
VIM: A Framework for Intelligence Analysis

T. Alan Keahey
Visintuit LLC

keahey@visintuit.com

Kenneth C. Cox
Visintuit LLC

kcc@visintuit.com

ABSTRACT. Intelligence analysts receive thousands of facts
from a variety of sources. In addition to the bare details of the
fact – a particular person, for example – each fact may have
provenance, reliability, weight, and other attributes. Each fact
may also be associated with other facts, e.g. that one person met
another at a particular location. The analyst’s task is to examine
a huge collection of such loosely-structured facts, and try to
“connect the dots” to perceive the underlying and unknown
causes – and their possible future courses. We have designed
and implemented a Java platform called VIM to support
intelligence analysts in their work.

ACM Descriptors: information visualization, intelligence
analysis, XML, knowledge representation

1. INTRODUCTION.
A critical need for intelligence analysts is to be able to extract
meaningful and actionable intelligence information from large
and loosely structured collections of heterogeneous information.
That information is then shared with others either as linear
reports to superiors who make decisions based upon the
recommendations, or with other analysts via intelligence reports.
Traditionally the analyst works with an internally constructed
mental model of the facts and hypotheses that go into an
analysis (supported by text and image notes), and then produces
a linear or tabular description of that model for sharing with
others. This introduces a significant gap between the analyst’s
internal thought processes and how the information is portrayed
to others, which in turn presents a significant opportunity for
errors in communication and understanding to occur. When
provided with an intelligence report, there is usually no way for
the reader to “drill down” into the analyst’s original thought
processes to better understand the reasoning and support for the
recommendations. Our goal with this project is to help close the
conceptual gap between the highly individualized and creative
analysis process, and the ways that the results of that process are
presented so that the analytical insights can best be shared.
Towards that end we have created a lightweight, modular,
adaptable and extensible framework that allows analysts to
visually manipulate, query, analyze and share intelligence
information and hypotheses in a collaborative environment.

Our framework has similarities with a number of established
techniques including visualization of relational databases [1, 3],
node-link displays of intelligence information [2], highly
interactive visual exploration of heterogeneous information [4]
and logical query lenses [5]. Our framework also has a number
of novel features that are tuned to the analysis process, such as
new visual metaphors, extensive use of new WWW technologies
to facilitate system construction and collaboration, sophisticated
mappings between conventional data sources and our internal
data structures, and also mappings between information and

visual representation. We believe that taken together these
represent a fundamentally novel approach to the way that
intelligence analysts can perform their analyses and share their
results with others.

2. SYSTEM DESCRIPTION.
The VIM platform provides a shared collection of intelligence
data called a Knowledge Space. The analyst can create any
number of views of this data, choosing the view from a large
(and growing) collection of both standard and novel visual
representations of data. VIM has a number of interesting
features which help support the analysis task.

Knowledge representation. The VIM Knowledge Space
contains node, edge, and set items. All items have a type as well
as other attributes. Nodes are used to represent individual
intelligence facts. Node types include concepts such as Person,
Place, Event, and Weapon, while the attributes are as
appropriate to each type – name and birthdate for a person, or
name, latitude, and longitude for a place. Edges are used to
represent connections between nodes, and their types are
correspondingly linking concepts such as Communication and
Transaction. Sets are collections of any number of related nodes.

The platform also provides tools to convert other data, such as
relational tables and web sites, into knowledge spaces. In
addition, many of the views provide mechanisms to modify the
knowledge space through interactions with the graphics, e.g., by
generating new items using mouse and menu commands.

Visual representation. Each view has a Visual Space
containing the visual items displayed by the view. The Visual
Space structure parallels that of the Knowledge Space; each
visual item in the space is conceptually a node, edge, or set.
New types of visual items (new Java subclasses of the node,
edge, and set base classes) can be created by the programmer of
a view. Visual items have attributes, such as color, edge style,
and icon, and each visual item may represent a knowledge item.

The view defines a mapping which generates the visual space
from the knowledge space. There is no requirement that this
mapping be one-to-one, or that knowledge nodes map to visual
nodes; for example, we might represent a knowledge set as
multiple visual edges, connecting the visual nodes that represent
the knowledge nodes contained in the set, as in our parallel-axes
view (Figure 1). When the knowledge space changes, the visual
space is updated using the mapping; for example, in the parallel
axis view of Figure 1, if a node is added to the knowledge space,
the view will add the new node to any axis that should contain
the node, along with any needed edges.

We have implemented such standard views as node-link
networks, geographic maps, and parallel axes, as well as novel
views such as order-of-interest grids and a stack view
(supporting the common analyst methodology of working with
stacks of paper, each stack containing associated facts), using
this single underlying data representation.

