3.3.2. An example of the topological sort algorithm.

Max [166] has discussed the application of the ideas of the topological sort algorithm
to the problem of producing a visibility sort for a cellular decomposition of a domain.
Max defines the order relation in the following way. The DAG contains an arrow for
each face common to two cells x and y. The arrow is directed from x to y if the
viewpoint is on the same side of the face as x meaning that y must be process before x.
Max mentions that the topological sorting algorithm will be successful "if every ray
through the data volume intersects it in a single sequence of adjacent cells." Of course, if
the cell complex contains cycles (see Figure 3.3.1), then a visibility sort is not possible.
Williams [257] discusses similar algorithms applied to a very general cellular
decomposition which may contain empty cavities.

We conclude this section with some rather interesting properties about the special
case of the Delaunay tetrahedrization of the convex hull of a collection of 3D points. The
power of a tetrahedra is defined as D2 - R2 where D is the distance to the viewpoint from
the center of the circumsphere of the tetrahedron and R is the radius of the
circumscribing sphere. A visibility sort can be accomplished by a simple sort based upon

67

the power. This property is covered [69] and used by Max, Hanrahan, and Crawfis [167].
We caution the reader that this approach breaks down in the presence of neutral cases
where possibly several tetrahedra have the same power (as in the case of decomposing
the cube). One additional; interesting observation in this context is that a sort based upon
the power of the tetrahedra does not require the neighborhood information as is required
for the algorithms using the ideas of topological sorting. Another method which does not
use adjacency information is described by Stein, Becker and Max [240].

D
R

Figure 3.3.3. Elements of the definition of the power of a tetrahedron.

3.4 Data Dependent Tetrahedrizations

Lee [148] has investigated the topic of data dependent tetrahedrizations. This work
generalizes from 2D to 3D the ideas and techniques of [67] and [225]. Similar to the
algorithms of [225], simulated annealing is used. The initial tetrahedrization is the
Delaunay tetrahedrization of the convex hull of the independent data site locations.
Local swapping of tetrahedra is performed based upon random values compared to an
annealing schedule and a cost function. This "randomness" of the simulated annealing
approach allows the algorithm to escape local extrema of the cost function. Local
swapping for 2D simply involves the choice of one or the other of the diagonals of a
quadrilateral. In 3D the situation is more complex. There are four cases which are
shown in Figure 3.2.2 which are the same as those used in the 3D version of Lawson's
algorithm. In the first case, three triangles are swapped for two. The second case is the
reverse of the first case and two tetrahedra are replaced by three tetrahedra. The third
case is where two triangles are on the boundary of the convex hull and the two tetrahedra
can be swapped for two other tetrahedra. In the last case four tetrahedra are swapped for
four other tetrahedra.

In Section 2.4, we described the cost function used by Dyn, Levin & Rippa [67].
Analogous to these cost functions for 2D, Lee [148] uses the following criterion for 3D:

Gradient Difference: Let T1 and T2 be two tetrahedra with a common triangular face.
Let G1 be the gradient of the linear function which interpolates the data at the four
vertices of T1 and let G2 be the similar gradient for the linear interpolant of T2. The
gradient difference is defined as ||G1 - G2||.

Jump in Normal Direction Derivatives: Let L1(x,y,z) = a1x + b1y + c1z + d1 be the
linear function which interpolates to the data at the four vertices of T1 and let L2(x,y,z) =

68

a2x + b2y + c2z + d2 be the similar function for T2. Let N = (nx, ny, nz) be the normal
(normalized) of the common triangular face of T1 and T2. The D1 = a1nx + b1ny + c1nz
is the directional derivative of L1 in the direction of N. D2 = a2nx + b2ny + c2nz is the
analogous value for T2. The jump in normal direction criterion is |D1 - D2| = |(a1-a2)nx +
(b1-b2)ny + (c1-c2)nz)|.

Some example results reported by Lee [148] are repeated here in Figure 3.4.1. This
example involves a test function, F(x,y) = (Tanh(9y-9x-9z) + 1)/9, which provides the
dependent data. The piecewise linear interpolant over the tetrahedrization is compared to
the test function. The RMS errors based upon evaluations of the functions and this
approximation over a 20×20×20 Cartesian grid. The dependent data sit locations are
taken to be 1000 random points in the unit cube.

Method RMS Error
Delaunay .007475

.005445
.004361

Difference in Gradient
Jump in Normal Derivative

Figure 3.4.1. Errors for the piecewise linear interpolant using different tetrahedrizations.

In Figure 3.4.2 are shown some graphs which can be considered as 3D analogs of the
graphs shown in Figure 2.4.2 of Section 2.4. Similar to the 2D case the data dependent
tetrahedrization involves some badly shaped tetrahedra. This is the cost of having an
optimal (or nearly optimal) piecewise linear approximation.

69

Figure 3.4.2. Data dependent tetrahedrization compared to the Delaunay tetrahedrization.

70

3.5 Affine Invariant Tetrahedrizations

In this section we extend the results of Section 2.5 on affine invariant triangulations
to that of affine invariant tetrahedrizations. Prior to discussing the characterization and
computation of this type of tetrahedrization, we make some comments about the need for
such a tetrahedrization over and above those reasons for the 2D case. It appears that as
the dimension of the independent data increases, our need to be concerned about lack of
affine invariance also increases.

One source of 3D independent data is the case of time varying 2D data. In some

cases the data measurement locations might stay fixed over time and some cases they
may vary over time. For example, if we have a vector field which is known (say by
means of a numerical simulation) at the locations of a 2D curvilinear grid (xij, yij), i = 1, .
. . , Nx; j = 1, . . . , Ny. As time proceeds, the vector field varies, but the dependent data
site locations stay fixed. So in this case, we have data which can be represented as (Vijk;
xij, yij, tk), i = 1, . . . , Nx , j = 1, . . . , Ny, k = 1, . . . , Nt. If the definition of a modeling
function F(x, y,t), designed to interpolate the data, F(xij, yij, tk) = Fijk, is based upon a
tetrahedrization of the 3D independent data (xij, yij, tk), then this model will not
necessarily be affine invariant and the units used to measure and represent the physical
coordinates and time could have an affect on the modeling function F(x, y, t) and
subsequently an affect on the visualization and analysis. The same problem could also
occur for time varying vector field over a curvilinear grid which also varies over time.
That is, data of the type (Fijk; xijk, yijk, tk), i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nt.
In general, any tetrahedrization of the independent data of (Fijk, xi, yj, zk) where the
choice of the units of measurement used for the independent data could lead to a non-
uniform scaling could have the problem of being dependent on the choice of the units
used. If each of the variables use the same units then there will be no problems of this
type because a scale transformation of the form x ← ax, y ← ay, z ← az where the scale
change is uniform for each variable will not affect the tetrahedrization. It is only the non-
uniform scaling x ← ax, y ← by, z ← cz which creates the problem. An example of a
scale change affecting the tetrahedrization is shown in Figure 3.5.1. Here there are 10
data points. In the right image, the data has been scaled in the y-variable by a factor of 2.
Not only does the tetrahedrization change, but even the number of tetrahedra changes.
The Delaunay tetrahedrization of the original 10 data points has eighteen tetrahedra and
the scaled data has thirteen tetrahedra.

71

Figure 3.5.1 Delaunay tetrahedrization of 10 data points and a scaled version of the same

data points.

72

We now describe the 3D version of the affine invariant norm which leads (by way of
the Dirichlet tessellation) to an affine invariant tetrahedrization. Actually, we can define
it so that it is clear what the generalization is for any dimension. Let

() ()()

=

−

z
y
x

VVzyxzyx
V

1*2 ,,,,

where V is the 3×N matrix of translated data values

−−−
−−−
−−−

=

zNzz

yNyy

xNxx

zzz
yyy
xxx

V
µµµ
µµµ
µµµ

L

L

L

21

21

21

As with the 2D case, there are some different approaches to modifying an existing
tetrahedrization procedures. Probably the simplist is to preprocess the data with the
transformation given by the lower triangular matrix, L(V) which results form the
Cholesky decomposition of (VV*)-1

L(V) L(V)* = (VV*)-1 .

Explicitly in the 3D case, we use the transformed data

 Xi = l11xi + l21yi + l31zi

 Yi = l22yi + l32zi

 Zi = l33zi

where

 l11 = a11 , l21 =
a11
l11

 , l31 =
a13
l11

 l22 = a22-(l21)2 , l32 =
a33-l21l31

l22
 ,

 l33 = a33-(l31)2-(l32)2

 A = (aij) = (VV*)-1 = L(V)L(V)*

73

()
() ()

()

−−−−

−−−−−

−−−−

=

∑ ∑∑∑ ∑ ∑ ∑∑ ∑ ∑ ∑
∑ ∑ ∑ ∑∑ ∑∑∑ ∑ ∑ ∑

∑ ∑ ∑ ∑∑ ∑ ∑ ∑∑ ∑∑

2 2222

22 222

222 22

det
1

x xyyyz x xz xyxy yz xz y

yz x xz xyx xzzxy z xz yz

xy yz xz yxy z xz yzy yzz

where

 Σ
2
x =

∑
i=1

N
(xi - µx)2

N , µx =

∑
i=1

N
xi

N ,

 Σ
2
y =

∑
i=1

N
(yi - µy)2

N , µy =

∑
i=1

N
yi

N

 Σ
2
z =

∑
i=1

N
(zi - µz)2

N , µz =

∑
i=1

N
zi

N

 Σ

xy =

∑
i=1

N
(xi - µx)(yi - µy)

N ,

 Σ

yz =

∑
i=1

N
(yi - µy)(zi - µz)

N

 Σ

xz =

∑
i=1

N
(xi - µx)(zi - µz)

N ,

and

 det = Σ2

x Σ
2
y Σ

2
z + 2(Σ

xy Σ

yz Σ

xz) - Σ2

x(Σ
yz) 2 - Σ2

y(Σ
xz) 2 Σ2

z(Σ
xy) 2 .

We conclude this section with some examples illustrating this affine invariant norm

and its use in characterizing affine invariant tetrahedrizations. In Figure 3.5.2 there are
shown four graphs of 13 data points. The transparent ellipsoids represent all the points
that are 0.25, 0.50 and 1.0 units from the center point using the affine invariant norm.
The different graphs show the data after it has undergone an affine transformation. The
original data is displayed in the upper left. The upper right show the data after it has
been rotated by 44 degrees about the z-axis. The lower right is after it has subsequently
been scaled in the x-variable by a factor of 1.5. The lower left is after it has been scaled
in y by a factor of 0.6. A close examination of these graphs will show that the relative

74

distances (as measured by the affine invariant norm) between points is unchanged by this
transformations. In Figure 3.5.3 an affine invariant tetrahedrization is shown. In
comparison the conventional Delaunay tetrahedrization is shown in Figure 3.5.4.

y ← .6y

orig in al
 data

rotate 44

x ← 1.5x

Figure 3.5.2. Examples illustrating the affine invariant norm. The ellipsoids are 0.25,
0.50 and 1.0 units from the center point.

75

Figure 3.5.3. Examples of affine invariant tetrahedrization.

76

Figure 3.5.4. Delaunay tetrahedrization of the same data as in Figure 3.5.3.

3.6 Interpolation in Tetrahedra

As with the bivariate case covered in Section 2.6, there are two concepts of interest

for interpolation in tetrahedra. The first is concerned with the amount of boundary data
that is proved or assumed to be available. This can be discrete data provided at a finite
number of locations (usually the vertices or midpoints) or transfinite data where
boundary data values are assumed to be available at all locations on the boundary. The

77

second concept relates to the degree of continuity of a piecewise defined interpolant
using the local interpolants described here. C0 interpolants only use boundary position
data and lead to overall interpolants which are continuous. C1 interpolants utilize first
order derivative information and lead to global interpolants which have all first order
derivative continuous. These two concepts lead to four possibilities which comprise the
outline of this section.

Section 3.6.1

Section 3.6.4

Section 3.6.2

Section 3.6.3

TransfiniteDiscrete

C0

C1

Figure 3.6.1. Outline of Section 3.6.

Section 3.6.1 C0, Discrete Interpolation in Tetrahedra

Analogous to the bivariate linear interpolant which will match predescribed values at
the three vertices of a triangle, there is a unique trivariate linear interpolant which will
match data at the four vertices of a tetrahedra, Tijkl. Given F(Vi), F(Vj), F(Vk) and F(Vl)
the coefficients of this linear function

F(x, y, z) = a + bx + cy + dz

which interpolates this data can be found by solving the linear system of equations

 a + bxi + cyi + dzi = F(Vi)

 a + bxj + cyj + dzj = F(Vj)

 a + bxk + cyk + dzk = F(Vk)

 a + bxl + cyl + dzl = F(Vl)

As before, it is also possible to use barycentric coordinates. The barycentric coordinates
of a point V= (x, y, z) are defined by the relationships

 V = biVi + bjVj + bkVk + blVl

 1 = bi + bj + bk + bl

and the linear interpolant has the form

 F(x, y, z) = F(V) = biF(Vi) + bjF(Vj) + bkF(Vk) + blF(Vl) (3.6.1)

78

As before, there are several ways of defining or computing barycentric coordinates. The
analog of the ratios of areas before is the ratio of volumes of subtetrahedra,

bi =
Vol(TVjkl)
Vol(Tijkl) , bj =

Vol(TiVkl)
Vol(Tijkl)

bk =
Vol(TijVl)
Vol(Tijkl) , bl =

Vol(TijkV)
Vol(Tijkl)

where TVjkl is the tetrahedron with vertices V, Vj, Vk, and Vl and similar definitions for
the other subtetrahedra. The volume of a tetrahedron, Tabcd, with vertices a, b, c and d is

 Vol(Tabcd) = 16 [(d-a)•((b-a)×(c-a)))]

Also determinants can be used,

bi =

x-xj x-xk x-xl

y-yj y-yk y-yl
z-zj z-zk z-zl

xi-xj xi-xk xi-xl

yi-yj yi-yk yi-yl
zi-zj zi-zk zi-zl

 , bj =

x-xi x-xk x-xl

y-yi y-yk y-yl
z-zi z-zk z-zl

xj-xi xj-xk xj-xl

yj-yi yj-yk yj-yl
zj-zi zj-zk zj-zl

 ,

bk =

x-xi x-xj x-xl

y-yi y-yj y-yl
z-zi z-zj z-zl

xk-xi xk-xj xk-xl

yk-yi yk-yj yk-yl
zk-zi zk-zj zk-zl

 , bl =

x-xi x-xj x-xk

y-yi y-yj y-yk
z-zi z-zj z-zk

xl-xi xl-xj xl-xk

yl-yi yl-yj yl-yk
zl-zi zl-zj zl-zk

 .

Vi

Vj

Vk

Vl

Mjk

Figure 3.6.2. Data site locations for trivariate quadratic interpolation.

79

Given the values at the four vertices and the six midpoints of a tetrahedron, there is a
unique trivariate quadratic which interpolates this data,

 Q(x, y, z) = F(Vi)bi(bi - bj - bk - bl) + F(Vj)bj(bj - bi - bk - bl)

 + F(Vk)bk(bk - bi - bj - bl) + F(Vl)bl(bl - bi - bj - bk)

 + F(Mik)4bibk + F(Mjl)4bjbl + F(Mij)4bibj

 + F(Mjk)4bjbk + F(Mil)4bibl + F(Mkl)4bkbl (3.6.7)

where Mij = (Vi + Vj)/2 and the other midpoints are defined similarly.

Section 3.6.2 C0, Transfinite Interpolation in Tetrahedra

As before in Section 2.6.2, we give a sampling of interpolants. One is a
generalization of the side-vertex interpolant and the other is a generalization of the C*
interpolant. Both of these bivariate interpolants were discussed previously in Section
2.6.2.

Vi

Vj

Vk

(x, y, z) = V

Vl

F i

Figure 3.6.3. Notation for the Face-Vertex interpolant.

The C0, Face-Vertex Interpolant: Analogous to the basic interpolants used to

construct the side-vertex interpolant, we have the interpolants which consist of linear
interpolation along edges joining a vertex and the opposing face

 Ai[F] = biF(Vi) + (1-bi)F(Fi)

 Aj[F] = bjF(Vj) + (1-bj)F(Fj)

 Ak[F] = bkF(Vk) + (1-bk)F(Fk) (3.6.3)

 Al[F] = blF(Vl) + (1-bl)F(Fl)

80

where Fi =
bjVj+bkVk+blVl

bj+bk+bl
 , Fj =

biVi+bkVk+blVl
bi+bk+bl

 , Fk =
biVi+bjVj+blVl

bi+bj+bl
 and

Fl =
biVi+bjVj+bkVk

bi+bj+bk
 .

Computing the Boolean sum of these four interpolants leads to

 A[F] = (1-bi)F(Fi) + (1-bj)F(Fj) + (1-bk)F(Fk) + (1-bl)F(Fl)

 - (bk+bl)F(Skl) - (bi+bl)F(Sil) - (bj+bl)F(Sjl)

 - (bj+bk)F(Sjk) - (bi+bk)F(Sik) - (bi+bj)F(Sij)

 + biF(Vi) + bjF(Vj) + bkF(Vk) + blF(Vl) (3.6.4)

where Smn =
bmVm+bnVn

bm+bn
 , mn = kl, il, jl, jk, ik, ij

The C* Interpolant (for a tetrahedron): The analog of the bivariate C* interpolant

described in Section 2.6.2 is

 C*[F] = biF(Vi) + bjF(Vj) + bkF(Vk) + blF(Vl)

 + Wl{F(Ql) - (bi+
bl
3)F(Vi) - (bj+

bl
3)F(Vj) - (bk+

bl
3)F(Vk)}

 + Wk{F(Qk) - (bi+
bk
3)F(Vi) - (bj+

bk
3)F(Vj) - (bl+

bk
3)F(Vl)}

 + Wj{F(Qj) - (bi+
bj
3)F(Vi) - (bk+

bj
3)F(Vk) - (bl+

bj
3)F(Vl)}

 + Wi{F(Qi) - (bj+
bi
3)F(Vj) - (bk+

bi
3)F(Vk) - (bl+

bi
3)F(Vl)} (3.6.5)

where Ql = (bi+
bl
3)Vi + (bj+

bl
3)Vj + (bk+

bl
3)Vk ,

Wl =
27bibjbk

(3bi+bl)(3bj+bl)(3bk+bl) and the other Q's and W's are defined in a similar manner.

The NTW Interpolant (for a tetrahedron): The analog of the bivariate NTW

interpolant described in Section 2.6.2 is

[] llkkjjii SbSbSbSbFNTW +++=

where

81

() ()()
()()
()()

()()
()()
()()

()i

illl

ikkk

ijjj

ijljjll

ilkllkk

ikjkkjjlkjii

VF
VbVbF
VbVbF
VbVbF

VbbVbVbF
VbbVbVbF

VbbVbVbFbbbSS

+
−+−
−+−

−+−

−−+++
−−+++

−−++==

1
1
1

1
1
1,,

Section 3.6.3 C1, Transfinite Interpolation in Tetrahedra

The C1, Face-Vertex Interpolant: It is a straightforward process to extend the C1,
transfinite side-vertex interpolant to a tetrahedral domain, Tijkl. It is called the C1, face-
vertex interpolant and we assume that position and derivative information is available at
all locations on the four faces which make up the boundary of the tetrahedron Tijkl. The
basic face-vertex operator is defined as

 Si[F](p) = bi2(3-2bi)F(Vi) + bi2(bi-1)F'(Vi)

 + (1-bi)2(2bi+1)F(Fi) + bi(1-bi)2F'(Fi) (3.6.6)

where F'(Vi) =
(x-xi)Fx(Vi)+(y-yi)Fy(Vi)+(z-zi)Fz(Vi)

1-bi
 and

F'(Fi) =
(x-xi)Fx(Si)+(y-yi)Fy(Si)+(z-zi)Fz(Vi)

1-bi
 . The point Fi is the intersection point of

the ray from Vi through V and the face opposite Vi and the derivatives are taken in the
direction of this same ray. If we form the convex combination

S[F] =
b2

j b2
kb2

l Si[F] + b2
i b2

kb2
l Sj[F] + b2

j b2
l b2

i Sk[F] + b2
j b2

kb2
i Sl[F]

 b2
j b2

kb2
l + b2

i b2
kb2

l + b2
j b2

kb2
i + b2

i b2
j b2

k

then S[F] will match position and derivative values on the entire boundary of Tijkl.

Section 3.6.4 C1, Discrete Interpolation in Tetrahedra

82

Vi

Vj

Vk

Vl

Figure 3.6.4. The data for a 16 parameter, C1, interpolant over a tetrahedron.

For a C1, discrete interpolant, we assume that position and first order derivative

information is given at all four vertices of the tetrahedron Tijkl. Since there are three
(linearly independent) directional derivatives at each vertex, this amounts to a total of
sixteen data values. The method for describing an interpolant that will match these
sixteen pieces of data and which also has the property that all first order derivatives
across a face with common data will be continuous is somewhat different that the
previous interpolants we have described so far. Our description (and subsequent
implementation) is based upon a two step procedural discretization process. We use the
transfinite interpolant of the previous section. In order to apply this transfinite
interpolant, we need to define position and derivative values on the entire boundary of
Tijkl. First we assume that information is known on all the edges of the tetrahedra and we
describe how to extend it to the entire boundary. Secondly, we describe how to provide
this transfinite edge data from only the discrete data at the vertices. If we know both
position and derivative information on the edges, then we can use any C1 transfinite
planar triangular interpolant to define position values on the interior points of the face
triangles. For example, the side-vertex method itself could be used. Specifying position
information on a face also implies some information about the derivatives on the interior
of a triangle. Namely, all directional derivatives in a direction parallel to the face triangle
are determined and so, in order to completely specify all derivatives, we need only
provide a definition for the derivative perpendicular to the face. For this we use the C0
version of the side-vertex interpolant which interpolates position data only and not
derivatives, but we apply it to the edge data consisting of derivatives normal to a face.

We now describe the second step of the discretization which is how to compute edge
information when only the point and derivative values are known at the four vertices.
For position only on an edge, we simply use univariate cubic Hermite interpolation. This

will also specify one directional derivative on the edge; namely
�F

 �eij
 which will vary as a

quadratic polynomial. In order to get a C1 join from one tetrahedron to the next, the
other two directional derivatives must vary linearly along this edge. This is
accomplished by specifying the gradient, ∇F, by the relationship

 ∇Fij(p) = (1-t)∇Fi + t∇Fj

83

 + [
�F
�eij

(p) - ((1-t)∇Fi+t∇Fi, eij)]eij (3.6.8)

where ∇Fi = (Fx(pi), Fy(pi), Fz(pi)) and t =
||p-pi||
 ||pj-pi|| . This interpolation of the gradient is

consistent with the value
�F
�eij

 already specified because (∇Fij(p),eij) =
�F

 �eij
 and it also

has the property that for (n,eij) = 0,

 (∇Fij(p), n) = (1-t)(∇Fi,n) + t(∇Fj,n),

and so we have linear interpolation for any derivative in a direction perpendicular to eij.
This completes the definition of the 16-parameter, C1, tetrahedral interpolant which is
based upon the face-vertex interpolant. Examples and more discussion on this
interpolant can be found in [187]. The Clough-Tocher interpolant has been generalized
to n-dimensional by Worsey and Farin [261]. Other C1, discrete interpolants for a
tetrahedral domain are discussed in [2], [3], and [Worsey and Piper in CAGD, 1988], but
each have some problem or drawback. The method of [2] is based upon the side-side,
transfinite method of interpolation and apparently it has a problem with the linear
independence of the discretized data. The method of [3] requires C2 data for a C1
interpolant and the method of [260] has a problem similar to its bivariate precursor [199]
and [198]. This problem lies in the constraint that the center of the circumcircle of each
triangle must lie interior to the triangular domain.

Acknowledgments

This work was supported by the North Atlantic Treaty Organization under grant RG
0097/88. We wish to thank Herbert Edelsbrunner for the idea of the dual graphs of
Section 3.1 and other insightful discussions about tetrahedrizations. We wish to thank
Kun Lee for his help in generationg the images of Sections 3.4 and 3.5.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear time algorithm for

computing the Voronoi diagram of a convex polygon, Disc. and Comp. Geometry
4, 1989, pp. 591-604.

2. P. Alfeld, A discrete C1 interpolant for tetrahedral data, The Rocky Mountain

Journal of Mathematics, Vol. 14, No. 1, Winter 1984, pp. 5-16.

3. P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data, Computer

Aided Geometric Design, Volume 1, Number 2, 1984, pp. 169-181.

4. T. Asano and R. Pinter, Polygon triangulation: efficiency and minimality, J.

Algorithms, Vol. 7, 1986, pp. 221-231.

84

5. D. Avis, and B. K. Bhattacharya, Algorithms for computing d-dimensional

Voronoi diagrams and their duals, Advance in Computing Research, Vol. 1, pp.
159-180.

6. D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex

enumeration of arrangements and polyhedra, Proceedings 7th Annual ACM
Symposium Computational Geometry, 1991, pp. 98-104.

7. D. Avis and G. T. Toussaint, An efficient algorithm for decomposing a polygon

into star-shaped polygons, Pattern Recogn. Vol. 13, No. 6, 1981, pp. 395-398.

8. F. Aurenhammer, Voronoi diagrams - A survey of a fundamental geometric data

structure, ACM Computing Surveys, Vol. 23, 1991, pp. 345-405

9. I. Babuska, and A. Aziz, On the angle condition in the finite element method,

SIAM J. Numer. Analysis, Vol. 13, 1976, pp. 214-227.

10. P. I. Baegmann, M. S. Shepard, and J. E. Flaherty, A posterori error estimation for

triangular and tetrahedral quadratic elements using interior residuals, Internat. J.
Numer. Meth. Eng., Vol. 34, 1992, pp. 979-996.

11. F. Bagemihl, On indecomposable polyhedra, American Mathematical Monthly,

September 1948, pp. 411-413.

12. T. J. Baker, Automatic mesh generation for complex three-dimensional regions

using a constrained Delaunay triangulation, Eng. with Computers, Vol. 5, 1989,
pp. 161-175.

13. B. S. Baker, E. Grosse, and C. S. Rafferty, Nonobtuse triangulation of polygons,

Disc. and Comp. Geom., Vol. 3, 1988, pp. 147-168.

14. G. Baszenski and L. L. Schumaker, Use of simulated annealing to construct

triangular facet surfaces, in: Curves and Surfaces, P.-J. Laurent, A. Le Mehaute
and L. L. Schumaker (eds.), Academic Press, Boston, 1991, pp. 27-32.

15. M. Bern and D. Eppstein, Polynomial-size nonobtuse triangulation of polygons,

Proc. 7th ACM Symp. Comp. Geometry, 1991, pp. 342-350.

16. M. Bern, and D. Eppstein, Mesh generation and optimal triangulation. In F. K.

Hwang and D.-Z. Du, Editors, Computing in Euclidean Geometry, pp. 23-90.
World Scientific, Singapore, 1992.

17. M. Bern, D. Dobkin, and D. Eppstein, Triangulating polygons with large angles,

Proc. 8th ACM Sym. Comp. Geometry, 1992.

18. M. Bern, D. Eppstein, and F. Yao, The expected extremes in a Delaunay

triangulation, Int. J. Comp. Geometry and Applications, Vol. 1, 1991, pp. 79-92.

85

19. J. Bloomenthal, Polygonization of implicit surfaces, CAGD, Vol. 5, 1988, pp. 341-

355.

20. C. Borgers, Generalized Delaunay triangulations of nonconvex domains,

Computers & Mathematics with Applications, Vol. 20, No. 7, 1990, pp. 45-49.

21. A. Bowyer, Computing Dirichlet tessellations, Computer J., Vol. 24, 1981, pp.

162-166.

22. C. Bradford, D. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull

algorithm for convex hull, Tech. Rep. GCG53-93, Geometry Center, University
of Minnesota, July 1993.

23. J. Bramble and M. Zlamal, Triangular elements in the finite element method,

Math. Comp., Vol. 24, 1970, pp. 809-820.

24. K. E. Brassel and D. Reif, A procedure to generate Thiessen polygons, Geograph.

Anal., Vol. 11, 1979, pp. 289-303.

25. W. Brostow, J. P. Dussault, and B. L. Fox, Construction of Voronoi polyhedra, J.

Comp. Physics, Vol. 29, 1978, pp. 81-92.

26. J. L. Brown, Vertex based data dependent triangulations, Computer Aided

Geometric Design, Vol. 8, 1991, pp. 239-251.

27. K. Q. Brown, Voronoi diagrams from convex hulls, Inform. Process. Lett., Vol. 9,

1979, pp. 223-228.

28. J. C.. Cavendish, Automatic triangulation of arbitrary planar domains for the

finite element method, Int. J. for Numer. Methods in Engr., Vol. 8, 1974, pp. 679-
696.

29. J. C. Cavendish, D. A. Field, and W. H. Frey, An approach to automatic three-

dimensional finite element mesh generation, Int. J. Numer. Meth. Eng., Vol. 21,
1985, pp. 329-347.

30. M. S. Chang, N.-F. Huang, and C. Y. Tang, Optimal algorithm for constructing

oriented Voronoi diagrams and geographic neighborhood graphs, Information
Processing Letters, Vol. 35, No. 5, August 1990, pp. 255-260.

31. R. C. Chang and R. C. T. Lee, On the average length of Delaunay triangulations,

BIT, Vol. 24, 1984, pp. 269-273.

32. S. Chattopodhyay and P. P. Das, Counting thin and bushy triangulations, Pattern

Recognition Letters, Vol. 12, No. 3, 1991, pp. 139-144.

86

33. B. Chazelle, Convex partitions of polyhedra: a lower bound and worst-case
optimal algorithm, SIAM J. Comput., Vol. 13, 1984, pp. 488-507.

34. B. Chazelle, Triangulating a simple polygon in linear time, Disc. and Comp.

Geometry, Vol. 6, 1991, pp. 485-524.

35. B. Chazelle and D. Dobkin, Decomposing a polygon into its convex parts, in:

ACM Proceedings of the 11th Symposium on Theory of Computing, 1979, pp.
38-48.

36. B. Chazelle, H. Edelsbrunner, L. J. Guibas, J. E. Hershberger, R. Reidel, and M.

Sharir, Selecting multiply covered points and reducing the size of Delaunay
triangulations, In Proc. 6th ACM Symp. Comp. Geometry, 1990, pp. 116-127.

37. B. Chazell and J. Incerpi, Triangulating a polygon by divide and conquer,

Proceedings of the 21st Allerton Conference on Communications, Control and
Computing, 1983, pp. 447-456.

38. B. Chazelle and J. Incerpi, Triangulation and shape complexity, ACM Trans on

Graphics, Vol. 3, 1984, pp. 135-152.

39. B. Chazelle and L. Palios, Triangulating a nonconvex polytope, Disc. and Comp.

Geometry, Vol. 5, 1990, pp. 505-526.

40. L. P. Chew, Constrained Delaunay triangulations, Algorithmica, Vol. 4, 1989, pp.

97-108.

41. B. K. Choi, H. Y. Shin, Y. I. Yoon, and J. W. Lee, Triangulation of scattered data

in 3D space, CAD, Vol. 20, 1988, pp. 239-248.

42. K. L. Clarkson, R. E. Tarjan, and C. J. Van Wyk, A fast Las Vegas algorithm for

triangulating a simple polygon, Discrete and Computational Geometry, Vol. 4,
1989, pp. 423-432.

43. A. K. Cline and R. J. Renka, A constrained two-dimensional triangulation and the

solution of closest node problems in the presence of barriers, SIAM Journal on
Numerical Analysis, Vol. 27, No. 5, 1990, pp. 1305-1321.

44. A. K. Cline and R. L. Renka, A storage-efficient method for construction of a

Thiessen triangulation, Rocky Mountain Journal of Mathematics, Vol. 14, No. 1,
Winter 1984, pp. 119-140.

45. H. E. Cline, W. E. Lorensen, S. Ludke, C. R. Crawford, and B. C. Teeter, Two

algorithms for the reconstruction of surfaces from tomograms, Medical Physics,
June 1988.

46. Y. Correc and E. Chapuis, Fast computation of Delaunay triangulations, Advances

in Engineering Software, Vol. 9, No. 2, 1987, pp. 77-83.

87

47. H. S. M. Coxeter, Discrete groups generated by reflections, Ann. Math. Vol. 35,

1934, pp. 588-621.

48. J. R. Davy and P. M. Dew, A note on improving the performance of Delaunay

triangulation. in: New Advances in Computer Graphics: Proceedings of Computer
Graphics International 89, R. A. Earnshaw and B. Wyvill (eds.), Springer, Tokyo,
1989, pp. 209-226.

49. A. M. Day, The implementation of an algorithm to find the convex hull of a set of

three-dimensional points, ACM Transactions on Graphics, Vol. 9, No. 1, January
1990, pp. 105-132.

50. L. De Floriani, A pyramidal data structure for triangle-based surface

representation, IEEE Computer Graphics and Applications, Vol. 9, March 1989,
pp. 67-78.

51. L. De Floriani, B. Falcidieno, and C. Pienovi, Delaunay-based representation of

surfaces defined over arbitrarily shaped domains, Computer Vision, Graphics, and
Image Processing, Vol. 32, 1985, pp. 127-140.

52. L. De Floriani and E. Puppo, An on-line algorithms for constrained Delaunay

triangulation, CVGIP: Graphical Models and Image Processing, Vol. 54, No. 3,
1992, pp. 290-300.

53. L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi, On sorting triangles in a

Delaunay tessellation, Algorithmica, Vol. 6, 1991, pp. 522-532.

54. B. Delaunay, Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie

Matematicheskii i Estestvennyka Nauk 7, (Bull. Acad. Sci. U.S.S.R.(VII), Classe
Sci. Mat. Nat), 1934, pp. 793-800.

55. P. A. Devijver and M. Dekesel, Insert and delete algorithms for maintaining

dynamic Delaunay triangulations, Pattern Recogn. Lett., Vol. 1, 1982, pp. 73-77.

56. T. Dey, Triangulation and CSG representation of polyhedra with arbitrary genus.

In Proc. 7th ACM Symp. Comp. Geometry, 1991, pp. 793-800.

57. T. Dey, K. Sugihara and C. L. Bajaj, Delaunay triangulations in three dimensions

with finite precision arithmetic, Computer Aided Geometric Design, Volume 9,
Number 6, pp. 457-470.

58. M. B. Dillencourt, Realizability of Delaunay triangulations, Information

Processing Letters, Vol. 33, No. 6, 1990, pp. 283-287.

59. G. L. Dirichlet, Über die reduktion der positiven quadratischen formen mit drei

unbestimmten ganzen zahlen, J. Reine u. Angew. Math., Vol. 40, 1850, pp. 209-
227.

88

60. H. Djidjev and A. Lingas, On computing the Voronoi diagram for restricted planar

figures, Proc. 2nd Workshop Algorithms Data Struct. Volume 519 of Lecture
Notes in Computer Science, Springer, 1991, pp. 54-64.

61. D. P. Dobkin, Computational geometry and computer graphics, Proc. IEEE, Vol.

80, No. 9, September 1992, pp. 1400-1411.

62. D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of three-

dimensional subdivisions, Algorithmica, Vol. 4, 1989, pp. 3-32.

63. D. Dobkin, S. Friedman, and K. Supowit, Delaunay graphs are almost as good as

complete graphs, Disc. and Comp. Geometry, Vol. 5, 1990, pp. 389-423.

64. D. Dobkin, S. Levy, W. Thurston, and A. Wilks, Contour tracing by piecewise

linear approximations, ACM Trans. on Graphics, Vol. 9, 1990, 389-423.

65. R. A. Dwyer, A faster divide and conquer algorithm for construction Delaunay

triangulation, Algorithmica, Vol. 2, 1987, pp. 137-151.

66. N. Dyn and I. Goren, Transforming triangulations in polygon domains, Computer

Aided Geometric Design, Volume 10, Number 6, December 1993, pp. 531-536.

67. N. Dyn, D. Levin, and S. Rippa, Data dependent triangulations for piecewise linear

interpolation, IMA Journal of Numerical Analysis, Vol. 10, 1990, pp. 137-154.

68. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer Verlag, 1987.

69. H. Edelsbrunner, An acyclicity theorem for cell complexes in d dimensions,

Combinotorica, Vol. 18, 1990, pp. 251-260. Also: Proceedings of the 5th Annual
ACM Symposium on Computation Geometry, 1989, pp. 145-151.

70. H. Edelsbrunner and E. P. Mücke, Simulation of simplicity, a technique to cope

with the degenerate cases in geometric computations, ACM Trans. Graphics, Vol.
9, 1990, pp. 66-104.

71. H. Edelsbrunner and E. P. Mücke, Three dimensional alpha shapes, ACM

Transactions on Graphics, Vol. 13, 1994, pp. 43-72.

72. H. Edelsbrunner and N. R. Shah, Incremental topological flipping works for

regular triangulations, in: Proceedings of the 8th Annual ACM Symposium on
Computational Geometry, pages 43-52, June 1992.

73. H. Edelsbrunner and T. S. Tan, A quadratic time algorithm for the minmax length

triangulation, in: Proc. 32nd IEEE Symp. foundations of Comp. Science, 1991, pp.
414-423.

89

74. H. Edelsbrunner and T. S. Tan, A cubic bound for conform Delaunay
triangulations, In Proc. 8th Symp Comp. Geometry, 1992.

75. H Edelsbrunner, T. S. Tan, and R. Waupotitsch, A polynomial time algorithm for

the minmax angle triangulation, In Proc. 5th Symp Comp. Geometry, 1990.

76. H. Edelsbrunner, T. S. Tan, and R. Waupotitsch, O(N2 log N) time algorithm for

the minmax angle triangulation, SIAM Journal on Scientific and Statistical
Computing, Vol. 13, No. 4, July 1992, pp. 994-1008.

77. H. Edelsbrunner, F. P. Preparata, and D. B. West, Tetrahedrizing point sets in

three dimensions, J. Symbolic Comp., Vol. 10, 1990, pp. 335-347.

78. M. Elbaz and J.-C. Spehner, Construction of Voronoi diagrams in the plane by

using maps, Theoretical Computer Science, Vol. 77, No. 3, 1990, pp. 331-343.

79. H. ElGindy and G. T. Toussaint, On geodesic properties of polygons relevant to

linear time triangulation, Visual Computer, Vol. 5, No. 1, 1989, pp. 68-74.

80. D. Eppstein, The farthest point Delaunay triangulation minimizes angles, Comput.

Geom. Theory Appl., Vol. 1, 1992, pp. 143-148.

81. D. Eppstein, Approximating the minimum weight triangulation, In Proc. 3rd

ACM-SIAM Symp. Disc. Algorithms, 1992.

82. G. Erlebacher and P. R. Eiseman, Adaptive triangular mesh generation, AIAA

Journal, Vol. 25, 1987, pp. 1356-1364.

83. T. P. Fang and L. A. Piegl, Delaunay triangulation using a uniform grid, IEEE

Computer Graphics and Application, Vol. 13, No. 3, pp. 36-47, May 1993.

84. G. Farin, A modified Clough-Tocher Interpolant, Computer Aided Geometric

Design, Volume 2, Numbers 1-3, pp. 19-27.

85. G. Fekete, Rendering and managing spherical data with sphere quadtrees,

Proceedings of Visualization '90, IEEE Computer Society Press, 1990, pp. 176-
186.

86. D. Field, Implementing Watson's algorithm in three dimension. In Pro. 2nd ACM

Symp. Comp. Geometry, 1986, pp. 246-259.

87. D. Field, A generic Delaunay triangulation algorithm for finite element meshing,

Adv. Eng. Software, Vol. 13, 1991, pp. 263-272.

88. D. Field, Laplacian smoothing and Delaunay triangulations, Comm. in Applied

Numer. Analysis, Vol. 4, 1988, pp. 709-712.

90

89. D. Field and W. D. Smith, Graded tetrahedral finite element meshes, Int. J.
Numer. Meth. Eng. Vol. 31, pp. 1991, pp. 413-425.

90. R. Forrest, Computational Geometry, Proc. Royal Society London, Vol. 321,

Series 4, 1971, pp. 187-195.

91. S. Fortune, Numerical stability of algorithms for 2-d Delaunay triangulations and

Voronoi diagrams, Proc. 8th Annual. ACM Symposium. Comput. Geom., 1992,
pp. 83-92.

92. S. Fortune, Voronoi diagrams and Delaunay triangulations. In F. K. Hwang and

D.-Z. Du (eds.), Computing in Euclidean Geometry, pp. 193-233. World
Scientific, Singapore, 1992.

93. S. Fortune, Sweepline algorithm for Voronoi diagrams, Algorithmica, Vol. 2, No.

2, 1987, pp. 153-174.

94. A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent

problems, ACM Transaction on Graphics, Vol. 3, No. 2, April 1984, pp. 153-174.

95. R. J. Fowler and J. J. Little, Automatic extraction of irregular network digital

terrain models, Computer Graphics, Vol. 13, No. 2, August 1979, pp. 199-207.

96. R. Franke, Scattered data interpolation: Tests of some methods, Math. Comp.,

Vol. 38, 1982, pp. 181-200.

97. R. Franke and G. Nielson, Surface construction based upon triangulations, in

Surfaces in Computer Aided Geometric Design, Springer, 1983, pp. 163-179.