XML. VIM uses XML extensively for data manipulation.
The XML description of the knowledge schema (item types and
attributes) is used during system build to automatically generate
code for storing, retrieving, and modifying knowledge spaces.
Knowledge spaces themselves – that is, the collections of facts

used by the analyst – are also stored in XML. Finally, the entire
state of all the VIM views and queries can be saved in an XML
file, and later re-loaded into the system to re-create the state.

Queries. A query tests a visual item or knowledge space item.
VIM makes extensive use of queries, both to define subsets of
data to be displayed and in other contexts. For example, every
axis in every view has a query which is used to select the subset
of knowledge space items which are displayed by that axis.
These queries can be edited by the user, to change the set of
items shown in the axis, as shown in Figure 1.

Mappings. A mapping is a type of query which produces an
attribute for a visual item. For example, a mapping may
produce the image icon used when rendering a visual item. The
most common form of mapping uses the knowledge space item
represented by the visual item to determine the generated
attribute, but mappings can use any other information associated
with the visual item to generate the property.

Every view has a list of mappings. When an item is being
drawn and an attribute is needed, each mapping in the list from
is checked to see if it generates the needed attribute for that item.
The first to produce the property is used. (This is a conceptual
model of the behavior; the implementation, of course, makes use
of cached results for speed.) The last element of the list is a
knowledge-visual binder, shared among all views, which
provides all properties for all visual items, unless overridden by
a mapping earlier in the list.

Magic lenses. We use the magic lens (Figure 2) as an
example bringing together several VIM concepts. A lens is
simultaneously a visual item, a query, and a mapping. As a
visual item, the lens has a graphical representation in the view.
As a query, the lens tests items; the simplest form of lens test is
geometric, accepting a visual item if the visual item intersects
the area of the lens. Finally, as a mapping the lens produces
some graphical property used when rendering the visual item.

When a lens is created, it is added to the visual space (as a
visual item) and to the mapping list (as a mapping). Because it
is in the visual space, it is drawn as part of the view, and is
treated like all other visual items. This means that (among other
things) the user can drag the lens to different locations in the
view. As the dragging occurs, the lens (as a query) reports
changes in the query, caused by changes in the intersection of
the lens with other visual items. This causes the view to redraw,
during which the visual items access the lens (as a mapping) to
determine their highlight color property. Those visual items
which intersect with the lens thus get the color property from the
lens mapping, while those visual items which do not intersect
get the property from some mapping further down the list.

Like all VIM queries, the lens query can be edited by the user
and made more useful. For example, the query can be modified
to only accept those items whose knowledge space item is a
Group node that has a name attribute containing either the string
“Qaeda” or “Qaida”. This lens will then highlight only that
particular subset of the nodes, ignoring any other visual items
that intersect the lens area (Figure 2).

3. CONCLUSIONS AND FUTURE WORK.
Vim was delivered to working intelligence analysts in July, 2004.
We are receiving feedback on the usability and capabilities of
the system from these analysts. We are particularly interested in
the effectiveness of the collaborative capabilities which we have
built into VIM, such as the ability to save and share the
complete system state. We also anticipate receiving additional
suggestions for views and capabilities, particularly in the area of
report generation.

4. ACKNOWLEDGEMENTS.
This work was supported and monitored by the Advanced
Research and Development Activity (ARDA) and the National
Geospatial Intelligence Agency (NGA) under Contract Number
NMA401-02-C-0016. The views, opinions, and findings
contained in this report are those of the author(s) and should not
be construed as an official Department of Defense position,
policy, or decision, unless so designated by other official
documentation.

REFERENCES.
[1] Aiken, A., J. Chen, et al. (1996). “"Tioga-2: A Direct Manipulation

Database Visualization Environment.” ICDE: 208-217.
[2] i2, L. (2003). Analysts Notebook.
[3] Cruz, I.F., M. Averbuch, et al. (1997). “Delaunay: a Database

Visualization System.” ACM-SIGMOD Intl. Conf. on Management
of Data.

[4] Roth, S. et al. (1996). “Visage: A User Interface Environment for
Exploring Information.” Proceedings IEEE Information
Visualization.

[5] Stone, M. C., K. Fishkin, et al. (1994). “The Movable Filter as a
User Interface Tool.” ACM CHI Conference.

Figure 1. Vim parallel-axis view. Each column contains nodes
representing a subset of knowledge-space items, as defined by a
query. The green marks a particular selected set containing
nodes from each column. The query for the second column is
being edited in the "Edit axis" window.

Figure 2. A node-link view with a lens query. The lens (large
magenta rectangle) generates a highlight color attribute which is
used to highlight all items matching the associated logical query,
here finding Group nodes with a name matching Qaeda or Qaida.