98. R. Franke and G. Nielson, Scattered Data Interpolation and Applications: A

Tutorial and Survey, in: Geometric Modelling: Methods and Their Application, H.
Hagen and D. Roller (eds.), Springer, 1990.

99. H. Freudenthal, Simplizialzerlegungen von beschränkter Flachheit, Ann. Math.

Vol. 43, 1942, pp. 580-582.

100. W. H. Frey and D. A. Field, Mesh relaxation: a new technique for improving

meshes, Int. J. Numer. Neth. Eng. Vol. 31, 1991, pp. 1121-1133.

101. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a

simple polygon, Inform. Process. Lett., Vol. 7, 1978, pp. 175-179.

102. P. L. George and F. Hermeline, Delaunay's mesh of a convex polyhedron in

dimension d. Application to arbitrary polyhedra, International Journal for
Numerical Methods in Engineering, Vol. 33, No. 5, April 1992, pp. 975-995.

91

103. J. Gleue, Triangulierung und Interpolation von im R2 unregelmäßig verteilten
Daten, HMI B 357, 1981.

104. M. T. Goodrich, Efficient piecewise-linear function approximation using the

uniform metric, Proc. 10th Annu. ACM Sympos. Comput. Geom., 1994, pp. 322-
331.

105. S. Goldman, A space efficient greedy triangulation algorithm, Information

Processing Letters, Vol. 31, No. 4, 1989, pp. 191-196.

106. T. Gonzalez and M. Razzazi, Properties and algorithms for constrained Delaunay

triangulations, Proc. 3rd Canad. Conf. Comput. Geom., 1991, pp. 114-117.

107. P. J. Green and R. Sibson, Computing Dirichlet tessellations in the plane, The

Computer Journal, Vol. 21, 1978, pp. 168-173.

108. P. J. Green and B. W. Silverman, Constructing the convex hull of a set of points

in the plane, The Computer Journal, Vol. 22, No. 3, 1979, pp. 262.

109. J. A. Gregory, Error bounds for linear interpolation on triangles, in: The

Mathematics of Finite Elements and Application II, J. R. Whiteman, ed.,
Academic Press, London, 1975, pp. 163-170.

110. J. A. Gregory, A blending function interpolant for triangles, in D. G. Handscomb.

ed., Multivariate Approximation, Academic Press, London.

111. J. A. Gregory, Interpolation to boundary data on the simplex, Computer Aided

Geometric Design, Volume 2, Numbers 1-3, pp. 43-52.

112. J. A. Gregory, Error bounds for linear interpolation on triangles, in: The

Mathematics of Finite Elements and Applications II, J. Whiteman (ed.), Academic
Press, London, 1975, pp. 163-170.

113. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions

and the computation of Voronoi diagrams, ACM Trans. Graphics, Vol. 4, 1985,
pp. 74-123.

114. L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental construction

of Delaunay and Voronoi diagrams, in: Automata, Languages and Programming,
LNCS N.443, pages 414-431, Springer-Verlag, 1990.

115. A. J. Hansen and P. L. Levin, On conforming Delaunay mesh generation, Adv.

Engineering Software, Vol. 14, No. 2, 1992, pp. 129-135.

116. D. Hansford, The neutral case for the min-max triangulation, CAGD, Vol. 7,

1990, pp. 431-438.

92

117. F. Hermeline, Triangulation automatique d'un polyedre in dimension n, RAIRO
Anal. Numer., Vol. 76, 1982, pp. 211-242.

118. C. Hazelwood, Approximating constrained tetrahedrizations, Computer Aided

Geometric Design, Volume 10, Number 1, pp. 67-87.

119. S. Hertel and K. Mehlhorn, Fast triangulation of simple polygons, 4th Conf.

Foundations of Computation Theory, Springer LNCS 158, 1983, pp. 207-218.

120. H. Jin and R. I. Tannel, Generation of unstructured tetrahedral meshes by

advancing front technique, Internat. J. Numer. Meth. Eng. Vol. 36, 1993, pp. 1805-
1823.

121. B. Joe, Three-dimensional triangulations from local transformations, SIAM

Journal Sci. Stat. Comput., Volume 10, pp. 718-741, 1989.

122. B. Joe, Construction of three dimensional Delaunay triangulations using local

transformations, Computer Aided Geometric Design, Volume 8, Number 2, pp.
123-142, 1991

123. B. Joe and C. A. Wang, Duality of constrained Voronoi diagrams and Delaunay

triangulations, Algorithmica, Vol. 9, No. 2, 1993, pp. 149-155.

124. D.-M. Jung, An optimal algorithm for constrained Delaunay triangulation,

Proceedings Twenty-Sixth Annual Allerton Conference on Communication,
Control and Computing, Urbana, Il, 1988, pp. 85-86.

125. Y. H. Jung and K. Lee, Tetrahedron-based octree encoding for automatic mesh

generation, Computer Aided Design, Vol. 25, 1993, pp. 141-153.

126. T. C. Kao and D. M. Mount, An algorithm for computing compacted Voronoi

diagrams defined by convex distance functions, Proc. 3rd Canad. Conf. Comput.
Geom., 1991, pp. 104-109.

127. T. C. Kao and D. M. Mount, Incremental construction and dynamic maintenance

of constrained Delaunay triangulations, Proc. 4th Canad. Conf. Comput. Geom.,
1992, pp. 170-175.

128. M. D. Karasick, D. Lieber, and L. R. Nackman, Efficient Delaunay triangulation

using rational arithmetic, ACM Transactions on Graphics, Vol. 10, No. 1, January
1991, pp. 71-91.

129. J. Katajainen and M. Koppinen, Constructing Delaunay triangulations by merging

buckets in quadtree order, Annales Societatis Mathematicae Polonae, Series IV,
Fundamenta Informaticae, Vol. 11, No. 3, 1988, pp. 275-288.

130. D. G. Kirkpatrick, A note on Delaunay and optimal triangulations, Inform.

Process. Lett., Vol. 10, 1990, pp. 127-128.

93

131. D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan, Polygon triangulation in O(n

log log n) time with simple data structures, Proc. 6th Annual ACM Symposium.
Comput. Geom. 1990, pp. 34-43.

132 V. Klee, On the complexity of d-dimensional Voronoi diagrams, Arch. Math., Vol.

34, 1980, pp. 75-80.

133. R. Klein, Concrete and abstract Voronoi Diagrams, Volume 400 of Lecture Notes

in Computer Science, Springer, 1989.

134. R. Klein and A. Lingas, A note on generalizations of Chew's algorithm for the

Voronoi diagram of a simple polygon, Proc. 9th Annu. ACM Sympos. Comput.
Geom., 1993, pp. 124-132.

135. G. T. Klincsek, Minimal triangulations of polygonal domains, Ann. Disc. Math.,

Vol. 9, 1980, pp. 121-123.

136. D. Knuth, The Art of Computer Programming, Volume 1; Fundamental

Algorithms, Addison Wesley, Reading MA, 1973.

137. H. W. Kuhn, Simplicial approximation of fixed points, Proc. Nat. Acad. Sci. USA,

Vol. 61, 1968, pp. 1238-1242.

138. C. Lawson, Transforming triangulations, Discrete Mathematics, Vol. 3, 1972, pp.

365-372.

139. C. Lawson, Software for C1 surface interpolation, in Mathematical Software III, J.

R. Rice (ed.), Academic Press, New York, 1977, pp. 161-194.

140. C. Lawson, Properties of n-dimensional triangulations, Computer Aided

Geometric Design, Volume 3, Number 4, pp. 231-246.

141. C. Lawson, C1 surface interpolation for scattered data on a sphere, Rocky

Mountain Journal of Mathematics, Vol. 14, No. 1, Winter 1984, pp. 177-202.

142. C. Lee, Regular triangulations of convex polytopes, in: Applied Geometry and

Discrete Mathematics: The Victor Klee Festschrift, edited by Gritzmann and B.
Strumfels, Amer. Math. Soc., Providence, RI, 1991, pp. 443-456.

143. D. T. Lee, Two dimensional Voronoi diagram in the Lp-metric, J. ACM , Vol. 27,

1980, pp. 604-618.

144. D. T. Lee and A. Lin, Generalized Delaunay triangulation for planar graphs, Disc.

and Comp. Geometry, Vol. 1, 1986, pp. 201-217.

94

145. D. T. Lee and C. K. Wong, Voronoi diagrams in L1 (L∞) metrics with 2-
dimensional storage applications, SIAM J. Comput., Vol. 9, 1980, pp. 200-211.

146. D. T. Lee, and B. J. Schacter, Two algorithms for constructing a Delaunay

triangulation, Int. J. of Computer and Information Science, Vol. 9, No. 3, 1980,
pp. 219-242.

147. J. Lee, Comparison for existing methods for building triangular irregular network

models of terrain from grid digital elevation models, Int. J. of Geographical
Information Systems, Vol. 5, No. 2, July-September 1991, pp. 267-285.

148. K. Lee, Data dependent tetrahedrizations, Ph. D. Thesis, Arizona State

University, 1995.

149. N. J. Lennes, Theorems on the simple finite polygon and polyhedron, American

Journal of Mathematics, Vol. 33, 1911, pp. 37-62.

150. C. Levcopoulos and A. Lingas, On approximation behavior of the greedy

triangulation for convex polygons, Algorithmica, Vol. 2, 1987, pp. 175-193.

151. B. A. Lewis and J. S. Robinson, Triangulation of planar regions with applications,

Computer J., Vol. 21, 1978, pp. 324-332.

152. A. Lingas, Advances in minimum weight triangulation, Ph. D. Thesis, Linköping

Univ., 1983.

153. A. Lingas, Voronoi diagrams with barriers and the shortest diagonal problem,

Inform. Process. Lett., Vol. 32, 1989, pp. 191-198.

154. D. Lischinski, Incremental Delaunay triangulation, In Graphic Gems IV, Paul S.

Heckbert (editor), Academic Press, 1994, pp. 47-59.

155. E. L. Lloyd, On triangulations of a set of points in the plane, In Proc. 18th IEEE

Symp. Found. Comp. Sci., 1977, pp. 228-240.

156. S. Lo, Delaunay triangulations of nonconvex planar domains, Int. J. Numer.

Meth. Eng., Vol. 28, 1989, pp. 2695-2707.

157. S. Lo, Volume discretizations into tetrahedra. I. verification and orientation of

boundary surfaces, Computers and Structures, Vol. 39, 1991, pp. 493-500.

158. R. Loehner and P. Parikh, Generation of three-dimensional unstructured grids by

the advancing front method, Internat. J. Numer. Meht. Fluids, Vol. 8, 1988, pp.
1135-1149.

95

159. M. K. Loze and R. Saunders, Two simple algorithms for constructing a two-
dimensional constrained Delaunay triangulation, Applied Numerical
Mathematics, Vol. 11, 1993, pp. 403-418.

160. W. Lorensen and Cline H.E., Marching cubes: A high-resolution 3D surface

construction algorithm, SIGGRAPH 87 Conference Proceedings, Computer
Graphics, Vol. 21, No. 4, July 1987, pp. 163-169.

161. G. Macedonio and M. T. Pareschi, An algorithm for the triangulation of arbitrarily

distributed points: Applications to volume estimate and terrain fitting, Computers
& Geosciences, Vol. 17, No. 7, 1991, pp. 859-874.

162. G. K. Manacher, and A. L. Zobrist, Neither the greedy nor the Delaunay

triangulation approximates the optimum, Inform. Process. Lett., Vol. 9, 19790, pp.
31-34.

163. L. Mansfield, Interpolation to boundary data in tetrahedra with applications to

compatible finite elements, J. Mant. Anal. Appl., Volume 56, pp. 137-164.

164. G. Marton, Acceleration of ray tracing via Voronoi diagrams, in: Graphic Gems V,

Alan Paeth, editor, Academic Press, 1995, pp. 268-284

165. A. Maus, Delaunay triangulation and the convex hull of n points in expected

linear time. BIT, Vol. 24, 1984, pp. 151-163.

166. N. Max, Sorting for polyhedron compositing, in: Focus on Scientific

Visualization, H. Hagen, H. Müller, G. M. Nielson (eds.), Springer, 1993, pp.
259-268.

167. N. Max, P. Hanrahan, and R. Crawfis, Area and volume coherence for efficient

visualization of 3D scalar functions, Computer Graphics, Vol. 24, November
1990, pp. 27-33.

168. A. Mirante and N. Weingarten, The radial sweep algorithm for constructing

triangulated irregular networks, IEEE Computer Graphics and Applications, May
1982, pp. 11-21.

169. G. H. Meisters, Polygons have ears, Amer. Math. Monthly, Vol. 82, 1975, pp. 648-

651.

170. D. Moore, Subdividing simplices, in Graphics Gems III, D. Kirk (ed.), Academic

Press, 1992, pp. 244-249.

171. D. Moore, Understanding simploids, in Graphics Gems III, D. Kirk (ed.),

Academic Press, 1992, pp. 250-255.

172. J.-M. Moreau and P. Volino, Constrained Delaunay triangulation revisited, Proc.

5th Canad. Conf. Comput. Geom., 1993, pp. 340-345.

96

173. D. E. Muller and F. P. Preparata, Finding the intersection of two convex

polyhedra, Theoretical Computer Science Vol. 7, 1978, pp. 217-236.

174. E. J. Nadler, Piecewise linear approximation on triangulations of a planar region,

Ph.D. Thesis, 1985, Division of Applied Mathematics, Brown University.

175. A. Narkhede and D. Manocha, Fast polygon triangulation based on Seidel's

algorithm, in: Graphic Gems V, Academic Press, 1995, pp. 394-397.

176. J. M. Nelson, A triangulation algorithm for arbitrary planar domains, Appl. Math.

Modelling, Vol. 2, 1978, pp. 151-159.

177. G. M. Nielson, The side-vertex method for interpolation in triangles, Journal of

Approx. Theory, Vol. 25,1979, pp. 318-336.

178. G. M. Nielson, Minimum norm interpolation in triangles, SIAM Journal Numer.
Analysis, Vol. 17,1980, pp. 46-62.

179. G. M. Nielson, A method for interpolating scattered data based upon a minimum
norm network, Mathematics of Computation, Vol. 40, 1983, pp. 253-271.

180. G. M. Nielson, An example with a local minimum for the MinMax ordering of

triangulations, Arizona State University Computer Science Technical Report TR-
87-014, 1987.

181. G. M. Nielson, Coordinate free scattered data interpolation, in: Topics in

Multivariate Approximation, C. Chui, F. Utreras, L. Schumaker (eds.), Academic
Press, NY, 1987, pp. 175-184.

182 G. M. Nielson, A characterization of an affine invariant triangulation, in:

Geometric Modelling, Computing Supplementum 8, G. Farin, H. Hagen, H.
Noltemeier, W. Knoedel (eds), Springer, 1993, pp. 191-210.

183. G. M. Nielson, How many ways can a cube be subdivided into tetrahedra?,

Arizona State University Computer Science Department Technical Report TR-95-
13, 1995.

184. G. M. Nielson and T. Foley, A Survey of Applications of an Affine Invariant

Metric, in: Mathematical Methods in Computer Aided Geometric Design, T.
Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1989, 445-467.

185. G. M. Nielson and R. Ramaraj, Interpolation over a sphere, Computer Aided
Geometric Design, Vol. 4, 1987, pp. 41-57.

186. G. M. Nielson and B. Hamann, The asymptotic decider: Resolving the ambiguity
in marching cubes, in: Proceedings of Visualization '91, IEEE Computer Society
Press, Los Alamitos, California, 1990, pp. 83-91.

97

187. G. M. Nielson and K. Opitz, The face-vertex method for interpolating in

tetrahedra, in: Workshop on Computational Geometry, A. Conte, V. Demichelis,
F. Fontanella and I. Galligani (eds.), World Scientific, 1993, pp. 231-244.

188 G. M. Nielson and J. Tvedt, Comparing methods of interpolation for scattered

volumetric data, in: State of the Art in Computer Graphics - Aspects of
Visualization, D. Rogers and R. A. Earnshaw eds., Springer-Verlag, 1994, pp. 67-
86.

189. G. M. Nielson, D. H. Thomas, and J. A. Wixom, Interpolation in triangles, Bull.

Austral. Math. Soc. Vol. 20, 1979, pp. 115-130.

190. T. Ohya, M. Iri, and K. Murota, Improvements of the incremental method for the

Voronoi diagram with computational comparison of various algorithms, Journal of
the Operations Research Society of Japan, Vol. 27, No. 4, 1984, pp. 306-336.

191 A. Okabe, B. Boots, and K. Sugihara, Spatial tessellations: Concepts and

applications of Voronoi diagrams, Wiley & Sons, 1992.

192. A. A. Oloufa, Triangulation applications in volume calculation, Journal of

Computing in Civil Engineering, Vol. 5, No. 1, January 1991, pp. 103-121.

193. T. K. Peucker, R. J. Fowler, and J. J. Little, The triangulated irregular network,

Proceedings ASP-ACSM Symposium on Digital Terrain Models, 1978.

194. C. S. Peterson, Adaptive contouring of three-dimensional surfaces, CAGD, Vol. 1,

1984, pp. 61-74.

195. L. A. Piegl and A. M. Richard, Algorithm and data structure for triangulating

multiply connected polygonal domains, Computers & Graphics, Vol. 17, No. 5,
1993, pp. 563-574.

196. D. A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. Algorithms, Vol.

8, 1987, pp. 405-437,

197. Pourazady, M. and M. Radhakrishnan, Optimization of a triangular mesh,

Computers and Structures, Vol. 40, No. 3, 1991, pp. 795-804.

198. M. J. D. Powell, Piecewise quadratic approximation on triangles, in; Software for

Numerical Mathematics, D. J. Evans (ed.), Academic Press, NY, 1974

199. M. J. D. Powell and M. A. Sabin, Piecewise quadratic approximation on triangles,

ACM Trans. on Mathematical Software, Vol. 3, 1977, pp. 316-325.

200. P. L. Power, Minimal roughness property of the Delaunay triangulation: a shorter

approach, Computer Aided Geometric Design, Vol. 9, 1992, pp. 491-494.

98

201. P. L. Power, The neutral case for the min-max angle criterion: a generalized
approach, Computer Aided Geometric Design, Vol. 9, 1992, pp. 413-418.

202. F. P. Preparata and S. J. Hong, Convex hull of a finite set of points in two and

three dimension, Commun. ACM, Vol. 20, No. 2, Feb. 1977, pp. 87-93.

203. F. P. Preparata and M. I. Shamos, Computational geometry: An introduction,

Springer-Verlag, New York, 1985.

204. E. Quak and L. L. Schumaker, Cubic spline fitting using data dependent

triangulations, Computer Aided Geometric Design, Volume 7, Numbers 1-4, 1990,
pp. 293-301.

205. E. Quak and L. L. Schumaker, C1 surface fitting using data dependent

triangulations, in: Approximation Theory VI, C. Chui, L. L. Schumaker, and J.
Ward, editors, Academic Press, 1989, pp. 545-548.

206. E. Quak And L. L. Schumaker, Least squares fitting by linear splines on data

dependent triangulations, in: Curves and Surfaces, P.-J. Laurent, A. Le Mehaute
and L. L. Schumaker, editors, Academic Press, 1991, pp. 387-390.

207. R. J. Renka, Algorithm 624: Triangulation and interpolation of arbitrarily

distributed points in the plane, ACM TOMS, Vol. 10, 1984, pp. 440-442.

208. V. T. Rajan, Optimality of the Delaunay triangulation in Rd, In Proc. 7th ACM

Symp. Comp. Geometry, 1991, pp. 357-363.

209. P. N. Rathie, A census of simple planar triangulations, J. Comb. Theory B, Vol.

16, 1974, pp. 134-138.

210. D. Rhynsburger, Analytic delineation of Thiessen polygons. Geograph. Anal.,

Vol. 5, 1973, pp. 133-144.

211. S. Rippa, Minimal roughness property of the Delaunay triangulation, Computer

Aided Geometric Design, Vol. 7, 1990, pp. 489-497.

212. S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM

Journal on Numerical Analysis, Vol. 29, No. 1, February 1992, pp. 257-270.

213. S. Rippa, Piecewise linear interpolation and approximation schemes over data

dependent triangulations, Ph. D. Thesis, 1989, Tel Aviv.

214. S. Rippa and B. Schiff, Minimum energy triangulations for elliptic problems,

Comp. Meth. in applied Mech. and Eng., Vol. 84, 1990, pp. 257-274.

215. C. A. Rogers, Packing and covering, Cambridge University Press, 1964.

99

216. J. Ruppert and R. Seidel, On the difficulty of tetrahedralizing 3-dimensional
nonconvex polyhedra, In Proc. 5th ACM Symp. Comp. Geometry, 1989, pp. 380-
393.

217. N. Sapidis and R. Perucchio, Delaunay triangulation of arbitrarily shaped planar

domains, Computer Aided Geometric Design, Vol. 8, 1991, pp. 421-438.

218. V. Sarin and S. Kapoor, Algorithms for relative neighbourhood graphs and

Voronoi diagrams in simple polygons, Proc. 4th Canad. Conf. Comput. Geom.
1992, pp. 292-298.

219. L. Scarlatos and T. Pavlidis, Optimizing triangulation by curvature equalization,

Proceedings of Visualization '92, IEEE CS Press, October 1992, pp. 333-339.

220. B. Schachter, Decomposition of polygons into convex sets., IEEE Transactions on

Computing C-27, Volume 11, November 1978, pp. 1078-1082.

221. E. Schönhardt, Über die zerlegung von dreieckspolyedern in tetraeder, Math.

Annalen, Vol. 98, 1928, 309-312.

222. W. J. Schroeder and M. S. Shephard, Geometry-based fully automatic mesh

generation and the Delaunay triangulation, Int. J. Numer. Meth. Eng. Vol. 26,
1988, pp. 2503-2515.

223. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, Decimation of triangle meshes,

In SIGGRAPH '92, Volume 26, July 1992, pp. 65-70.

224. L. L. Schumaker, Fitting surfaces to scattered data, in: Approximation Theory II,

G. G. Lorentz, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, 1976, pp.
203-268.

225. L. L. Schumaker, Computing optimal triangulations using simulated annealing,

Computer Aided Geometric Design, Volume 10, Numbers 3-4, pp. 329-345.

226. L. L. Schumaker, Triangulation methods, in: Topics in Multivariate

Approximation, L. L. Schumaker, C. Chui and F. Utreras (eds.), Academic Press,
New York, 1987, pp. 219-232.

227. L. L. Schumaker, Triangulations methods in CAGD, IEEE Computer Graphics

and Applications, Vol. 13, January 1993, pp. 47-52.

228. A. Seidel, Constrained Delaunay triangulations and Voronoi diagrams with

obstacles, in: 1978-1988 Ten Years IIG, H. S. Poingratz and W. Schinnerl (eds.),
1988, pp. 178-191.

229. M. Senechal, Which tetrahedra fill space?, Math. Magazine, Vol. 54, 1981, pp.

227-243.

100

230. M. I. Shamos, Computational Geometry, Ph. D. Dissertation, Yale University,
1978.

231. M. Shapiro, A note on Lee and Schachter's algorithm for Delaunay triangulation,

International Journal of Computer and Information Sciences, Vol. 10, N. 6, 1981,
pp. 413-418.

232. D. N. Shenton and Z. J. Cendes, Three-dimensional finite element mesh

generation using Delaunay Tessellation, IEEE Trans. on Magetics, MAG-21,
1985, pp. 2535-2538.

233. D. Shirley and A. Tuchman, A polygonal approximation to direct scalar volume

rendering, Computer Graphics, Vol. 24, November 1990, pp. 63-70.

234. G. M. Shute, L. L. Deneen, and C. D. Thomborson, An O(N log N) plane-sweep

algorithm for L1 and L∞ Delaunay triangulations, Algorithmica, Vol. 6, 1978, pp.
207-221

235. R. Sibson, Locally equiangular triangulations, Computer J., Vol. 21, 1978, pp.

243-245.

236. R. Sibson, A brief description of natural neighbour interpolation, Chapter 2 of

Interpreting Multivariate Data, Wiley, New York, 1981.

237. C. T. Silva, J. S. B. Mitchell, and A. E. Kaufman, Automatic generation of

triangular irregular networks using greedy cuts, Proceedings of Visualization '95,
IEEE CS Press, October 1995, pp. 201-208.

238. S. W. Sloan, A fast algorithm for constructing Delaunay triangulations in the

plane, Advances in Engineering Software, Vol. 9, January 1987, pp. 34-55.

239. S. W. Sloan and G. T. Houlsby, An implementation of Watson's algorithm for

computing 2-dimensional Delaunay triangulations, Advances in Engineering
Software, Vol. 6, 1984, pp. 192-197.

240. C. Stein, B. Becker, and N. Max, Sorting and hardware assisted rendering for

volume visualization, in: 1994 Symposium on Volume Visualization, Washington
DC, October 1994, pp. 83-89.

241. K. Sugihara and M. Iri, Construction of the Voronoi diagram for "one million"

generators in single-precision arithmetic, Proceedings of the IEEE, Vol. 80, 1992,
pp. 1471-1484.

242. M. Tanemura, T. Ogawa, and W. Ogita, A new algorithm for three-dimensional

Voronoi tessellation, Journal of Computational Physics, Vol. 51, 1983, pp. 191-
207.

101

243. R. E. Tarjan and C. J. Van Wyk, An O(n log log n)-time algorithm for
triangulating a simple polygon, SIAM J. Comput., Vol. 17, 1988, pp. 143-178.

244. A. H. Thiessen, Precipitation averages for large areas, Monthly Weather Review,

Vol. 39, 1911, pp. 1032-1034.

245. J. F. Thompson, Numerical Grid Generation, North-Holland, 1982.

246. J. C. Tipper, Straightforward iterative algorithm for the planar Voronoi diagram,

Information Processing Letters, Vol. 34, No. 3, April 1990, pp. 155-160.

247. J. C. Tipper, FORTRAN programs to construct the planar Voronoi diagram,

Computers & Geosciences, Vol. 17, 1991, pp. 597-632.

248. G. Toussaint, Efficient triangulation of simple polygons, Visual Comput., Vol. 7,

1991, pp. 280-295.

249. G. T. Toussaint, C. Verbrugge, C. Wang, and B. Zhu, Tetrahedrization of simple

and not simple polyhedra, CCCG Proc. of the fifth Canadian Conference on
Computational Geometry, 1994.

250. V. J. D. Tsai, Delaunay triangulation in TIN creation: An overview and a linear-

time algorithm, Int. J. Geographical Information Systems, Vol. 7, 1993, pp. 501-
524.

251. W. T. Tutte, A census of planar triangulations, Canadian J. Math., Vol. 14, 1962,

pp. 21-38.

252. G. Voronoi, Nouvelles applications des paramatres continusala theorie des formes

quadratiques, Deuxieme Memoire, Recherches sur les parallelloedres primitifs, J.
reine angew. Mathe. , Vol. 134, 1908, pp. 198-287.

253. C. Wang and L. Schubert, An optimal algorithm for constructing the Delaunay

triangulation of a set of line segments, In Proc. 3rd ACM Symp. Comp.
Geometry, 1987, pp. 223-232.

254. D. F. Watson, Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes, Comp. J., Vol. 24, 1981, pp. 167-172.

255. D. F. Watson and G. M. Philip, Systematic triangulations, Computer Vision,

Graphics, and Image Processing, Vol. 26, 1984, pp. 217-223.

256. N. D. Weatherhill and O. Hassan, Efficient three-dimensional Delaunay

triangulation with automatic point creation and imposed boundary constraints,
Internat. J. Numer. Meth. Eng. Vol. 37, 1994, pp. 2005-3039.

257. P. Williams, Visibility ordering meshed polyhedra, ACM Transactions on

Graphics, Vol. 11, No. 2, 1992, pp. 103-126.

102

103

258. B. Woerdenweber, Automatic mesh generation of 2- and 3-dimensional

curvilinear manifolds, Ph. D. Dissertation, University of Cambridge, 1981.

259. B. Woerdenweber, Finite-element analysis for the naive user, in Solid Modeling

by Computers from Theory to Applications, M. S. Pickett and J. Boyse (eds),
Plenum, Ny, 1984, pp. 81-100.

260. A. J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant, Computer Aided

Geometric Design, Volume 5, Number 3, 1988 pp. 177-186.

261. A. J. Worsey and G. Farin, An n-dimensional Clough-Tocher interpolant,

Constructive Approximation, Vol. 3, 1987, pp. 99-110.

262. F. F. Yao, Computational geometry, in: Handbook of Theoretical Computer

Science, Vol. A, Chapter 7, J. van Leeuwen (ed.), Elsevier and MIT Press, 1990,
pp. 343-389.

263. A. Zenisek, Polynomical approximation on tetrahedrons in the finite element

method, J. Approximation Theory, Vol. 7, 1973, pp. 334-351.

Volume Modelling

Gregory M. Nielson

Reference:

Nielson, GM, Volume Modelling. In: M. Chen et al. (eds.). Volume Graphics,

Springer, 2000; 29-48.

2.1 Introduction

This chapter will present an overview of the emerging research area of volume
modelling. To date, there has been considerable research on the development of
techniques for visualising volume data, but very little on modelling volume data.
This is somewhat surprising since the potential benefits of volume models are
tremendous. This situation is somewhat explained by the fact that volume data is
relatively new and researchers have spent their efforts in figuring out ways to “look”
at the data and have not been able to afford the resources needed to develop methods
for modelling volume data. In addition to providing a means for visualising volume
data, some of the benefits of a volume model are the generation of hierarchical and
multi-resolution models which are extremely useful for the efficient analysis,
visualisation, transmission, and archiving of volume data. In addition, the volume
model can serve as the mathematical foundation for subsequent engineering
simulations and analysis required for design and fabrication.

While interest is steadily growing, the area of volume modelling is still in its
infant stages and currently there are few techniques and little expertise available. In
the next section, we give some precise definitions and describe the scope of our
vision of volume modelling and generally make an appeal for its development. It is
important to realise that practically all visualisation tools require some type of
volume model for their application. Sometimes the model is so obvious that we may
fail to notice it. (For example, the linear interpolation into voxels used by the
standard marching cubes algorithm.) Many of the relatively simple modelling
techniques used for the more popular visualisation tools of today do not apply or
scale up to the data sets currently of interest. These data sets require much more
sophisticated modelling techniques. Another barrier to analysing volume data sets is
the fact that they are often large, and because of this, they are normally associated
with complex and complicated phenomena. Multi-resolution models can be helpful
in this regard. Wavelet models (and the concepts related to wavelet models) have
traditionally been targeted at compression, but they can also form the basis for
analysis tools that allow for removal of clutter and detail and assist in efficient
browsing and zooming. In the third section of this chapter, we will discuss some
research issues in representing volume models.

We think that it would benefit our readers if we were to be somewhat clear about
some very commonly used terminology in this area:

30 Nielson

• Volume Visualisation. We use this as the umbrella term. It encompasses all
aspects of analysing and visualising volume data and models.

• Volume Graphics. This topic deals with the issues of producing the images
associated with volume visualisation. It is analogous to the traditional
polygon graphics. It includes viewing models, illumination models, and scan
conversion algorithms and related issues required for the creation of images.
A more comprehensive definition can be found in [1]

• Volume Rendering. While this term appears somewhat generic, over the
years it has become associated with that particular method of rendering a
volume model which is based upon a certain model of transparency (called
the volume rendering integral). We use it in this context.

• Volume Modelling. This is the topic of this chapter. Our purpose is to more
precisely define this topic and to make a general appeal for its development
and growth.

2.2 Definition and Scope of Volume Modelling

In this section, we take three possible approaches to a definition of volume
modelling: (1) A volume model can be viewed as the process of modelling volume
data. (2) It can be thought of as a generalisation in dimension to surface modelling.
(3) It can be viewed as the means to provide the input to the volume rendering
integral. In the following subsections, we expand on each of these approaches.

2.2.1 Definition by Modelling of Volume Data

Volume scanning devices produce a value of a dependent quantity at various
locations in space. Examples are widespread, and include:

1. the results of MRI and CAT scanners in the medical field,
2. measurements of mineral concentration from core samples scattered over

some typography,
3. results of a 3D, CFD simulation and
4. free-hand ultrasound where a 3D position/orientation sensor is attached to an

ultrasound probe.
What is common here is that each sample of the data consists of a position in space
and the measurement or computation of an associated dependent variable. Invoking
mathematical means of modelling and representing this type of data is one definition
of volume modelling. Volume data does not need to have just a single scalar
dependent variable, there may be several. In fact, some volume data has a dependent
variable that is a vector. This is the case for the data of CFD simulations. Here the
dependent data consists of a single scalar (pressure) and a vector (velocity of the
flow).

In this subsection, we describe four examples of volume data sets. Each requires
some type of volume model before a visualisation tool can be applied. For some of
the data sets, adequate volume models are not currently available.

Volume Modelling 31

Rectilinear, Cartesian Grids from Medical Scanners

This is an example of the most conventional type of data we see in volume
visualisation. It represents the results of some scanning device (such as MRI or
CAT) and can be viewed as measurements on a Cartesian grid. Because of this, the
domain is implied and so a simple three dimensional array of dependent values,

zyxijk NkNjNid ,,1,,,1,,,1, LLL === can be used to represent the data. The

images of Figure 2.1 show isosurfaces which have been extracted from a type of
wavelet model applied to this type of data.

Figure 2.1. Examples of isosurfaces extracted from a volume model called Blend of Linear
and Constant (BLaC) wavelets. The left image is based upon ∆ = 0.0 and the right, ∆ = 0.43.

Seismic Data Samples in Geophysical Studies

This data is typical of measured data extracted from core samples which are taken at
scattered locations, as shown in Figure 2.2. The measurements within core samples
are not necessarily at uniform depths and can vary from one core sample to the next.
Mathematically, we can represent this data as

ijiiii NiNiMZYX
jj

,,1;,,1),;,,(LL == .

Location (X, Y, Z) Mineral

5.50 1.00 0.00 11.0
5.50 1.00 10.00 10.0
… … … …
… … … …
… … … …

Figure 2.2. Diagram depicting core samples.

32 Nielson

In Figure 2.3, we show a snapshot of an interactive tool for interrogating this
type of data. Colour contours are shown at a user specified height. Any number of
these can exist and they can be moved up and down. It is clear that this type of
visualisation or any other would not be possible without a volume model.

Figure 2.3. Screen snapshot of an interactive tool for visualising model of core sample data.
(Courtesy of David Kao).

Curvilinear Grids from Computational Fluid Dynamics Simulations

A time-dependent, 3D curvilinear grid is described by three, four-dimensional
geometry arrays,),,(lll ijkijkijk ZYX which provide the vertices for a cellular

decomposition of the domain of interest for each time step, lt (Figures 2.4 and 2.5).

The numerical simulation provides the solution to the Navier/Stokes equations at
these vertices. This information is provided by four additional arrays

),,,(llll ijkijkijkijk WVUP , where lijkP is a scalar representing pressure and

),,(lll ijkijkijk WVU is the velocity at vertex),,(lll ijkijkijk ZYX at time step lt . Typical

spatial resolutions of interest and value today range from 102 to 103. For efficiency,
time-dependent grids are often partitioned into blocks with vertices of some blocks
moving over time and others being stationary. For example, the V-22 Tiltrotor data
set [2] consists of 26 blocks, of which 9 are time dependent and the remaining ones
are steady. For this data set there are 1,400 time steps each consisting of about 100
MB of data.

Free-hand Ultrasound Data

A typical ultrasound probe produces a “slice” of data through an object. These are
called B-scans and are viewed and manipulated as images (Figure 2.6). The use of
the phrase “free-hand” means the addition of a 3D POSE (Position and Eularian
angles) sensor attached to the conventional ultrasound probe. This allows one to
associate a position in 3D space for each of the pixels of a B-scan image.
Mathematically, we can then view each pixel as a sample of the volume model and
represent it as Nidzyx iiii ,,1),;,,(L= .

Volume Modelling 33

Figure 2.4. A diagram illustrating a 3D curvilinear grid.

Figure 2.5. Curvilinear grid on left and resampled rectilinear grid on right.

Figure 2.6. The process of collecting free-hand ultrasound data

34 Nielson

The idea of free-hand ultrasound data is over ten years old [3-4], but effective
and efficient modelling of this type of data is a very difficult problem which is only
recently receiving some attention [5]. We will cover some exciting new work in this
area in the next section of this chapter. A volume rendering (MIP) based upon these
new progressive models is shown in Figure 2.7.

Figure 2.7. A snapshot from an interactive viewing of a progressive volume model (discussed
in the next section) of ultrasound data. (Data is courtesy of Bill Lorensen.)

2.2.2 Definition by Analogy to Surface Modelling

In Figure 2.8, we see that the flow of information from top to bottom is “surface” to
“volume” and left to right is “modelling” to “graphics”. The traditional computer
graphics pipeline, which is illustrated in the top half of Figure 2.8, consists of a
parametric surface model that is evaluated at a set of parameter values in order to
obtain a polygon tessellation or approximation. The polygons are mapped by the
viewing transformation to device coordinates and then scan converted. In a similar
manner we can envision a “volume graphics” system that takes cells (the 3D
analogues of polygons) that have an associated intensity at each vertex and scan
converts them to a 3D frame buffer which subsequently is used to produce a volume
rendering (either by hardware or software). In the diagram of Figure 2.8, volume
modelling is represented by the oval, which is providing the information for the
tessellation process. That is, volume modelling from this point of view is whatever
is evaluated and used to produce the 3D tessellation with density values at the
vertices.

Volume Modelling 35

Modeling Graphics

V
O
L
U
M
E

S
U
R
F
A
C
E Parametric

implicit
S(u, v) = (X(u, v), Y(u, v), Z(u, v))
{(x, y, z): F(x, y, z) = 0}

?

Figure 2.8. Diagram depicting the analogy between surface modelling and volume modelling.

2.2.3 Definition by Input to the Volume Rendering
Equation

Ray cast volume rendering images are based upon a compositing process. Given a
sorted collection of objects, which emit iC and have transparency iτ , we compute

the observed intensity by applying a very simple model of transparency and
successively computing 1)1(−+−= iiiii FCF ττ (Figure 2.9). A standard limiting

process on this discrete compositing leads to the volume rendering integral

∫
∫

=
−x

x

dtt

dsesCsxF

x

s

0

)(

)()()(
δ

δ

where the density and the transparency are related as
∫

=
−

x

x

deu

exx 0

)(

0),(
δ

τ . From this

point of view, in order to produce a volume rendering we need a trivariate density
function, δ, and a trivariate colour function C. The mathematical model from which
these two trivariate functions are obtained is called a volume model. In many
applications, one data function D leads to both of these. A transfer operator
(function) is applied to D to yield δ. One can use the choice of this transfer function
to make certain values opaque and visible and other ranges transparent. If additional
attributes are known, or if information is known about the location of objects, then it
may be possible to also define the colour function C. This is related to the very
difficult problem of segmenting the data into different classes of materials from

36 Nielson

which the colour function can be determined (possibly in a piece-wise constant
fashion). Often C is taken as a direct relation from D, or possibly it is computed
from D and the gradient of D in order to flush out isosurfaces.

C1

T1

Ci

Ti

Cn

Tn

color
transparency

Figure 2.9. Compositing.

2.2.4 Summary of Definition of Volume Modelling

As we can see, all three of these approaches (volume data, volume rendering integral
and analogue to surface modelling) lead to the same definition of volume modelling.
A volume model is a trivariate relationship whose independent argument is a
position in 3D space and whose dependent argument is a scalar or tuple of scalars or
even a vector. The volume model might also have the aspect of varying over time.

Before we leave this section, we should mention some concepts with similar
terminology, which are not volume models. Even though it is an important part of
certain algorithms in volume graphics the problem of scan converting lines, curves,
surfaces or solids into discrete voxels [6-7] is not the process of volume modelling.
Nor is a model of a volume (Figure 2.10), as for example described by the methods
of CSG (constructive solid geometry). It is a region of space. For the same reasons

Figure 2.10 A model of a volume is not a volume model

Volume Modelling 37

that a collection of pixels is not a curve (Figure 2.11) and a cloud of points is not a
surface (Figure 2.12), a collection of voxels or tetrahedra (see Figure 2.13) is not a
volume model. It is a spatial enumeration and is missing the important component of
a relationship possessed by a volume model. But on the other hand, we can make the
following observation. Just as it is possible (though not necessarily easy) to
parameterise and fit a collection of points to a curve and just as it possible (but even
more difficult) to parameterise a cloud of unorganised points to a surface, it is
possible to construct a volume model based upon discrete voxels and points.

pixels:

(6,16),
(33,19),
(13,20),

. . .

Figure 2.11. A collection of pixels is not a curve, but it may lead to one when an ordering and
other implications are added.

Figure 2.12. A collection of points is not a surface, but it may lead to one when the topology
of a triangulation is added. (Images courtesy of UNI-KL.)

Figure 2.13. A collection of voxels is not a volume model. It is a voxelised volume that
serves as a means to describe a region of 3D space. (The left image is courtesy of Arie
Kaufman and the right image is courtesy of Lego.)

38 Nielson

2.3 Research Issues in Representing Volume
Models

In this section, we cover a sampling of methods for representing volume models
along with some research issues for each of these methods.

Basis Functions

This is the most straightforward approach to representing a volume model. In this
approach, we assume a general form of the volume model. It involves coefficients
and basis functions. The volume data or other considerations are then used to select
the coefficients in the generic form of the model. In mathematical terms, the volume
model takes the form:

),,(),,(
1

zyxbazyxVM i

N

i
i∑

=

= (2.1)

where Nizyxbi ,,1),,,(L= denote the basis functions and the unknown coefficients

are Niai ,,1, L= . This type of volume model is often used in a visualisation tool

even though it may not be completely apparent what the form of volume model
really is. For example, with the marching cubes algorithm piece-wise linear
interpolation into voxels is used. This is equivalent to using a volume model of the
form given in Equation 2.1 where the basis functions are the 3D versions of the
“hat” functions based upon a Cartesian grid. Viewing the modelling process this
way opens up the possibility of using many other, possibly more efficient, basis
functions.

Research Issues: The research question for a particular application then becomes
how to select the basis functions and then how to select the method of computing the
coefficients of the volume model. Ideas about choices for basis functions come from
generalising useful and successful basis functions for lower dimension problems.
For example, splines have served the surface modelling community very well. So
then the question arises as to what are the proper basis functions for a spline volume
model. Some suggestions and comparisons are discussed in [8]. Issues as to whether
interpolation or approximation is most appropriate must be addressed. Also, should
the basis functions have local or global support? Are there numerical condition
problems in the computation of the coefficients? What type of basis functions will
allow interactive speeds? o

Mathematical Modelling

Prior to describing this method of representing volume models, let us first establish a
context by mentioning a few simple things about mathematical/physical modelling.
One of the first uses of mathematical modelling, that we all see, are the equations for
a pendulum introduced in a beginning physics course. If)(tΘ represents the angle

Volume Modelling 39

of deflection at time t, then Newton’s second law takes the form)sin(
2

2

ΘΘ
L
g

dt

d −
=

where g is the gravitational constant and L is the length of the pendulum. To
completely determine the solution, the initial conditions 0)0(Θ=Θ and

0)0(Θ′=
Θ

dt
d

 must be provided. Even though these equations uniquely determine the

solution, there is not a simple formula for)(tΘ . A solution usually requires infinite

expansions or numerical techniques.
For CFD (computational fluid dynamics) studies, the Navier/Stokes equations

characterise the volume model as the solution of a second-order PDE:

FVVV
V

+∇+∇=

 ∇∗+

∂
∂ 2)(mp

t
r (2.2)

where V = (u, v, w) = (u(x, y, z), v(x, y, z), w(x, y, z)) represents the velocity vector and
p = p(x,y,z) is a scalar valued function representing pressure. The scalar constant r is
fluid density, and m is the dynamic viscosity. The external forces are F = (X, Y, Z).
As with the pendulum problem, a solution of Equation 2.2 for V and p requires some
type of approximation or numerical technique. This is where curvilinear grids come
into play. They are often used for the numerical solutions of the PDE’s that
characterise a volume model. Either they serve as a cellular decomposition for a
finite element approach to a solution or they are used in the finite difference
approach where partial derivatives are replaced with discrete approximations. In
either case, a solution to the volume model is computed at each of the nodes of the
curvilinear grid. Later, this data is passed along for post visualisation and analysis.
What is often not passed along is the method of solution. Most data
visualisation/analysis tools require that the discrete data be modelled or interpolated
in some manner. Quite often, the simplest or most readily available method is used
for this purpose whether or not it has anything to do with the underlying volume
model. This is an unfortunate situation which is likely to change as the scientists
themselves are getting more and more involved in the analysis and visualisation of
their data and as the general level of knowledge and mathematical sophistication is
increasing in the area of volume visualisation.

Research Issues: Can the mathematical model be “attached” to the simulated data?
Can the mathematical model be applied locally? In a multi-resolution manner? How
much error is associated with each approach? o

Deformations

In a nutshell, the basic idea here is described as follows: We start with a generic
model which has an associated classification function and morph this generic model
to a particular model inferred by the collected data. This is done with the use of
function norms and a minimisation strategy. The classification function for the
particular data is now obtained by composing the morphing function and the generic

40 Nielson

classification function.
A 3D morph can be accomplished with a trivariate map:

∑

=

=

),,(

),,(

),,(

),,(

gggi

i

i

i

gggz

gggy

gggx

p

p

p

ZYXM

c

b

a

ZYXF

ZYXF

ZYXF

Z

Y

X

which maps a portion of 3D space onto itself. It deforms the space. These types of
maps have been used for designing objects [9] and animations [10]. The basis
functions Mi(Xg, Yg, Zg) would usually be polynomial or piece-wise polynomial. The
coefficients of the morph (ai, bi, ci)

t
 may be thought of as control points and the idea

is to manipulate these values so as to accomplish the desired end.
And now more details: Suppose the generic model has been segmented so that

we have a trivariate function C(x, y, z) which represents the colour or classification
function. This function tells us what material is located at position (x, y, z). It might
be that C(x, y, z) is piece-wise defined (say over voxels) but the precise type of
function it is, is not important in this context. Also associated with this generic
model is a data function d(x, y, z). This is to represent, for example, a model
obtained from applying our scanning device to the generic model and then fitting
this data with a volume model. This function may possibly be obtained by a
simulation of a mathematical model of the generic model using C(x, y, z) and the
physical properties of the materials that are classified or even scanning a physical
phantom model. Both C and d are based upon some type of basis functions and
therefore we can represent them as follows:

),,(),,(zyxCazyxC ii∑= , ∑=),,(),,(zyxdazyxd ii .

Next we obtain the scanned data which we represent as dp(x, y, z) where p is for
“particular”. What we want is the colour or classification function for this particular
data. Let us call it Cp(x, y, z). We first find a morphing function M which maps the
generic model into the particular model. This is done on the basis of the scanned
data. We choose M so that the function d(M(x, y, z)) is close to function dp(x, y, z).
This will require a representation of M in terms of some unknown coefficients and a
norm or method of discretely measuring the error between these two functions. This
leads to a minimisation problem where the parameters of M are manipulated until
the optimal or best fitting morphing function is obtained. We then take as the
classification function for the particular model to be:

)),,((),,(zyxMCzyxC p =

Research Issues: What is the form of the morphing map? Trivariate Bezier?
Catmull/Clark solid? Piece-wise linear over tetrahedra? How to incorporate
particular data into the computation of the morphing map coefficients? Least squares
with cost function? Simulated annealing? o

Volume Modelling 41

Wavelet-Type Multi-resolution Models

The ideas and concepts of wavelets have their origins in the univariate world of time
varying signals [11-12]. Many of the more useful techniques have been extended to
certain types of surface models in the past several years [13]. The first use of
wavelet techniques for volume data was by Muraki who used tensor product
techniques to obtain wavelet models for MRI data. In [14] he discussed the
application of Batelle-Lamarie wavelets and later [15] he compared these results to
those of the DOG wavelets (difference of Gaussian). While tensor product methods
afford a relatively easy way to extend the original univariate wavelet models to 3D
data, they are often not suitable for certain applications and types of volume data.
This includes the volumetric curvilinear grids of CFD data, as we will explain later
in this section.

Wavelet expansions often are based upon basis functions with different
resolutions and within each of these resolutions there are basis functions with
different regions of support. This yields two views of the wavelet expansion and
allows for two very useful types of reconstructions. We can pick out the resolution
of interest and approximate with only these basis functions. This would allow, for
example, the elimination of noise or clutter in order to visualise an overview or trend
in some data. We can pick a region of interest and only use the basis functions that
have support (non-zero values) in this region. This allows for efficient means to
zooming in and out for browsing.

high medium low

)()()()()()(
1

11 xRxRxHcxMbxLaxF
regn Nregn

NiNiiiiiiiii ∑ ∑ ∑∑∑ ++=++= αα L

Both of the properties of compact support and orthogonality are important to the
successful application of wavelets. Unfortunately if we also impose symmetry then
we are frustrated in our attempts to define piece-wise linear (polynomial in general)
wavelets. A recently developed wavelet [16] overcomes this obstacle with a
technique for blending the piece-wise constant and piece-wise linear wavelets. There
is a parameter, ∆, which allows the user to emphasise the compact support properties
of the Haar wavelet or to emphasise the higher order approximations possible with a
piece-wise linear wavelet.

We now turn our attention to wavelets for curvilinear grids. Recently, we
published some results on the development of wavelets for 2D curvilinear grids in
[17]. We are currently working on extending these techniques to 3D. In this work,
the nested wavelet spaces are defined in a piece-wise manner over nested cellular
decompositions. One important constraint that we imposed on this cellular
decomposition was that the original inner boundary must persist at all levels. This
constraint added considerable complexity to the models and subsequent algorithms,
but without it, we felt that the application of the wavelets would suffer. One of the
reasons for this is the fact that much of the activity of the flow takes place near the
inner boundary and a degradation of this representation at low resolutions would
deter the possibility to analyse the flow. We opted for a knot removal approach for

42 Nielson

building the nested cellular decomposition. We will report on this work in the near
future.

Research Issues: How to define wavelet volume models for the types of grids and
data sets of interest in volume visualisation today? For example, 3D, time dependent
curvilinear grids, tetrahedral decompositions, spherical curvilinear grids, free-hand
ultrasound data and, in general, scattered volume data. How important is the trade-
off between orthogonality and local support for this general application? Are nested
spaces critical? Is it better to build multi-resolution models for isosurfaces or the
volumes from which they are extracted. Can both be done at the same time? o

Progressive Volume Models

The basic idea of progressive models can be quickly gleaned from the univariate
data example illustrated in Figure 2.14. On the left, the raw data is modelled by a
piece-wise linear function in the bottom left graph. Successive local, piece-wise
approximations are replaced with more global models leading to the final model in
the top left graph. (See [18] for a model of this type applicable to Cartesian grids
and [19] for a more general algorithm which was applied to curvilinear grids.) On
the right, we start with a global model (linear least squares for example) and
examine if it is acceptable or not. If not, then the domain is split, a new piece-wise
model is computed and the same acceptability criterion is repeated for the sub-
models. These are simple, yet powerful ideas for obtaining models whose
complexity and ability to fit conform to the complexity and variability of the data.
We feel there is a great promise for these ideas in volume models, but it is not a
trivial matter to extend these ideas to 3D.

Bottom-Up/Collapsing

Top-Down/Adaptive

Figure 2.14. The univariate example illustrates the basic ideas of two approaches to
progressive models. Volume modelling is interested in these concepts extended to 3D.

In addition to the oracle (the general collapsing or subdivision decision making
process) there is the requirement of an effective and useful means of actually doing
the subdivision and collapsing. A general approach to solving the problem is to think
up something for 2D and then try to generalise it to 3D. The simplest and most
robust cells are triangles in 2D and tetrahedra in 3D. (See [20] for basic algorithms

Volume Modelling 43

and data structures for triangles and tetrahedra.) The basic problem with building
meshes that are coarse in one region and fine in another is the avoidance of the so-
called “cracking problem”. We mention three approaches. See Figure 2.15. The
method of Maubach [21] performs a local subdivision and repairs the crack by
propagating this split out through the mesh. The method of Bey [22] has been used
in FEM [23] and a variation has been discussed and used for volume models by
Grosso et al. [24]. It uses a combination of two types of subdivisions to avoid cracks
and avoid poorly shaped tetrahedra. A new approach is based upon not worrying
about the crack, but rather using a Coons patch local model that covers it over [25-
26]. Each of these approaches has it own set of research issues that must be worked
out before the methods become viable, but each shows promise.

BeyMaubach Coons

2D

3D

Figure 2.15. Three different approaches to the cellular decomposition for progressive models
which avoid the cracking problem. (The 2D is shown only for illustration purposes. Volume
modelling is concerned with the 3D case.)

We now describe some current research results in this area. They are rather exciting.
In Figure 2.16, samples of some free-hand ultrasound data are shown. This data was
collected in the neck region and includes portions of the carotid artery and the
thyroid gland. The complete set of data consists of approximately a million data
points. It is noisy (due to the ultrasound sensors) and it is redundant due to the
overlaps caused by the free-hand method of collection. A typical tetrahedral mesh
resulting from the adaptive method of fitting is shown in the right image of Figure
2.16. Note that the tetrahedra are much smaller and denser in the regions where the
data is more dense and exhibit greater variation. This shows the ability of the model
to conform to the complexity of the data. In Figure 2.17, we show the results of a
very low resolution model. The left image of Figure 2.17 shows 5 B-scans of the
original data and a “floating window” reconstructed from the volume model. On the
right the same five data B-scans are shown alongside their corresponding
approximations. Also the reconstruction of the “floating window” is shown on the

44 Nielson

right. Figure 2.18 shows a higher resolution model. The results are impressive in
light of the number of vertices and the detail that is present in the approximations. A
different and quite interesting way to compare the approximation is shown in Figure
2.19. And due to the existence of the volume model, tools such as that shown in
Figure 2.20 are possible. Figure 2.7 is also based upon the volume modelling
techniques we have just described.

Figure 2.16. Free-hand ultrasound data collection and typical tetrahedral mesh for
progressive model. (Data courtesy of Cambridge University.)

Figure 2.17. Results from progressive fit with a fairly large RMS error of 17.3 with only 909
vertices (approximately 1000 to 1 reduction).

Volume Modelling 45

Figure 2.18. The same information as in the previous figure, but the RMS is 9.94 and the
number of vertices is 53,995 (approximately a 20 to 1 reduction). The quality of the
reconstructed images is excellent!

Research Issues: These results show the promise and potential of progressive
models for this type of data and for this reason they are exciting. Is it possible to
develop very fast and efficient algorithms that will operate in real time? Imagine an
environment where a user sees the results of the volume model as the data is being
collected. If a region is of special concern, the probe can be positioned so as to
collect more and more data in this region resulting in better and better fitting
models. This type of performance will require efficient data structures for the
tetrahedralisation and efficient means to compute the coefficients of the volume
model. What is the best subdivision strategy? The results we just described (Figure
2.7 and Figures 2.17-2.21) are based upon a particular 3D version of the Maubach
algorithm [21]. We previously mentioned two other possibilities: (1) The red/green
strategy of Bey [22] and Banks [23] and (2) the idea of using triangular Coons
patches. Are there others, and what special properties do they have? What is the best
oracle or fitting strategy? Top-Down/Adaptive or Bottom-Up/Collapsing? Within
either general strategy there are choices to be made. For example, how do you
decide which cells to split or collapse? For some splitting strategies and
applications, it may be advantageous to go very deep and for others there are reasons
for keeping the overall meshing more uniform and shallow. The results reported
here use a piece-wise linear model. Is it worth it to use higher order functions?
Second order, for example? We suspect that the savings in the total number of
tetrahedra will indicate that this is a wise decision for some applications. o

46 Nielson

Vertical Thyroid_45, RMS
9.94

0

50

100

150

200

250

Horizontal Thyroid_45, RMS
9.94

0

50

100

150

200

250

Vertical Thyroid_45, RMS
9.94

0

50

100

150

200

250

Horizontal Thyroid_45, RMS
9.94

0

50

100

150

200

250

Actual

Approximation

Figure 2.19. Comparison of actual B-scan and approximation.

Figure 2.20. Using a slice tool to interactively view a volume model of ultrasound data.

Volume Modelling 47

2.4 Conclusions

In this chapter, we have presented a definition of volume modelling, made an appeal
for its general development and covered some basic methods of representing volume
models. The methods covered are only a sampling. Many techniques have not been
covered. For example there have been a number of procedural techniques developed
where the primary goal is to generate an image or animation which is acceptable to
the viewer. In these applications the picture is the main goal and the volume model
is not so important. Fire, gases, clouds, fluids and many other phenomena have been
considered. Discussion of these procedural techniques can be found in [27] and the
references therein. Also, we did not cover the very interesting and potentially very
useful topic of layered manufacturing (see Chapter 5). Volume models are needed to
drive these new and interesting methods of fabrication, for instance, the use of
transfinite deformation maps for describing volume models [28].

References

1. Kaufman K, Cohen D, Yagel R. Volume graphics. IEEE Computer 1993;
26(7):51-64.

2. Kenwright D, Kao D. Optimization of time-dependent particle tracing using
tetrahedral decomposition. In: Proc. IEEE Visualization’95, Atlanta, GA,
October 1995; 321-328.

3. Nelson TR. Ultrasound visualization. Advances in Computers 1998; 47:185-253.
4. Fenster A, Downey DB. 3-D ultrasound imaging — a review. IEEE Engineering

in Medicine and Biology Magazine 1996; 15(6):41-51.
5. Rohling RN, Gee AH, Berman L. Radial Basis Function Interpolation for 3-D

Ultrasound. TR 327, Engineering Department, Cambridge University, UK, 1998.
6. Wang SM, Kaufman A. Volume sampled voxelization of geometric primitives.

In: Proc. IEEE Symposium on Volume Visualization, Los Alamos, CA, October
1993; 78-84.

7. Wang S, Kaufman A. Volume sculpting. In: Proc. Symposium on Interactive 3D
Graphics, April 1995; 151-156.

8. Nielson GM. Scattered data modeling. IEEE Computer Graphics and
Applications 1993; 13(1):60-70.

9. Sederberg T, Parry S. Free-form deformation of solid geometric models.
ACM/SIGGRAPH Computer Graphics 1986, 20(4): 151-160.

10. MacCracken R, Joy K. Free-form deformations with lattices of arbitrary
topology. ACM/SIGGRAPH Computer Graphics 1996; 30(4):181-188.

11. Chui CK. An Introduction to Wavelets. Academic Press, San Diego, CA 1992.
12. Daubechies I. Ten Lectures on Wavelets. CBMS-NSF Regional Conference

Series in Appl. Math. 1992; vol. 61, SIAM, Philadelphia, PA, 1992.
13. Stollnitz E, DeRose A, Salesin D. Wavelets for Computer Graphics, Morgan

Kaufman, San Francisco, 1996.
14. Muraki S. Volume data and wavelet transforms. IEEE Computer Graphics and

48 Nielson

Applications 1993; 13(4): 50-56.
15. Muraki S. Multiscale volume representation by a DoG wavelet. Transactions on

Visualization and Computer Graphics 1995; 1(2):109-116.
16. Bonneau GP, Hahmann S, Nielson GM. BlaC wavelets: a multiresolution

analysis with non-nested spaces. In: Proc. IEEE Visualization’96, San Francisco,
CA, October 1996; 43-48.

17. Nielson GM, Jung I, Sung J. Wavelets over curvilinear grids. In: Proc. of IEEE
Visualization’98, Research Triangle Park, NC, October 1998; 313-317.

18. Zhou Y, Chen B, Kaufman A. Multiresolution Tetrahedral Framework for
Visualising Regular Volume Data. In: Proc. IEEE Visualization’97, Phoenix,
AZ, October 1997; 135-142.

19. Trotts I, Hamann B, Joy K, Wiley D. Simplification of tetrahedral meshes with
error bounds. To appear in TVCG, 1999.

20. Nielson GM. Tools for triangulations and tetrahedrizations, In: Nielson, Hagen,
Mueller (eds). Scientific Visualization: Surveys, Techniques and Methodologies.
IEEE CS Press, 1997; 429-525.

21. Maubach JM. Local bisection refinement for N-simplicial grids generated by
reflection. SIAM J. Sci. Compt.; 16(1):210-227.

22. Bey J. Tetrahedral mesh refinement. Computing 1995; 55(13):355-378.
23. Bank RE, Sherman AH, Weiser A. Refinement algorithms and data structures for

regular local mesh refinement. In: Stepleman R (ed), Scientific Computing,
North Holland, Amsterdam, 1983; 3-17.

24. Grosso R, Luerig C, Ertl T. The multilevel finite element method for adaptive
mesh optimization and visualization of volume data. In: Proc. IEEE
Visualization’97, Phoenix, AZ, October 1997; 387-394.

25. Coon SA. Surfaces for Computer-Aided Design of Space Forms. MIT, MAC
TR-41, June 1967.

26. Nielson GM, Holliday D, Rox Roxborough T. Cracking the cracking problem
with Coons patches. To appear in: Proc. IEEE Visualization’99, San Fancisco,
CA, 1999.

27. Ebert D, Musgrave K, Peachy D, Worley S, Perlin K. Texturing and Modeling:
A Procedural Approach. Academic Press, San Diego, CA, 1998.

28. Qian X, Dutta D. Features in layered manufacturing of heterogeneous objects.
In: Proc. SFFS 98, Austin, Texas, 1998.

Volume Encoding

David S. Ebert & Yun Jang
School of Electrical and Computer Engineering

Purdue University
Collaborator Material from Kelly Gaither, Thomas Ertl, Manfred

Weiler, Matthias Hopf, Jingshu Huang

David S. Ebert & Yun Jang
School of Electrical and Computer Engineering

Purdue University
Collaborator Material from Kelly Gaither, Thomas Ertl, Manfred

Weiler, Matthias Hopf, Jingshu Huang

Introduction
Enormous datasets from scientific simulation
Goal: interactive visualization on desktop PC
Volume rendering

• Regular or rectilinear gridded volume datasets solved
– Texture mapping on commodity PCs

• Large scattered or unstructured volume datasets
– Still a challenging problem

Enormous datasets from scientific simulation
Goal: interactive visualization on desktop PC
Volume rendering

• Regular or rectilinear gridded volume datasets solved
– Texture mapping on commodity PCs

• Large scattered or unstructured volume datasets
– Still a challenging problem

Introduction
Purpose of presentation

• Procedurally encoding arbitrary scalar, vector, and
multifield datasets using Radial Basis Functions
(RBFs)

• Improvement on spatial distribution of RBFs for
interactive rendering

• Interactively render RBF encoded data

Purpose of presentation
• Procedurally encoding arbitrary scalar, vector, and

multifield datasets using Radial Basis Functions
(RBFs)

• Improvement on spatial distribution of RBFs for
interactive rendering

• Interactively render RBF encoded data

Previous Work
Interpolation of surface data

• Hardy(1971, 1990), Franke(1982), Franke and
Nielson(1991), Franke and Hagen(1999), Carr et
al.(2001)

Interpolation of volume data
• Nielson et al. (1991), Nielson(1993)

Knot selection
• McMathon and Franke(1992)

Interpolation of surface data
• Hardy(1971, 1990), Franke(1982), Franke and

Nielson(1991), Franke and Hagen(1999), Carr et
al.(2001)

Interpolation of volume data
• Nielson et al. (1991), Nielson(1993)

Knot selection
• McMathon and Franke(1992)

Previous Work
Compactly supported RBFs

• Morse et al.(2001), Ohtake et al.(2004)

Hierarchical representation of volumetric
data
• Co et al.(2003)

Meshless isosurface generation
• Co et al.(2004)

Compactly supported RBFs
• Morse et al.(2001), Ohtake et al.(2004)

Hierarchical representation of volumetric
data
• Co et al.(2003)

Meshless isosurface generation
• Co et al.(2004)

Previous Work
Reconstruction and Representation of 3D
Objects with Radial Basis Functions by Carr
et al. (2001)
• Zero level set implicit surface
• Fast fitting and evaluation
• Greedy algorithm for RBF fitting
• Energy minimization for the smoothest interpolant
• RBFs have global support

– Problem for interactive rendering

Reconstruction and Representation of 3D
Objects with Radial Basis Functions by Carr
et al. (2001)
• Zero level set implicit surface
• Fast fitting and evaluation
• Greedy algorithm for RBF fitting
• Energy minimization for the smoothest interpolant
• RBFs have global support

– Problem for interactive rendering

Previous Work
3D Scattered Data Approximation with
Adaptive Compactly supported Radial Basis
Functions by Ohtake et al. (2004)
• Implicit surface fitting
• Compactly supported RBFs

– Randomly chosen centers according to point
density and surface geometry

– Noise-robust approximation
• Link between RBF fitting and partition of unity

approximation

3D Scattered Data Approximation with
Adaptive Compactly supported Radial Basis
Functions by Ohtake et al. (2004)
• Implicit surface fitting
• Compactly supported RBFs

– Randomly chosen centers according to point
density and surface geometry

– Noise-robust approximation
• Link between RBF fitting and partition of unity

approximation

Previous Work
Hierarchical Clustering for Unstructured
Volumetric Scalar Fields by Co et al. (2003)
• Multi-resolution representation of volumetric scalar

data
• Cluster generation using Principal Component

Analysis (PCA)
• Level-of-detail extraction by level-based and error-

based traversal

Hierarchical Clustering for Unstructured
Volumetric Scalar Fields by Co et al. (2003)
• Multi-resolution representation of volumetric scalar

data
• Cluster generation using Principal Component

Analysis (PCA)
• Level-of-detail extraction by level-based and error-

based traversal

Previous Work
Meshless Isosurface Generation from
Multiblock Data by Co et al.(2004)
• Extraction of continuous isosurface from volumetric

data
• Continuous interpolant by locally defined RBFs using

partition of unity method
• Sample points on Marching Cube triangle
• Project points onto isosurface defined by interpolant
• Surface splatting for visualization

Meshless Isosurface Generation from
Multiblock Data by Co et al.(2004)
• Extraction of continuous isosurface from volumetric

data
• Continuous interpolant by locally defined RBFs using

partition of unity method
• Sample points on Marching Cube triangle
• Project points onto isosurface defined by interpolant
• Surface splatting for visualization

Radial Basis Functions:
Basic RBFs

RBF is a circularly-symmetric function
centered at a single point

Examples

RBF is a circularly-symmetric function
centered at a single point

Examples
µ

() ()
() ()
() 22

2

2

exp
log

crr

crr
rrr

xr

+=

−=

=

−=

φ

φ

φ

µ
Thin plate spline

Gaussian

Multiquadric

Radial Basis Functions:
RBF Interpolation

⊕
() ()

i

i

i

i

N

i
iii

x

w
x
N

xwxf

µ
µ
φ

µφ

−

−=∑
=1

Number of Inputs

D-dimensional input vector

RBF weight

Basis function

RBF center

Vector norm

1µ

2w1w
1φ

2φ

2µ

Example

RBF Encoding of Volume Data:
Basis Function

Gaussian function
• Functional value converges to

zero exponentially
• Can adjust the width for

accurate representation of
local features

• Can easily compute
derivatives

Gaussian function
• Functional value converges to

zero exponentially
• Can adjust the width for

accurate representation of
local features

• Can easily compute
derivatives

()

0

2

1
2

2

0 2
exp

w

x

w
M

x
wwxf

j

j

j

M

j j

j
j

σ

µ

σ

µ

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−+= ∑

=

Number of Basis Functions

RBF Weight

3D-space distance

RBF Width

Bias

RBF Encoding of Volume Data:
Encoding System

Evaluate Errors

()xfy −

Input Point Vectors

() { }

i

i

ii

y
x

Niyx ,,1,, K=

3D position vector

Scalar value

Find Center
Value weighted

average point
Maximum error point

Calculate Width
Using nonlinear

optimization

Calculate Weight
Minimizing sum

squared error

Split Space
Principle component

analysis

Final Encoding Output

()
{ }Mj

w jjj

,,1

,, 2

K=

σµ
Max Error > Target Error

Max Error < Target Error

?

RBF Encoding of Volume Data:
Clustering methods

k-means
• One of the simplest clustering methods
• Iterative search the nearest cluster for each point

Principal component analysis (PCA)
• Dimension reduction method
• Splits data distribution into sphere-like shapes

Gaussian mixture model
• Density estimation method according to neighborhood
• Expectation and Maximization algorithm for training

k-means
• One of the simplest clustering methods
• Iterative search the nearest cluster for each point

Principal component analysis (PCA)
• Dimension reduction method
• Splits data distribution into sphere-like shapes

Gaussian mixture model
• Density estimation method according to neighborhood
• Expectation and Maximization algorithm for training

RBF Encoding of Volume Data:
Center Determination

Value weighted cluster average point

Maximum error point

Value weighted cluster average point

Maximum error point

{ }
ii

thi

n

i
ii

j
j

xatvalueyvalue
clusterjxxxposition

xy
n

i

|_

1
1

=
∈=

⋅= ∑
=

µ

{ }
()iii

jij

xfy

ni

−=

==

ε

εµ ,,1,max K

RBF Encoding of Volume Data:
Calculate Width

Levenberg-Marquardt method
• Gradient descent nonlinear optimization
• Find , a local minimizer for

Levenberg-Marquardt method
• Gradient descent nonlinear optimization
• Find , a local minimizer for

() ()[]

() ()σσ

σσ

,
2
1

1

2

iii

N

i
i

xfyf

fF

−=

= ∑
=

∗σ

RBF Encoding of Volume Data:
Calculate Weight

Minimize the sum squared error for all data
points

Minimize the sum squared error for all data
points

Matrix representationMatrix representation Weight solving systemWeight solving system

() ()[]∑
=

−=
N

i
ii wxfywF

1

2,
2
1

() ()

() ()

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

2

1

111

2
exp

j

ji
ij

NMN

M

x
xf

xfxf

xfxf

A

σ
µ

L

MOM

MOM

L
[]
[]

() TTTT

TTTT

TT
N

M

YAAAW

YAAWA
YAW

yyY
wwW

⋅=

=

=

=
=

−1

1

1

,,
,,

L

L

RBF Encoding of Volume Data:
Optimization methods
Nonlinear optimization methods

• Gauss-Newton method
• Levenberg-Marquardt method
• Trust region algorithm

Combination for solution optimization
• Width
• Width + Center
• Width + Weight
• Width + Center + Weight

High computational cost but nearly optimal
solution

Nonlinear optimization methods
• Gauss-Newton method
• Levenberg-Marquardt method
• Trust region algorithm

Combination for solution optimization
• Width
• Width + Center
• Width + Weight
• Width + Center + Weight

High computational cost but nearly optimal
solution

RBF Encoding of Volume Data:
Vector Data Encoding

Extension of scalar field encoding
• Solve each RBF system for each vector component
• For 3D:

– 3 center sets, 3 width sets, 3 weight sets

Encode all components in one RBF system
• 1 center set, 1 width set, 3 weight sets

– Might not capture variances between vector components
• 1 center set, 3 width set, 3 weight sets

– Can capture variances
– Fast evaluation of RBFs in rendering process

Extension of scalar field encoding
• Solve each RBF system for each vector component
• For 3D:

– 3 center sets, 3 width sets, 3 weight sets

Encode all components in one RBF system
• 1 center set, 1 width set, 3 weight sets

– Might not capture variances between vector components
• 1 center set, 3 width set, 3 weight sets

– Can capture variances
– Fast evaluation of RBFs in rendering process

RBF Encoding of Volume Data:
Error Measurement
Scalar fields

• Absolute error
– Difference between original value and evaluated value

• Percentage error
Vector fields

• Absolute error
• Percentage error
• Angular and magnitude error

– Separate error measurement of these two
– Combination of both

– Balance between angular error and magnitude error is
important

– Importance determined by features to be analyzed

Scalar fields
• Absolute error

– Difference between original value and evaluated value
• Percentage error

Vector fields
• Absolute error
• Percentage error
• Angular and magnitude error

– Separate error measurement of these two
– Combination of both

– Balance between angular error and magnitude error is
important

– Importance determined by features to be analyzed

RBF Encoding of Volume Data:
Large Scale Datasets

Domain decomposition by fast multipole method
• Weight solving method for the large RBF system

Domain localization
• Generate several independent RBF systems for large domain

Partition of unity
• Solve decomposed domains independently
• Need summation of decomposed domain solutions in rendering

process

Domain decomposition by fast multipole method
• Weight solving method for the large RBF system

Domain localization
• Generate several independent RBF systems for large domain

Partition of unity
• Solve decomposed domains independently
• Need summation of decomposed domain solutions in rendering

process

Encoding Statistics

X38
Shock

Natural
Convection

Black Oil
Reservoir Neghip Blunt Fin

of Cells 1,943,483 48,000 156,642 32,768 40,960

of Cells
Encoded 89,140 48,000 156,642 32,768 40,960

Data Range 0.00 – 1.65 0.00 – 1.00 0.00 – 1.00 0.00 – 1.00 0.19 – 4.98

of RBFs 2,932 435 458 812 695

Avg. Error 0.05 0.04 0.007 0.012 0.11

Spatial Data Structure:
RBF Influence Calculation

For improved rendering performanceFor improved rendering performance

ε

ir

iw

iµ
ε

x

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= 2

2

2
exp

i

i
i

x
wxf

σ
µ

ε

ε
σ

σ
ε

i

i
ii

i

r

w
r

rw

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ln2

2
exp 2

2

Radius of influence

Error tolerance

Spatial Data Structure:
Spatial RBF Distribution and Octree
Generation

Example, Max number of RBF per cell = 4Example, Max number of RBF per cell = 4
12

Spatial Data Structure:
Spatial RBF Distribution and Octree
Generation

Example, Max number of RBF per cell = 4Example, Max number of RBF per cell = 4
44

7 2

44

2

34

3 2

Spatial Data Structure:
3D Spatial RBF Distribution

Surface Generation and
Visualization

Achieved by rendering slices
Mapping the reconstructed data into the
alpha channel of fragment color

OpenGL alpha test to simulate the first-hit
semantics of a volume ray caster

Pixel values are drawn only if
• They pass the z-buffer test
• The alpha values are larger than or equal to the

selected iso-value

Achieved by rendering slices
Mapping the reconstructed data into the
alpha channel of fragment color

OpenGL alpha test to simulate the first-hit
semantics of a volume ray caster

Pixel values are drawn only if
• They pass the z-buffer test
• The alpha values are larger than or equal to the

selected iso-value

Direct Rendering from Encoding:
Hardware Capabilities and Limit

nVdia high-level shading language Cg
nVidia GeForceFX chip series

• Supports long fragment program with up to 1024
fragment program instructions

High memory bandwidth and parallel
processing capability

Limited dynamic branching supported by
GeForceFX fragment processing unit

nVdia high-level shading language Cg
nVidia GeForceFX chip series

• Supports long fragment program with up to 1024
fragment program instructions

High memory bandwidth and parallel
processing capability

Limited dynamic branching supported by
GeForceFX fragment processing unit

Direct Rendering from Encoding:
Splatting Approach
Rendering a polygon for each RBF center

• Polygon covers the influence disc of the basis function with
respect to the rendered slice

Accumulation of the polygons
• Blending is not supported for floating point p-buffer
• Ping-pong rendering by binding the result from previously

rendered splats as a texture map
• Remove the continuous texture rebinds with feature of the

GeForceFX
Subdivision approach

• Reduces the rasterization overhead

Rendering a polygon for each RBF center
• Polygon covers the influence disc of the basis function with

respect to the rendered slice
Accumulation of the polygons

• Blending is not supported for floating point p-buffer
• Ping-pong rendering by binding the result from previously

rendered splats as a texture map
• Remove the continuous texture rebinds with feature of the

GeForceFX
Subdivision approach

• Reduces the rasterization overhead

Direct Rendering from Encoding:
Programmable Fragment Pipeline
General, orthogonal instruction set
Floating-point data types
Resources

• Large number of registers
• Long programs
• Unlimited texture lookups
• Multiple levels of dependent

texture lookup

High level programming languages
Very limited data dependent jumps or loops

General, orthogonal instruction set
Floating-point data types
Resources

• Large number of registers
• Long programs
• Unlimited texture lookups
• Multiple levels of dependent

texture lookup

High level programming languages
Very limited data dependent jumps or loops

Fragment
Input

Fragment
Program

Textures

Registers

Fragment
Output

Direct Rendering from Encoding:
Fragment Based RBF
Reconstruction
Similar to procedural textures
Decouple geometry from appearance
Compatible with various
rendering/visualization algorithms
• Property texture for arbitrary geometry

– Pressure on airplane body
• Individual cutting slices
• Texture based volume rendering
• Includes volume rendered isosurfaces

Similar to procedural textures
Decouple geometry from appearance
Compatible with various
rendering/visualization algorithms
• Property texture for arbitrary geometry

– Pressure on airplane body
• Individual cutting slices
• Texture based volume rendering
• Includes volume rendered isosurfaces

Direct Rendering from Encoding:
RBF Reconstruction during
Rasterization

RBF Parameters

Texture 1

Texture 0

iµ iw
iσ

Fragment
Program

Direct Rendering from Encoding:
High Level Rendering

Spatial decomposition (bricking)
Multipass rendering (last pass for all cells)

• Hardware accelerated p-buffers
• Uses ping-pong rendering
• Active cell list

Switching to cell-based traversal for single
pass reconstruction
• Requires cell sorting by recursive depth-first traversal

Spatial decomposition (bricking)
Multipass rendering (last pass for all cells)

• Hardware accelerated p-buffers
• Uses ping-pong rendering
• Active cell list

Switching to cell-based traversal for single
pass reconstruction
• Requires cell sorting by recursive depth-first traversal

Direct Rendering from Encoding:
Texture Encoding

RBF parameters as two texture maps
• Resides in the local graphics memory
• Full precision floating-point textures

RBF parameters of a single cell
• Stored consecutively in the texture map
• Fragment program may access RBF parameter by

lookup with increasing texture coordinate
• Avoid texture wrapping

RBF parameters as two texture maps
• Resides in the local graphics memory
• Full precision floating-point textures

RBF parameters of a single cell
• Stored consecutively in the texture map
• Fragment program may access RBF parameter by

lookup with increasing texture coordinate
• Avoid texture wrapping

RBF Parameters

Texture 1

Texture 0

iµ iw
iσ

Direct Rendering from Encoding:
Texture Packing

RBF chunks for multipass rendering
• Different chunk sizes for reducing rasterization
• Specialized fragment programs
• Padding

RBF chunks for multipass rendering
• Different chunk sizes for reducing rasterization
• Specialized fragment programs
• Padding

1

2 3

4
5 6

1 1 1 1 1 1 1 1 1 2 2 2 2
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
4 4 4 4 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 6 6 6 6 6 6 6
6 6

6

5 16 RBFs

4 12 RBFs

6 10 RBFs

2 4 RBFs

1 9 RBFs

3 7 RBFs

4 RBFs

8 RBFs

Direct Rendering from Encoding:
Fragment Program

float4 main (…)
{

float val = 0.0;
float4 texpos = texstart;

for (float i = 0; i < CONST_NUMFUNCS; i++)
{

float4 tmp = texRECT(rbfcenter, texpos.xy);
float s2_inv = texRECT(rbfwidth, texpos.xy);
float3 vec = tmp.rgb – inpos.xyz;
float expval = - dot(vec, vec) * s2_inv;
val += tmp.a * ex2(expval);
texpos += texinc;

}

val += bias + error;

return tex1D(map, (val + mapSBA.r) * mapSBA.g);
}

Results:
X38 Crew Return Vehicle
Tetrahedral finite element

viscous calculation on
geometry
• Computed at Engineering

Research Center at Mississippi
State University by the
Simulation and Design Center

• Single time step in the reentry
process into atmosphere

• 1,943,483 tetrahedra at a 30
degree angle of attack

Tetrahedral finite element
viscous calculation on
geometry
• Computed at Engineering

Research Center at Mississippi
State University by the
Simulation and Design Center

• Single time step in the reentry
process into atmosphere

• 1,943,483 tetrahedra at a 30
degree angle of attack

2,932 RBFs
Shock Volume Rendering
representing normal Mach
number around 1.0

Results:
X38 Crew Return Vehicle

Cutting plane rendering
of shock

Cutting plane rendering
of shock

Volume isosurface
rendering of density

Volume isosurface
rendering of density

1,611 RBFs

Results:
Natural Convection in a box

80th time step of
temperature from a
natural convection
simulation
• A non-Newtonian fluid in a

cube
• Developed at The University of

Texas at Austin
• 48,000 tetrahedral elements

80th time step of
temperature from a
natural convection
simulation
• A non-Newtonian fluid in a

cube
• Developed at The University of

Texas at Austin
• 48,000 tetrahedral elements

435 RBFs

Results:
Black Oil Reservoir Simulation
A simulation for
prediction of
placement of water
injection wells to
maximize oil from
production wells
• Computed by the Center for

Subsurface Modeling at The
University of Texas at Austin

• 156,642 tetrahedra
containing water pressure
values for the injection well

A simulation for
prediction of
placement of water
injection wells to
maximize oil from
production wells
• Computed by the Center for

Subsurface Modeling at The
University of Texas at Austin

• 156,642 tetrahedra
containing water pressure
values for the injection well

458 RBFs

222 RBFs
49 Cells

Results:
Blunt fin

Volume rendering and RBF spatial
distribution

Volume rendering and RBF spatial
distribution

695 RBFs
238 Cells
< 60 RBFs/Cell

Results:
Tornado

Synthetic dataset
• Courtesy of Roger Crawfis

from The Ohio State
University

• 32,768 cells
• Visualization of velocity

magnitude

Synthetic dataset
• Courtesy of Roger Crawfis

from The Ohio State
University

• 32,768 cells
• Visualization of velocity

magnitude

1,793 RBFs

Results:
Turbulent Channel Flow

Experiment studying of
laminar-turbulent
boundary layer
transition in a water
channel

• Provided by the Institute for
Aerodynamics and
Gasdynamics of the
University of Stuttgart

• 32,085 cells

Experiment studying of
laminar-turbulent
boundary layer
transition in a water
channel

• Provided by the Institute for
Aerodynamics and
Gasdynamics of the
University of Stuttgart

• 32,085 cells

2,105 RBFs
110 particles

Results:
System

Intel Pentium 4 2.80 GHz process, 2 GB
memory

256 MB nVidia GeForce 6800GT graphics
board

Intel Pentium 4 2.80 GHz process, 2 GB
memory

256 MB nVidia GeForce 6800GT graphics
board

Results:
Performance
Limited by the rasterization of the graphics card
Single cutting planes

>> 30 fps even for several thousands of RBFs per fragment
Volume Rendering by splatting approach

• 6.4 – 44.3 fps with 64 slices on 400 x 400 viewport
Volume Rendering by texture-based approach

• 0.96 – 10.5 fps with 64 slices on 400 x 400 viewport
• Limited by multipass rendering
• Isosurface shading

Optimization for nv40
• Code not optimized for new capabilities

Limited by the rasterization of the graphics card
Single cutting planes

>> 30 fps even for several thousands of RBFs per fragment
Volume Rendering by splatting approach

• 6.4 – 44.3 fps with 64 slices on 400 x 400 viewport
Volume Rendering by texture-based approach

• 0.96 – 10.5 fps with 64 slices on 400 x 400 viewport
• Limited by multipass rendering
• Isosurface shading

Optimization for nv40
• Code not optimized for new capabilities

Conclusion

Effective encoding of scalar and vector fields

Novel approach for interactive reconstruction
and visualization of arbitrary 3D fields

Allows interactive exploration of large
datasets from a variety of sources

Effective encoding of scalar and vector fields

Novel approach for interactive reconstruction
and visualization of arbitrary 3D fields

Allows interactive exploration of large
datasets from a variety of sources

Future Work
Improve rendering and increase image
quality by incorporating pre-integrated
volume rendering

Improve RBF encoding techniques for
improved performance

Better error measurement methods for
vector encoding

Improve rendering and increase image
quality by incorporating pre-integrated
volume rendering

Improve RBF encoding techniques for
improved performance

Better error measurement methods for
vector encoding

Acknowledgements
This work is supported by the US National
Science Foundation under grants NSF ACI-
0081581 and NSF ACI-0121288

This work is supported by the US National
Science Foundation under grants NSF ACI-
0081581 and NSF ACI-0121288

References: RBF Encoding
• R. L. Hardy, Multiquadric equations of topography and other irregular surfaces,
Journal of Geophysical Research, 1971

• R. L. Hardy, Theory and applications of the multiquadric-biharmonic method 20
years of discovery 1968-1988, Computers and Mathematics with Applications,
1990

• R. Franke, Scattered Data Interpolation: Tests of Some Method, Mathematics
of Computation, 1982

• R. Franke and G. M. Nielson, Scattered data interpolation and applications: A
tutorial and survey, Geometric Modelling, Methods and Applications, 1991

• R. Franke and H. Hagen, Least squares surface approximation using
multiquadrics and parametric domain distortion, Computer Aided Geometric
Design, 1999

• J. R. McMathon and R. Franke, Knot Selection for Least Squares Thin Plate
Splines, SIAM, 1992

• J. Carr et al., Reconstruction and Representation of 3D Objects With Radial

• R. L. Hardy, Multiquadric equations of topography and other irregular surfaces,
Journal of Geophysical Research, 1971

• R. L. Hardy, Theory and applications of the multiquadric-biharmonic method 20
years of discovery 1968-1988, Computers and Mathematics with Applications,
1990

• R. Franke, Scattered Data Interpolation: Tests of Some Method, Mathematics
of Computation, 1982

• R. Franke and G. M. Nielson, Scattered data interpolation and applications: A
tutorial and survey, Geometric Modelling, Methods and Applications, 1991

• R. Franke and H. Hagen, Least squares surface approximation using
multiquadrics and parametric domain distortion, Computer Aided Geometric
Design, 1999

• J. R. McMathon and R. Franke, Knot Selection for Least Squares Thin Plate
Splines, SIAM, 1992

• J. Carr et al., Reconstruction and Representation of 3D Objects With Radial
Basis Functions, Proceedings of ACM SIGGRAPH 2001Basis Functions, Proceedings of ACM SIGGRAPH 2001

• C. S. Co et al., Hierarchical Clustering for Unstructured Volumetric Scalar
Fields, Proceedings of IEEE Visualization 2003

• C. S. Co et al., Hierarchical Clustering for Unstructured Volumetric Scalar
Fields, Proceedings of IEEE Visualization 2003

References: RBF Encoding
• V. Savchenko et al., Function Representation of Solids Reconstructed from

Scattered Surface Points and Contours, Computer Graphics Forum, 1995
• G. Turk and J. O'Brien, Shape Transformation Using Variational Implicit

Functions, Proceedings of SIGGRAPH 99
• G. Turk and J. O'Brien, Modelling with implicit surfaces that interpolate, ACM

Transactions on Graphics, 2002
• B. S. Morse et al., Interpolating Implicit Surfaces From Scattered Surface Data

Using Compactly Supported Radial Basis Functions, Proceedings Shape
Modeling International, 2001

• A. Goshtasby, Grouping and parameterizing irregularly spaced points for
curve fitting, ACM Transactions on Graphics, 2000

• Co et al., Meshless Isosurface Generation from Multiblock Data, VisSym
2004, May 2004

• Ohtake et al., 3D Scattered Data Approximation with Adaptive Compactly
supported Radial Basis Functions, Shape Modeling International 2004, 2004

• V. Savchenko et al., Function Representation of Solids Reconstructed from
Scattered Surface Points and Contours, Computer Graphics Forum, 1995

• G. Turk and J. O'Brien, Shape Transformation Using Variational Implicit
Functions, Proceedings of SIGGRAPH 99

• G. Turk and J. O'Brien, Modelling with implicit surfaces that interpolate, ACM
Transactions on Graphics, 2002

• B. S. Morse et al., Interpolating Implicit Surfaces From Scattered Surface Data
Using Compactly Supported Radial Basis Functions, Proceedings Shape
Modeling International, 2001

• A. Goshtasby, Grouping and parameterizing irregularly spaced points for
curve fitting, ACM Transactions on Graphics, 2000

• Co et al., Meshless Isosurface Generation from Multiblock Data, VisSym
2004, May 2004

• Ohtake et al., 3D Scattered Data Approximation with Adaptive Compactly
supported Radial Basis Functions, Shape Modeling International 2004, 2004

Feature Analysis using
Functional Encoding

Feature Analysis using
Functional Encoding

Kelly Gaither
Texas Advanced Computer Center

Kelly Gaither
Texas Advanced Computer Center

Motivation
Recent computational performance
increases

Massive dataset from advanced computing
simulations

Difficulty in direct analysis of large datasets

Recent computational performance
increases

Massive dataset from advanced computing
simulations

Difficulty in direct analysis of large datasets

Motivation
Feature detection
• Powerful means of automatically detecting regions of

interest

• Automates data analysis

• Extracts the salient features

Feature detection
• Powerful means of automatically detecting regions of

interest

• Automates data analysis

• Extracts the salient features

Survey of Techniques
J. Helman and L. Hesselink
• Evaluation of Flow Topology from Numerical Data, 1987

– Two dimensional topology using critical points
– Attachment and separation surfaces in three dimensional

flows
• Representation and display of vector field topology in fluid flow

data sets, 1989
– Representation of global topology based on the analysis of

critical points
• Visualizing vector field topology in fluid flows, 1991

– Combining simplicity of scheme depiction with curves and
surfaces directly from the data

J. Helman and L. Hesselink
• Evaluation of Flow Topology from Numerical Data, 1987

– Two dimensional topology using critical points
– Attachment and separation surfaces in three dimensional

flows
• Representation and display of vector field topology in fluid flow

data sets, 1989
– Representation of global topology based on the analysis of

critical points
• Visualizing vector field topology in fluid flows, 1991

– Combining simplicity of scheme depiction with curves and
surfaces directly from the data

Survey of Techniques
Globus et al.
• A tool for visualizing the topology of three-dimensional vector

fields, 1990

– Numerical analysis and graphical display of topological
aspects of vector fields

– Critical points, their invariant manifolds, and integral curves

Jeong and Hussain
• On the identification of a vortex, 1995

– Identifying a vortex core referred to as the λ2-definition

Globus et al.
• A tool for visualizing the topology of three-dimensional vector

fields, 1990

– Numerical analysis and graphical display of topological
aspects of vector fields

– Critical points, their invariant manifolds, and integral curves

Jeong and Hussain
• On the identification of a vortex, 1995

– Identifying a vortex core referred to as the λ2-definition

2λ

Survey of Techniques
Lovely and Haimes
• Shock detection from computational fluid dynamics results, 1999

– Locating shocks in transient and steady state solution using
flow physics

– Removing false shock detection using a set of filtering
algorithms

Haimes and Kenwright
• On the velocity gradient tensor and fluid feature extraction, 1999

– Identifying global features using local analytical tests based on
critical point theory, phase plane analysis, and the velocity
gradient tensor

Lovely and Haimes
• Shock detection from computational fluid dynamics results, 1999

– Locating shocks in transient and steady state solution using
flow physics

– Removing false shock detection using a set of filtering
algorithms

Haimes and Kenwright
• On the velocity gradient tensor and fluid feature extraction, 1999

– Identifying global features using local analytical tests based on
critical point theory, phase plane analysis, and the velocity
gradient tensor

Survey of Techniques
Silver and Wang
• Tracking scalar features in unstructured datasets,

1998

– Visualization of time-varying datasets and tracking
volume features in unstructured scalar datasets

– Determining history of time-varying features
difficult

Silver and Wang
• Tracking scalar features in unstructured datasets,

1998

– Visualization of time-varying datasets and tracking
volume features in unstructured scalar datasets

– Determining history of time-varying features
difficult

Feature Definition
Critical point
• Stationary point

• Location in the vector field v where v=0

Vortex core
• Central core region of a vortex

Shock
• Connected regions of sharp discontinuities

• Very thin region in a supersonic flow

Critical point
• Stationary point

• Location in the vector field v where v=0

Vortex core
• Central core region of a vortex

Shock
• Connected regions of sharp discontinuities

• Very thin region in a supersonic flow

Critical Points
Integral manifolds

• Combination of vector field topology consisting of key points,
curves, and surfaces

With a few exceptions, all integral manifolds must
begin and end at zeros in the vector fields

These zeros form the critical manifolds
Critical manifolds allow us to characterize the flow
in the areas surrounding the critical points

Critical point contains a greater probability of a
region of interest

Integral manifolds
• Combination of vector field topology consisting of key points,

curves, and surfaces

With a few exceptions, all integral manifolds must
begin and end at zeros in the vector fields

These zeros form the critical manifolds
Critical manifolds allow us to characterize the flow
in the areas surrounding the critical points

Critical point contains a greater probability of a
region of interest

Critical Points

Critical Points Detection
Taylor series expansion of the vector field v

3x3 coefficient matrix

Taylor series expansion of the vector field v

3x3 coefficient matrix

() ()(0) (0) i
i i j j k l

j

vv v x x O x x
x
∂

= + − + ∆ ∆
∂

() i
ij

j

vv
x
∂

∆ =
∂

Critical Points Detection
Classification of critical points
• Eigenvalues of the coefficient matrix

• Combination of real part and imaginary part
– Positive real part

– Repelling direction
– Negative real part

– Attracting direction
– Imaginary part

– Circulation
• Real eigenvalues all having same signs

– Purely repelling node
– Purely attracting node

Classification of critical points
• Eigenvalues of the coefficient matrix

• Combination of real part and imaginary part
– Positive real part

– Repelling direction
– Negative real part

– Attracting direction
– Imaginary part

– Circulation
• Real eigenvalues all having same signs

– Purely repelling node
– Purely attracting node

1 1,R iI+ 2 2 ,R iI+ 3 3R iI+

Critical Point Detection

[Hesselink and Helman, 1991]

Vortex Core Detection
Velocity gradient tensor
• Symmetric part, strain-rate tensor

• Asymmetric part, spin tensor

Eigenvalues of

Velocity gradient tensor
• Symmetric part, strain-rate tensor

• Asymmetric part, spin tensor

Eigenvalues of

J v= ∇

Ω

S

2

TJ J−
Ω =

2

TJ JS +
=

2 2S + Ω

1 2 3λ λ λ≥ ≥

Vortex Core Detection
Vortex
• Connected region where has two negative

eigenvalues

Vortex core
• Points having negative

Vortex
• Connected region where has two negative

eigenvalues

Vortex core
• Points having negative 2λ

2 2S + Ω

Shock Detection
U represents
• P, pressure

• ρ, density

• M, mach number

U represents
• P, pressure

• ρ, density

• M, mach number

Calculate quantities:
[Marcum and Gaither,
1997]

Calculate quantities:
[Marcum and Gaither,
1997]

1 max ,0vE U
v

⎛ ⎞
= ⋅∆⎜ ⎟⎜ ⎟

⎝ ⎠

2 min ,0vE U
v

⎛ ⎞
= ⋅∆⎜ ⎟⎜ ⎟

⎝ ⎠

3
vE U v U
v

⎡ ⎤
= ∆ − ⋅∆⎢ ⎥

⎣ ⎦

Shock Detection

P ρ M

E1
Positive E1 :
Compression shock

Positive E1 :
Expansion shock

Positive E1 :
Expansion shock

E2
Negative E2 :
Expansion shock

Negative E2 :
Compression shock

Negative E2 :
Compression shock

E3
Representing shear shock or contact discontinuities orthogonal
to the flow direction

Shock Detection
Compression Shock of
X38
Compression Shock of
X38

Expansion Shock of X38Expansion Shock of X38

Shock Detection: U = P

E1,2

Shock Detection: U = ρ

E1,2

Shock Detection: U = M

Shock Detection
Bunning’s technique [Haimes 1999]
• Normal mach number

• Stationary shock

Bunning’s technique [Haimes 1999]
• Normal mach number

• Stationary shock

Calculation of Velocity gradient
In the tetrahedral cell, 4 nodes are used to
calculate velocity gradient
In the tetrahedral cell, 4 nodes are used to
calculate velocity gradient

Computing Features in Functional
Domain

Possible to compute features analytically

Functional representation using RBF

Possible to compute features analytically

Functional representation using RBF
()s f x=

s$

() ()0
1

M

i
i

s x w rλ
=

= + Φ∑$

i ir x µ= −

()
2

2exp
2

i
i

i

rr
σ

⎛ ⎞
Φ = −⎜ ⎟

⎝ ⎠

Computing Features in Functional
Domain

Partial derivatives of function s

Approximations of partial derivatives are
used to compute a wide variety of features

Partial derivatives of function s

Approximations of partial derivatives are
used to compute a wide variety of features

() 2 2
1

exp
2

M
ii

i
i i i

xxs x
µµ λ

σ σ=

⎛ − ⎞−
∇ = − −⎜ ⎟

⎝ ⎠
∑

References
Feature detection
• Hesselink, L. and Helman, J., Evaluation of flow topology from numerical data,

AIAA-87-1811, 1987

• Helman, J., Hesselink, L., “Representation and display of vector field topology in
fluid flow data sets”, IEEE Computer, Vol. 22 , Issue 8, page 27-36, 1989

• Helman, J., Hesselink, L., “Visualizing vector field topology in fluid flows”, IEEE
Computer Graphics & Applications, Vol. 11, Issue 3, page 36-46, 1991

• Globus et al., “A tool for visualizing the topology of three-dimensional vector
fields”, Proceedings of the 2nd conference on Visualization, 1991

• J. Jeong and F. Hussain, "On the Identification of a Vortex“, J. Fluid Mech. 285,
pp. 69-94, 1995

Feature detection
• Hesselink, L. and Helman, J., Evaluation of flow topology from numerical data,

AIAA-87-1811, 1987

• Helman, J., Hesselink, L., “Representation and display of vector field topology in
fluid flow data sets”, IEEE Computer, Vol. 22 , Issue 8, page 27-36, 1989

• Helman, J., Hesselink, L., “Visualizing vector field topology in fluid flows”, IEEE
Computer Graphics & Applications, Vol. 11, Issue 3, page 36-46, 1991

• Globus et al., “A tool for visualizing the topology of three-dimensional vector
fields”, Proceedings of the 2nd conference on Visualization, 1991

• J. Jeong and F. Hussain, "On the Identification of a Vortex“, J. Fluid Mech. 285,
pp. 69-94, 1995

References
Feature detection
• D. Lovely and R. Haimes, "Shock Detection from Computational

Fluid Dynamics Results", AIAA Paper 99-3285, 1999
• R. Haimes and D. Kenwright, “On the Velocity Gradient Tensor

and Fluid Feature Extraction", AIAA Paper 99-3288, 1999
• Deborah Silver, Xin Wang, “Tracking Scalar Features in

Unstructured Datasets “, Proceedings of IEEE Visualization
1998

• Marcum, D. L. and Gaither, K. P., "Solution Adaptive
Unstructured Grid Generation Using Pseudo-Pattern
Recognition Techniques," AIAA-97-1860 , 1997

Feature detection
• D. Lovely and R. Haimes, "Shock Detection from Computational

Fluid Dynamics Results", AIAA Paper 99-3285, 1999
• R. Haimes and D. Kenwright, “On the Velocity Gradient Tensor

and Fluid Feature Extraction", AIAA Paper 99-3288, 1999
• Deborah Silver, Xin Wang, “Tracking Scalar Features in

Unstructured Datasets “, Proceedings of IEEE Visualization
1998

• Marcum, D. L. and Gaither, K. P., "Solution Adaptive
Unstructured Grid Generation Using Pseudo-Pattern
Recognition Techniques," AIAA-97-1860 , 1997

Applications

Kelly Gaither
Texas Advanced Computing Center

Kelly Gaither
Texas Advanced Computing Center

Meshless Method
Shift from scattered data approximation to
numerical solution of partial differential
equations (PDEs)

Mesh-free nature of RBFs: Motivation for
dealing with PDEs

Shift from scattered data approximation to
numerical solution of partial differential
equations (PDEs)

Mesh-free nature of RBFs: Motivation for
dealing with PDEs

Meshless Method
Scattered data approximation
• Globally supported RBFs for relative small number of

points (400-500)

• For large datasets (> 10,000)

– Domain decomposition using fast multipole
method [Beatson et al. 2000]

– Domain localization [Nielson 1993]

– Partition of unity [Ohtake et al. 2003]

Scattered data approximation
• Globally supported RBFs for relative small number of

points (400-500)

• For large datasets (> 10,000)

– Domain decomposition using fast multipole
method [Beatson et al. 2000]

– Domain localization [Nielson 1993]

– Partition of unity [Ohtake et al. 2003]

Meshless Method
Scientific visualization
• Providing a crucial role in the development and

understanding of computational simulations

• Current focus:

– improved understanding of results from traditional
grid-based techniques (e.g., rectilinear,
tetrahedral, curvilinear, and hierarchical grid
structures)

Scientific visualization
• Providing a crucial role in the development and

understanding of computational simulations

• Current focus:

– improved understanding of results from traditional
grid-based techniques (e.g., rectilinear,
tetrahedral, curvilinear, and hierarchical grid
structures)

Meshless Method
Traditional methods for modeling numerical
system
• Generation of an underlying grid structure (e.g., finite

element methods (FEM), finite volume methods
(FVM), and finite difference methods (FDM))

• Time consuming creation of “good” meshes

• Prohibitively expensive to solve excessive change
scale model by traditional FEMs (e.g., crack
propagation)

Traditional methods for modeling numerical
system
• Generation of an underlying grid structure (e.g., finite

element methods (FEM), finite volume methods
(FVM), and finite difference methods (FDM))

• Time consuming creation of “good” meshes

• Prohibitively expensive to solve excessive change
scale model by traditional FEMs (e.g., crack
propagation)

Meshless Method
Traditional methods for modeling numerical
system:
• Construction of airtight geometry

– free of cracks or holes

• Generation of surface mesh given

– geometry description

– set of point distributions

• Generation of a volume with elements (e.g., hexahedra,
pyramids, prisms, tetrahedra) adhering to desired spatial
transitions

Traditional methods for modeling numerical
system:
• Construction of airtight geometry

– free of cracks or holes

• Generation of surface mesh given

– geometry description

– set of point distributions

• Generation of a volume with elements (e.g., hexahedra,
pyramids, prisms, tetrahedra) adhering to desired spatial
transitions

Meshless Method
Traditional methods for modeling numerical
system
• Grid generation technique balancing

– Manpower time required to generate the grid

– Resulting size of data set with proper resolution
and spacing needed to maintain accuracy and
convergence

• Storage of a set of discretized points with either
implicit or explicit connectivity

Traditional methods for modeling numerical
system
• Grid generation technique balancing

– Manpower time required to generate the grid

– Resulting size of data set with proper resolution
and spacing needed to maintain accuracy and
convergence

• Storage of a set of discretized points with either
implicit or explicit connectivity

Meshless Method
Additional reasons for exploring meshless
techniques [Kansa, 1990]
• Too much user tuning for multi-dimensional moving

mesh schemes

• Modification of physics to accommodate the
numerical schemes, rather than modification of
numerical schemes to accommodate physics

• Very slow convergence of numerical scheme

Additional reasons for exploring meshless
techniques [Kansa, 1990]
• Too much user tuning for multi-dimensional moving

mesh schemes

• Modification of physics to accommodate the
numerical schemes, rather than modification of
numerical schemes to accommodate physics

• Very slow convergence of numerical scheme

Meshless Method
Development of “meshless” methods
• Growing research area

• Providing a fundamental shift away from the
traditional grid-based simulation techniques

• Modeling the domain of interest

• Governing equations of a series of basis functions

Development of “meshless” methods
• Growing research area

• Providing a fundamental shift away from the
traditional grid-based simulation techniques

• Modeling the domain of interest

• Governing equations of a series of basis functions

Meshless Method
Advantages over the traditional grid-based
techniques
• No dependence on a large underlying grid structure with explicit

connectivity

• Increasing rates of convergence when solving the numerical
PDEs

• Higher order continuity across the global domain of interest

• Superior methods for computing physical systems that have
excessive variation in scale and large deformations (e.g., crack
propagation and fragmentation)

Advantages over the traditional grid-based
techniques
• No dependence on a large underlying grid structure with explicit

connectivity

• Increasing rates of convergence when solving the numerical
PDEs

• Higher order continuity across the global domain of interest

• Superior methods for computing physical systems that have
excessive variation in scale and large deformations (e.g., crack
propagation and fragmentation)

Meshless Method
Meshfree models and particle systems

• Often better suited to cope with geometric changes in
the underlying domain (e.g., free surfaces and large
deformations)

Elimination of cost of grid generation
Weak dependence on a coarsely defined
background mesh that support numerical
quadrature calculations

Meshfree models and particle systems
• Often better suited to cope with geometric changes in

the underlying domain (e.g., free surfaces and large
deformations)

Elimination of cost of grid generation
Weak dependence on a coarsely defined
background mesh that support numerical
quadrature calculations

Meshless Method
Pure functional representations
• Gaussian basis functions

– Relatively localized basis set for modeling rapidly
varying functions

– Easy addition in the regions of clusters
– Most suitable for the evaluation of quantum

mechanical operators between wave functions

Pure functional representations
• Gaussian basis functions

– Relatively localized basis set for modeling rapidly
varying functions

– Easy addition in the regions of clusters
– Most suitable for the evaluation of quantum

mechanical operators between wave functions

Maybe this
equation is not
needed

Meshless Method: Pure
Functional Representations
Wavelets
• Excellent mathematical framework for the systematic

decomposition of data into levels of detail (LOD)
• Perfect reconstruction while simultaneously

maintaining a sparse data representation

• Multi-wavelets

– Approximation of a scalar function by expanding
several scaling and wavelet functions

– Direct construction of a vector wavelet transform

Wavelets
• Excellent mathematical framework for the systematic

decomposition of data into levels of detail (LOD)
• Perfect reconstruction while simultaneously

maintaining a sparse data representation

• Multi-wavelets

– Approximation of a scalar function by expanding
several scaling and wavelet functions

– Direct construction of a vector wavelet transform

Meshless Method: Pure
Functional Representations
Smooth Particle Hydrodynamics (SPH)

• Lagrangian method for modeling a variety of computational fluid
dynamics simulations

• Approximation of materials by particles that are free to move
rather than being fixed at grid locations

• Convert PDEs governing forces (e.g. gravitational forces) into
equations of motion

• Advantages
– Handles momentum dominated flows well
– Natural modeling for complex free surfaces
– Easy addition of complicated multi-phase physics,

realistic equations of state, compressibility, radiation,
and solidification

– Easy handing of complex geometries in two and three
dimensions

Smooth Particle Hydrodynamics (SPH)
• Lagrangian method for modeling a variety of computational fluid

dynamics simulations
• Approximation of materials by particles that are free to move

rather than being fixed at grid locations
• Convert PDEs governing forces (e.g. gravitational forces) into

equations of motion
• Advantages

– Handles momentum dominated flows well
– Natural modeling for complex free surfaces
– Easy addition of complicated multi-phase physics,

realistic equations of state, compressibility, radiation,
and solidification

– Easy handing of complex geometries in two and three
dimensions

Meshless Method: Hybrid
Methods
Functions + Coarse background mesh
Radial basis functions (RBFs)
• Numerical solutions of PDEs via the method of collocation by

Kansa
• No requirement of adaptively finer controls of both space and

polynomial order
• Two-dimensional incompressible Navier-Stokes equations [Florez

and Power, 2002]
• Elliptic boundary value problems [Chan and Ke, 2002]
• Transient nonlinear Poisson problem [Balakrishnan et al. 2002]

Functions + Coarse background mesh
Radial basis functions (RBFs)
• Numerical solutions of PDEs via the method of collocation by

Kansa
• No requirement of adaptively finer controls of both space and

polynomial order
• Two-dimensional incompressible Navier-Stokes equations [Florez

and Power, 2002]
• Elliptic boundary value problems [Chan and Ke, 2002]
• Transient nonlinear Poisson problem [Balakrishnan et al. 2002]

Meshless Method: Hybrid
Methods
Element-Free Galerkin methods (EFGM)
• Solve PDEs using a

– Set of points in the domain of interest
– geometric description of the body to form a discrete model

• Background grid to support numerical quadrature calculations
• Moving Least Squares Methods as a mean for approximating the function
• Computationally expensive
• Advantages over FEM

– C1 continuity over the domain
– Rapid convergence rates
– No dependence on an explicitly defined grid structure

• Attractive in the analysis of crack problem without interactive refining
underlying mesh

Element-Free Galerkin methods (EFGM)
• Solve PDEs using a

– Set of points in the domain of interest
– geometric description of the body to form a discrete model

• Background grid to support numerical quadrature calculations
• Moving Least Squares Methods as a mean for approximating the function
• Computationally expensive
• Advantages over FEM

– C1 continuity over the domain
– Rapid convergence rates
– No dependence on an explicitly defined grid structure

• Attractive in the analysis of crack problem without interactive refining
underlying mesh

Meshless Method: Hybrid
Methods
h-p cloud
• Relies on key principal of a signed partition of unity

• As smooth as desired

• No need to partition the domain of interest into smaller domain

• Only an arbitrarily placed set of nodes needed

• Moving Least Squares Method for all numerical interpolation

• Suitable for large deformation problems exhibiting a significant
change in shape by some load or force

• Crack propagation and vehicle crashworthiness

• Avoids the solution instabilities due to mesh distortion

h-p cloud
• Relies on key principal of a signed partition of unity

• As smooth as desired

• No need to partition the domain of interest into smaller domain

• Only an arbitrarily placed set of nodes needed

• Moving Least Squares Method for all numerical interpolation

• Suitable for large deformation problems exhibiting a significant
change in shape by some load or force

• Crack propagation and vehicle crashworthiness

• Avoids the solution instabilities due to mesh distortion

Examples of using Functional
Encoding
X38 Crew return vehicle
• Tetrahedral finite element

viscous calculation on
geometry

• 1,943,483 tetrahedra at a 30
degree angle of attack

• Computed at Engineering
Research Center at
Mississippi State University
by the Simulation and
Design Center

X38 Crew return vehicle
• Tetrahedral finite element

viscous calculation on
geometry

• 1,943,483 tetrahedra at a 30
degree angle of attack

• Computed at Engineering
Research Center at
Mississippi State University
by the Simulation and
Design Center

Shock Volume Rendering
representing normal Mach
number around 1.0

2,932 RBFs

Examples of using Functional
Encoding

Compression Shock
5,703 RBFs

Expansion Shock
6,750 RBFs

Examples of using Functional
Encoding

Natural Convection in a
box
• 80th time step of

temperature from a natural
convection simulation

• 48,000 tetrahedral elements

• Developed at The University
of Texas at Austin

Natural Convection in a
box
• 80th time step of

temperature from a natural
convection simulation

• 48,000 tetrahedral elements

• Developed at The University
of Texas at Austin

435 RBFs

Examples of using Functional
Encoding
Black Oil Reservoir
Simulation
• A simulation for prediction of

placement of water injection
wells to maximize oil from
production wells

– 156,642 tetrahedra
containing water pressure
values for the injection well

– Computed by the Center
for Subsurface Modeling at
The University of Texas at
Austin

Black Oil Reservoir
Simulation
• A simulation for prediction of

placement of water injection
wells to maximize oil from
production wells

– 156,642 tetrahedra
containing water pressure
values for the injection well

– Computed by the Center
for Subsurface Modeling at
The University of Texas at
Austin

458 RBFs

222 RBFs

References
Meshless techniques
• G.E. Fasshauer, "Solving partial differential equations by collocation

with radial basis functions", Surface fitting and multiresolution
methods, pp. 131-138, 1997

• G.E. Fasshauer, "On the numerical solution of differential equations
with radial basis functions", Boundary Element Technology XIII, pp.
291-300, 1999

• G.E. Fasshauer, "Nonsymmetric Multilevel RBF Collocation within an
Operator Newton Framework for Nonlinear PDEs", Trends in
Approximation Theory, pp. 103-112, 2001

• Y.C. Hon and Z.M. Wu, “A quasi-interpolation method for solving stiff
ordinary differential equations”, International Journal for Numerical
Methods in Engineering, Vol. 48, pp. 1187-1197, 2000

Meshless techniques
• G.E. Fasshauer, "Solving partial differential equations by collocation

with radial basis functions", Surface fitting and multiresolution
methods, pp. 131-138, 1997

• G.E. Fasshauer, "On the numerical solution of differential equations
with radial basis functions", Boundary Element Technology XIII, pp.
291-300, 1999

• G.E. Fasshauer, "Nonsymmetric Multilevel RBF Collocation within an
Operator Newton Framework for Nonlinear PDEs", Trends in
Approximation Theory, pp. 103-112, 2001

• Y.C. Hon and Z.M. Wu, “A quasi-interpolation method for solving stiff
ordinary differential equations”, International Journal for Numerical
Methods in Engineering, Vol. 48, pp. 1187-1197, 2000

References
Meshless techniques
• E.J. Kansa, “A scattered data approximation scheme with applications to

computational fluid-dynamics - I: Surface Approximations and Partial Derivative
Estimates”, Computers and Mathematics with Applications, Vol. 19, Num. 8, pp.
127-145, 1990

• E.J. Kansa, “A scattered data approximation scheme with applications to
computational fluid-dynamics - II: Solutions to parabolic, hyperbolic and elliptic
partial differential equations”, Computers and Mathematics with Applications, Vol.
19, Num. 8, 147-161, 1990

• E.J. Kansa and Y.C. Hon, “Circumventing the ill-conditioning problem with
multiquadric radial basis functions: applications to elliptic partial differential
equations”, Computers and Mathematics with Applications, Vol. 29, pp. 123-137,
2000

• B. Forberg and T.A. Driscoll, “Interpolation in the limit of increasingly flat radial
basis functions”, Computational and Applied Mathematics, Vol. 43, pp. 413-422,
2002

Meshless techniques
• E.J. Kansa, “A scattered data approximation scheme with applications to

computational fluid-dynamics - I: Surface Approximations and Partial Derivative
Estimates”, Computers and Mathematics with Applications, Vol. 19, Num. 8, pp.
127-145, 1990

• E.J. Kansa, “A scattered data approximation scheme with applications to
computational fluid-dynamics - II: Solutions to parabolic, hyperbolic and elliptic
partial differential equations”, Computers and Mathematics with Applications, Vol.
19, Num. 8, 147-161, 1990

• E.J. Kansa and Y.C. Hon, “Circumventing the ill-conditioning problem with
multiquadric radial basis functions: applications to elliptic partial differential
equations”, Computers and Mathematics with Applications, Vol. 29, pp. 123-137,
2000

• B. Forberg and T.A. Driscoll, “Interpolation in the limit of increasingly flat radial
basis functions”, Computational and Applied Mathematics, Vol. 43, pp. 413-422,
2002

References
Meshless techniques
• Chen et al., “Dual reciprocity method using for Helmholtz-type

operators”, Boundary Elements, Vol. 20, pp. 495-504, 1998

• W. Chen and M. Tanaka, “A meshless, integration-free, and boundary-
only RBF technique”, Computational Mathematics Applications, Vol.
43, pp. 379-391, 2002

• O. M. Nielsen, “Wavelets in Scientific Computing”, in Department of
Mathematical Modeling, Technical University of Denmark, pp. 224,
1998

• J. Fowler and Hua L., “Omnidirectionally Balanced Multiwavelets for
Vector Wavelet”, Proceedings of Data Compression Conference, 2002

• J. J. Monaghan, “Smoothed particle hydrodynamics”, Journal of
Computational Physics, Vol. 110, pp. 229-406, 1994

Meshless techniques
• Chen et al., “Dual reciprocity method using for Helmholtz-type

operators”, Boundary Elements, Vol. 20, pp. 495-504, 1998

• W. Chen and M. Tanaka, “A meshless, integration-free, and boundary-
only RBF technique”, Computational Mathematics Applications, Vol.
43, pp. 379-391, 2002

• O. M. Nielsen, “Wavelets in Scientific Computing”, in Department of
Mathematical Modeling, Technical University of Denmark, pp. 224,
1998

• J. Fowler and Hua L., “Omnidirectionally Balanced Multiwavelets for
Vector Wavelet”, Proceedings of Data Compression Conference, 2002

• J. J. Monaghan, “Smoothed particle hydrodynamics”, Journal of
Computational Physics, Vol. 110, pp. 229-406, 1994

References
Meshless techniques
• W. F. Florez and Power, H., “DRM multi-domain mass

conservative interpolation approach for the BEM solution of the
two-dimensional Navier-Stokes equations”, Computer &
Mathematics with Applications, Vol. 43, 2002

• C. Y. Chan and Ke L., “Numerical computations for singular
semilinear elliptic boundary value problems”, Computer &
Mathematics with Applications, Vol. 43, 2002

• K. Balkrishnan et al. “An operator splitting method radial basis
function method for the solution of transient nonlinear Poisson
problems”, Computer & Mathematics with Applications, Vol. 43,
2002

Meshless techniques
• W. F. Florez and Power, H., “DRM multi-domain mass

conservative interpolation approach for the BEM solution of the
two-dimensional Navier-Stokes equations”, Computer &
Mathematics with Applications, Vol. 43, 2002

• C. Y. Chan and Ke L., “Numerical computations for singular
semilinear elliptic boundary value problems”, Computer &
Mathematics with Applications, Vol. 43, 2002

• K. Balkrishnan et al. “An operator splitting method radial basis
function method for the solution of transient nonlinear Poisson
problems”, Computer & Mathematics with Applications, Vol. 43,
2002

References
Meshless techniques
• M. Fleming et al., “Enriched Element-Free Galerkin Methods for Crack

Tip fields”, International Journal for Numerical Methods in
Engineering, Vol. 40, 1997

• N. Sukumar et al., “An element-Free Galerkin Method for Three-
dimensional Fracture Mechanics”, Computational Mechanics, Vol. 20,
pp.170-175, 1997

• T. Belytschko et al., “Element-Free Galerkin Methods”, International
Journal for Numerical Methods in Engineering, Vol. 27, pp. 229-256,
1994

• T. Belytschko et al., “Crack propagation by elementfree galerkin
methods”, Advanced Computational Methods for Material Modeling,
Vol. 180, pp. 191-205, 1993

Meshless techniques
• M. Fleming et al., “Enriched Element-Free Galerkin Methods for Crack

Tip fields”, International Journal for Numerical Methods in
Engineering, Vol. 40, 1997

• N. Sukumar et al., “An element-Free Galerkin Method for Three-
dimensional Fracture Mechanics”, Computational Mechanics, Vol. 20,
pp.170-175, 1997

• T. Belytschko et al., “Element-Free Galerkin Methods”, International
Journal for Numerical Methods in Engineering, Vol. 27, pp. 229-256,
1994

• T. Belytschko et al., “Crack propagation by elementfree galerkin
methods”, Advanced Computational Methods for Material Modeling,
Vol. 180, pp. 191-205, 1993

References
Large scale techniques
• R.K. Beatson and W. A. Light, “Fast Evaluation of radial basis functions: Method

for 2-dimensional polyharmonic splines”, IMA Journal of Numerical Analysis, Vol.
17, pp. 343-372, 1997

• Beatson et al., “Fast fitting of radial basis functions: Methods based on
precondition GMRES iteration”, Advanced in Computational Mathematics, Vol. 11,
pp. 253-270, 1999

• Beatson et al., “Fast Solution of the Radial Basis Function Interpolation Equations:
Domain Decomposition Methods”, SIAM Journal of Scientific Computing, Vol. 22,
Num. 5, pp. 1717-1740, 2000

• M.J.D. Powell, “Radial basis function methods for interpolation to functions of
many variables”, Proceedings of the 5th Hellenic-European Conference on
Computer Mathematics and its Applications, pp. 2-24, September, 2001

Large scale techniques
• R.K. Beatson and W. A. Light, “Fast Evaluation of radial basis functions: Method

for 2-dimensional polyharmonic splines”, IMA Journal of Numerical Analysis, Vol.
17, pp. 343-372, 1997

• Beatson et al., “Fast fitting of radial basis functions: Methods based on
precondition GMRES iteration”, Advanced in Computational Mathematics, Vol. 11,
pp. 253-270, 1999

• Beatson et al., “Fast Solution of the Radial Basis Function Interpolation Equations:
Domain Decomposition Methods”, SIAM Journal of Scientific Computing, Vol. 22,
Num. 5, pp. 1717-1740, 2000

• M.J.D. Powell, “Radial basis function methods for interpolation to functions of
many variables”, Proceedings of the 5th Hellenic-European Conference on
Computer Mathematics and its Applications, pp. 2-24, September, 2001

	VolumeEncoding_v4.pdf
	Volume Encoding
	Introduction
	Introduction
	Previous Work
	Previous Work
	Previous Work
	Previous Work
	Previous Work
	Previous Work
	Radial Basis Functions:Basic RBFs
	Radial Basis Functions:RBF Interpolation
	RBF Encoding of Volume Data:Basis Function
	RBF Encoding of Volume Data:Encoding System
	RBF Encoding of Volume Data:Clustering methods
	RBF Encoding of Volume Data:Center Determination
	RBF Encoding of Volume Data:Calculate Width
	RBF Encoding of Volume Data:Calculate Weight
	RBF Encoding of Volume Data:Optimization methods
	RBF Encoding of Volume Data:Vector Data Encoding
	RBF Encoding of Volume Data:Error Measurement
	RBF Encoding of Volume Data:Large Scale Datasets
	Encoding Statistics
	Spatial Data Structure:RBF Influence Calculation
	Spatial Data Structure: Spatial RBF Distribution and Octree Generation
	Spatial Data Structure:Spatial RBF Distribution and Octree Generation
	Spatial Data Structure: 3D Spatial RBF Distribution
	Surface Generation and Visualization
	Direct Rendering from Encoding: Hardware Capabilities and Limit
	Direct Rendering from Encoding:Splatting Approach
	Direct Rendering from Encoding:Programmable Fragment Pipeline
	Direct Rendering from Encoding:Fragment Based RBF Reconstruction
	Direct Rendering from Encoding:RBF Reconstruction during Rasterization
	Direct Rendering from Encoding:High Level Rendering
	Direct Rendering from Encoding:Texture Encoding
	Direct Rendering from Encoding:Texture Packing
	Direct Rendering from Encoding:Fragment Program
	Results:X38 Crew Return Vehicle
	Results:X38 Crew Return Vehicle
	Results:Natural Convection in a box
	Results:Black Oil Reservoir Simulation
	Results:Blunt fin
	Results:Tornado
	Results:Turbulent Channel Flow
	Results:System
	Results:Performance
	Conclusion
	Future Work
	Acknowledgements
	References: RBF Encoding
	References: RBF Encoding

	FeatureAnalysis_v3.pdf
	Feature Analysis using Functional Encoding
	Motivation
	Motivation
	Survey of Techniques
	Survey of Techniques
	Survey of Techniques
	Survey of Techniques
	Feature Definition
	Critical Points
	Critical Points
	Critical Points Detection
	Critical Points Detection
	Critical Point Detection
	Vortex Core Detection
	Vortex Core Detection
	Shock Detection
	Shock Detection
	Shock Detection
	Shock Detection: U = P
	Shock Detection: U = ρ
	Shock Detection: U = M
	Shock Detection
	Calculation of Velocity gradient
	Computing Features in Functional Domain
	Computing Features in Functional Domain
	References
	References

	Applications_v3.pdf
	Applications
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method
	Meshless Method: Pure Functional Representations
	Meshless Method: Pure Functional Representations
	Meshless Method: Hybrid Methods
	Meshless Method: Hybrid Methods
	Meshless Method: Hybrid Methods
	Examples of using Functional Encoding
	Examples of using Functional Encoding
	Examples of using Functional Encoding
	Examples of using Functional Encoding
	References
	References
	References
	References
	References
	References

